remdb 0.3.114__py3-none-any.whl → 0.3.127__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of remdb might be problematic. Click here for more details.

Files changed (41) hide show
  1. rem/agentic/agents/sse_simulator.py +2 -0
  2. rem/agentic/context.py +23 -3
  3. rem/agentic/mcp/tool_wrapper.py +29 -3
  4. rem/agentic/otel/setup.py +1 -0
  5. rem/agentic/providers/pydantic_ai.py +26 -2
  6. rem/api/main.py +4 -1
  7. rem/api/mcp_router/server.py +9 -3
  8. rem/api/mcp_router/tools.py +324 -2
  9. rem/api/routers/admin.py +218 -1
  10. rem/api/routers/chat/completions.py +250 -4
  11. rem/api/routers/chat/models.py +81 -7
  12. rem/api/routers/chat/otel_utils.py +33 -0
  13. rem/api/routers/chat/sse_events.py +17 -1
  14. rem/api/routers/chat/streaming.py +35 -1
  15. rem/api/routers/feedback.py +134 -14
  16. rem/api/routers/query.py +6 -3
  17. rem/cli/commands/README.md +42 -0
  18. rem/cli/commands/cluster.py +617 -168
  19. rem/cli/commands/configure.py +1 -3
  20. rem/cli/commands/db.py +66 -22
  21. rem/cli/commands/experiments.py +242 -26
  22. rem/cli/commands/schema.py +6 -5
  23. rem/config.py +8 -1
  24. rem/services/phoenix/client.py +59 -18
  25. rem/services/postgres/diff_service.py +108 -3
  26. rem/services/postgres/schema_generator.py +205 -4
  27. rem/services/session/compression.py +7 -0
  28. rem/settings.py +150 -18
  29. rem/sql/migrations/001_install.sql +156 -0
  30. rem/sql/migrations/002_install_models.sql +1864 -1
  31. rem/sql/migrations/004_cache_system.sql +548 -0
  32. rem/utils/__init__.py +18 -0
  33. rem/utils/schema_loader.py +94 -3
  34. rem/utils/sql_paths.py +146 -0
  35. rem/workers/__init__.py +3 -1
  36. rem/workers/db_listener.py +579 -0
  37. rem/workers/unlogged_maintainer.py +463 -0
  38. {remdb-0.3.114.dist-info → remdb-0.3.127.dist-info}/METADATA +213 -177
  39. {remdb-0.3.114.dist-info → remdb-0.3.127.dist-info}/RECORD +41 -36
  40. {remdb-0.3.114.dist-info → remdb-0.3.127.dist-info}/WHEEL +0 -0
  41. {remdb-0.3.114.dist-info → remdb-0.3.127.dist-info}/entry_points.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: remdb
3
- Version: 0.3.114
3
+ Version: 0.3.127
4
4
  Summary: Resources Entities Moments - Bio-inspired memory system for agentic AI workloads
5
5
  Project-URL: Homepage, https://github.com/Percolation-Labs/reminiscent
6
6
  Project-URL: Documentation, https://github.com/Percolation-Labs/reminiscent/blob/main/README.md
@@ -123,9 +123,8 @@ Cloud-native unified memory infrastructure for agentic AI systems built with Pyd
123
123
 
124
124
  Choose your path:
125
125
 
126
- - **Option 1: Package Users with Example Data** (Recommended for first-time users) - PyPI + example datasets
127
- - **Option 2: Package Users** (Recommended for non-developers) - PyPI package + dockerized database
128
- - **Option 3: Developers** - Clone repo, local development with uv
126
+ - **Option 1: Package Users with Example Data** (Recommended) - PyPI + example datasets
127
+ - **Option 2: Developers** - Clone repo, local development with uv
129
128
 
130
129
  ---
131
130
 
@@ -144,10 +143,6 @@ pip install "remdb[all]"
144
143
  git clone https://github.com/Percolation-Labs/remstack-lab.git
145
144
  cd remstack-lab
146
145
 
147
- # Optional: Set default LLM provider via environment variable
148
- # export LLM__DEFAULT_MODEL="openai:gpt-4.1-nano" # Fast and cheap
149
- # export LLM__DEFAULT_MODEL="anthropic:claude-sonnet-4-5-20250929" # High quality (default)
150
-
151
146
  # Start PostgreSQL with docker-compose
152
147
  curl -O https://gist.githubusercontent.com/percolating-sirsh/d117b673bc0edfdef1a5068ccd3cf3e5/raw/docker-compose.prebuilt.yml
153
148
  docker compose -f docker-compose.prebuilt.yml up -d postgres
@@ -156,22 +151,18 @@ docker compose -f docker-compose.prebuilt.yml up -d postgres
156
151
  # Add --claude-desktop to register with Claude Desktop app
157
152
  rem configure --install --claude-desktop
158
153
 
159
- # Load quickstart dataset (uses default user)
154
+ # Load quickstart dataset
160
155
  rem db load datasets/quickstart/sample_data.yaml
161
156
 
162
157
  # Ask questions
163
158
  rem ask "What documents exist in the system?"
164
159
  rem ask "Show me meetings about API design"
165
160
 
166
- # Ingest files (PDF, DOCX, images, etc.) - note: requires remstack-lab
161
+ # Ingest files (PDF, DOCX, images, etc.)
167
162
  rem process ingest datasets/formats/files/bitcoin_whitepaper.pdf --category research --tags bitcoin,whitepaper
168
163
 
169
164
  # Query ingested content
170
165
  rem ask "What is the Bitcoin whitepaper about?"
171
-
172
- # Try other datasets (use --user-id for multi-tenant scenarios)
173
- rem db load datasets/domains/recruitment/scenarios/candidate_pipeline/data.yaml --user-id acme-corp
174
- rem ask --user-id acme-corp "Show me candidates with Python experience"
175
166
  ```
176
167
 
177
168
  **What you get:**
@@ -181,130 +172,39 @@ rem ask --user-id acme-corp "Show me candidates with Python experience"
181
172
 
182
173
  **Learn more**: [remstack-lab repository](https://github.com/Percolation-Labs/remstack-lab)
183
174
 
184
- ---
185
-
186
- ## Option 2: Package Users (No Example Data)
175
+ ### Using the API
187
176
 
188
- **Best for**: Using REM as a service (API + CLI) without modifying code, bringing your own data.
189
-
190
- ### Step 1: Start Database and API with Docker Compose
177
+ Once configured, you can also use the OpenAI-compatible chat completions API:
191
178
 
192
179
  ```bash
193
- # Create a project directory
194
- mkdir my-rem-project && cd my-rem-project
195
-
196
- # Download docker-compose file from public gist
197
- curl -O https://gist.githubusercontent.com/percolating-sirsh/d117b673bc0edfdef1a5068ccd3cf3e5/raw/docker-compose.prebuilt.yml
198
-
199
- # IMPORTANT: Export API keys BEFORE running docker compose
200
- # Docker Compose reads env vars at startup - exporting them after won't work!
201
-
202
- # Required: OpenAI for embeddings (text-embedding-3-small)
203
- export OPENAI_API_KEY="sk-..."
204
-
205
- # Recommended: At least one chat completion provider
206
- export ANTHROPIC_API_KEY="sk-ant-..." # Claude Sonnet 4.5 (high quality)
207
- export CEREBRAS_API_KEY="csk-..." # Cerebras (fast, cheap inference)
208
-
209
- # Start PostgreSQL + API
180
+ # Start the API server (if not using docker-compose for API)
210
181
  docker compose -f docker-compose.prebuilt.yml up -d
211
182
 
212
- # Verify services are running
213
- curl http://localhost:8000/health
214
- ```
215
-
216
- This starts:
217
- - **PostgreSQL** with pgvector on port **5051** (connection: `postgresql://rem:rem@localhost:5051/rem`)
218
- - **REM API** on port **8000** with OpenAI-compatible chat completions + MCP server
219
- - Uses pre-built Docker image from Docker Hub (no local build required)
220
-
221
- ### Step 2: Install and Configure CLI (REQUIRED)
222
-
223
- **This step is required** before you can use REM - it installs the database schema and configures your LLM API keys.
224
-
225
- ```bash
226
- # Install remdb package from PyPI
227
- pip install remdb[all]
228
-
229
- # Configure REM (defaults to port 5051 for package users)
230
- rem configure --install --claude-desktop
183
+ # Test the API
184
+ curl -X POST http://localhost:8000/api/v1/chat/completions \
185
+ -H "Content-Type: application/json" \
186
+ -H "X-Session-Id: a1b2c3d4-e5f6-7890-abcd-ef1234567890" \
187
+ -d '{
188
+ "model": "anthropic:claude-sonnet-4-5-20250929",
189
+ "messages": [{"role": "user", "content": "What documents did Sarah Chen author?"}],
190
+ "stream": false
191
+ }'
231
192
  ```
232
193
 
233
- The interactive wizard will:
234
- 1. **Configure PostgreSQL**: Defaults to `postgresql://rem:rem@localhost:5051/rem` (prebuilt docker-compose)
235
- - Just press Enter to accept defaults
236
- - Custom database: Enter your own host/port/credentials
237
- 2. **Configure LLM providers**: Enter your OpenAI/Anthropic API keys
238
- 3. **Install database tables**: Creates schema, functions, indexes (**required for CLI/API to work**)
239
- 4. **Register with Claude Desktop**: Adds REM MCP server to Claude
240
-
241
- Configuration saved to `~/.rem/config.yaml` (can edit with `rem configure --edit`)
242
-
243
194
  **Port Guide:**
244
195
  - **5051**: Package users with `docker-compose.prebuilt.yml` (pre-built image)
245
196
  - **5050**: Developers with `docker-compose.yml` (local build)
246
- - **Custom**: Your own PostgreSQL database
247
197
 
248
198
  **Next Steps:**
249
199
  - See [CLI Reference](#cli-reference) for all available commands
250
200
  - See [REM Query Dialect](#rem-query-dialect) for query examples
251
201
  - See [API Endpoints](#api-endpoints) for OpenAI-compatible API usage
252
202
 
253
- ### Step 3: Load Sample Data (Optional but Recommended)
254
-
255
- **Option A: Clone example datasets** (Recommended - works with all README examples)
256
-
257
- ```bash
258
- # Clone datasets repository
259
- git clone https://github.com/Percolation-Labs/remstack-lab.git
260
-
261
- # Load quickstart dataset (uses default user)
262
- rem db load --file remstack-lab/datasets/quickstart/sample_data.yaml
263
-
264
- # Test with sample queries
265
- rem ask "What documents exist in the system?"
266
- rem ask "Show me meetings about API design"
267
- rem ask "Who is Sarah Chen?"
268
-
269
- # Try domain-specific datasets (use --user-id for multi-tenant scenarios)
270
- rem db load --file remstack-lab/datasets/domains/recruitment/scenarios/candidate_pipeline/data.yaml --user-id acme-corp
271
- rem ask --user-id acme-corp "Show me candidates with Python experience"
272
- ```
273
-
274
- **Option B: Bring your own data**
275
-
276
- ```bash
277
- # Ingest your own files (uses default user)
278
- echo "REM is a bio-inspired memory system for agentic AI workloads." > test-doc.txt
279
- rem process ingest test-doc.txt --category documentation --tags rem,ai
280
-
281
- # Query your ingested data
282
- rem ask "What do you know about REM from my knowledge base?"
283
- ```
284
-
285
- ### Step 4: Test the API
286
-
287
- ```bash
288
- # Test the OpenAI-compatible chat completions API
289
- curl -X POST http://localhost:8000/api/v1/chat/completions \
290
- -H "Content-Type: application/json" \
291
- -H "X-User-Id: demo-user" \
292
- -d '{
293
- "model": "anthropic:claude-sonnet-4-5-20250929",
294
- "messages": [{"role": "user", "content": "What documents did Sarah Chen author?"}],
295
- "stream": false
296
- }'
297
- ```
298
-
299
- **Available Commands:**
300
- - `rem ask` - Natural language queries to REM
301
- - `rem process ingest <file>` - Full ingestion pipeline (storage + parsing + embedding + database)
302
- - `rem process uri <file>` - READ-ONLY parsing (no database storage, useful for testing parsers)
303
- - `rem db load --file <yaml>` - Load structured datasets directly
203
+ ---
304
204
 
305
205
  ## Example Datasets
306
206
 
307
- 🎯 **Recommended**: Clone [remstack-lab](https://github.com/Percolation-Labs/remstack-lab) for curated datasets organized by domain and format.
207
+ Clone [remstack-lab](https://github.com/Percolation-Labs/remstack-lab) for curated datasets organized by domain and format.
308
208
 
309
209
  **What's included:**
310
210
  - **Quickstart**: Minimal dataset (3 users, 3 resources, 3 moments) - perfect for first-time users
@@ -316,14 +216,11 @@ curl -X POST http://localhost:8000/api/v1/chat/completions \
316
216
  ```bash
317
217
  cd remstack-lab
318
218
 
319
- # Load any dataset (uses default user)
219
+ # Load any dataset
320
220
  rem db load --file datasets/quickstart/sample_data.yaml
321
221
 
322
222
  # Explore formats
323
223
  rem db load --file datasets/formats/engrams/scenarios/team_meeting/team_standup_meeting.yaml
324
-
325
- # Try domain-specific examples (use --user-id for multi-tenant scenarios)
326
- rem db load --file datasets/domains/recruitment/scenarios/candidate_pipeline/data.yaml --user-id acme-corp
327
224
  ```
328
225
 
329
226
  ## See Also
@@ -434,7 +331,7 @@ rem ask research-assistant "Find documents about machine learning architecture"
434
331
  rem ask research-assistant "Summarize recent API design documents" --stream
435
332
 
436
333
  # With session continuity
437
- rem ask research-assistant "What did we discuss about ML?" --session-id abc-123
334
+ rem ask research-assistant "What did we discuss about ML?" --session-id c3d4e5f6-a7b8-9012-cdef-345678901234
438
335
  ```
439
336
 
440
337
  ### Agent Schema Structure
@@ -477,29 +374,16 @@ REM provides **4 built-in MCP tools** your agents can use:
477
374
 
478
375
  ### Multi-User Isolation
479
376
 
480
- Custom agents are **scoped by `user_id`**, ensuring complete data isolation:
377
+ For multi-tenant deployments, custom agents are **scoped by `user_id`**, ensuring complete data isolation. Use `--user-id` flag when you need tenant separation:
481
378
 
482
379
  ```bash
483
- # User A creates a custom agent
484
- rem process ingest my-agent.yaml --user-id user-a --category agents
380
+ # Create agent for specific tenant
381
+ rem process ingest my-agent.yaml --user-id tenant-a --category agents
485
382
 
486
- # User B cannot see User A's agent
487
- rem ask my-agent "test" --user-id user-b
488
- # ❌ Error: Schema not found (LOOKUP returns no results for user-b)
489
-
490
- # User A can use their agent
491
- rem ask my-agent "test" --user-id user-a
492
- # ✅ Works - LOOKUP finds schema for user-a
383
+ # Query with tenant context
384
+ rem ask my-agent "test" --user-id tenant-a
493
385
  ```
494
386
 
495
- ### Advanced: Ontology Extractors
496
-
497
- Custom agents can also be used as **ontology extractors** to extract structured knowledge from files. See [CLAUDE.md](../CLAUDE.md#ontology-extraction-pattern) for details on:
498
- - Multi-provider testing (`provider_configs`)
499
- - Semantic search configuration (`embedding_fields`)
500
- - File matching rules (`OntologyConfig`)
501
- - Dreaming workflow integration
502
-
503
387
  ### Troubleshooting
504
388
 
505
389
  **Schema not found error:**
@@ -717,8 +601,8 @@ POST /api/v1/chat/completions
717
601
  ```
718
602
 
719
603
  **Headers**:
720
- - `X-Tenant-Id`: Tenant identifier (required for REM)
721
- - `X-User-Id`: User identifier
604
+ - `X-User-Id`: User identifier (required for data isolation, uses default if not provided)
605
+ - `X-Tenant-Id`: Deprecated - use `X-User-Id` instead (kept for backwards compatibility)
722
606
  - `X-Session-Id`: Session/conversation identifier
723
607
  - `X-Agent-Schema`: Agent schema URI to use
724
608
 
@@ -889,9 +773,15 @@ This generates:
889
773
  Compare Pydantic models against the live database using Alembic autogenerate.
890
774
 
891
775
  ```bash
892
- # Show differences
776
+ # Show additive changes only (default, safe for production)
893
777
  rem db diff
894
778
 
779
+ # Show all changes including drops
780
+ rem db diff --strategy full
781
+
782
+ # Show additive + safe type widenings
783
+ rem db diff --strategy safe
784
+
895
785
  # CI mode: exit 1 if drift detected
896
786
  rem db diff --check
897
787
 
@@ -899,9 +789,16 @@ rem db diff --check
899
789
  rem db diff --generate
900
790
  ```
901
791
 
792
+ **Migration Strategies:**
793
+ | Strategy | Description |
794
+ |----------|-------------|
795
+ | `additive` | Only ADD columns/tables/indexes (safe, no data loss) - **default** |
796
+ | `full` | All changes including DROPs (use with caution) |
797
+ | `safe` | Additive + safe column type widenings (e.g., VARCHAR(50) → VARCHAR(256)) |
798
+
902
799
  **Output shows:**
903
800
  - `+ ADD COLUMN` - Column in model but not in DB
904
- - `- DROP COLUMN` - Column in DB but not in model
801
+ - `- DROP COLUMN` - Column in DB but not in model (only with `--strategy full`)
905
802
  - `~ ALTER COLUMN` - Column type or constraints differ
906
803
  - `+ CREATE TABLE` / `- DROP TABLE` - Table additions/removals
907
804
 
@@ -1187,14 +1084,11 @@ Test Pydantic AI agent with natural language queries.
1187
1084
  # Ask a question
1188
1085
  rem ask "What documents did Sarah Chen author?"
1189
1086
 
1190
- # With context headers
1191
- rem ask "Find all resources about API design" \
1192
- --user-id user-123 \
1193
- --tenant-id acme-corp
1194
-
1195
1087
  # Use specific agent schema
1196
- rem ask "Analyze this contract" \
1197
- --agent-schema contract-analyzer-v1
1088
+ rem ask contract-analyzer "Analyze this contract"
1089
+
1090
+ # Stream response
1091
+ rem ask "Find all resources about API design" --stream
1198
1092
  ```
1199
1093
 
1200
1094
  ### Global Options
@@ -1242,7 +1136,7 @@ export API__RELOAD=true
1242
1136
  rem serve
1243
1137
  ```
1244
1138
 
1245
- ## Development (For Contributors)
1139
+ ## Option 2: Development (For Contributors)
1246
1140
 
1247
1141
  **Best for**: Contributing to REM or customizing the codebase.
1248
1142
 
@@ -1538,45 +1432,156 @@ Successfully installed ... kreuzberg-4.0.0rc1 ... remdb-0.3.10
1538
1432
 
1539
1433
  REM wraps FastAPI - extend it exactly as you would any FastAPI app.
1540
1434
 
1435
+ ### Recommended Project Structure
1436
+
1437
+ REM auto-detects `./agents/` and `./models/` folders - no configuration needed:
1438
+
1439
+ ```
1440
+ my-rem-app/
1441
+ ├── agents/ # Auto-detected for agent schemas
1442
+ │ ├── my-agent.yaml # Custom agent (rem ask my-agent "query")
1443
+ │ └── another-agent.yaml
1444
+ ├── models/ # Auto-detected if __init__.py exists
1445
+ │ └── __init__.py # Register models with @rem.register_model
1446
+ ├── routers/ # Custom FastAPI routers
1447
+ │ └── custom.py
1448
+ ├── main.py # Entry point
1449
+ └── pyproject.toml
1450
+ ```
1451
+
1452
+ ### Quick Start
1453
+
1541
1454
  ```python
1542
- import rem
1455
+ # main.py
1543
1456
  from rem import create_app
1544
- from rem.models.core import CoreModel
1457
+ from fastapi import APIRouter
1545
1458
 
1546
- # 1. Register models (for schema generation)
1547
- rem.register_models(MyModel, AnotherModel)
1459
+ # Create REM app (auto-detects ./agents/ and ./models/)
1460
+ app = create_app()
1548
1461
 
1549
- # 2. Register schema paths (for custom agents/evaluators)
1550
- rem.register_schema_path("./schemas")
1462
+ # Add custom router
1463
+ router = APIRouter(prefix="/custom", tags=["custom"])
1551
1464
 
1552
- # 3. Create app
1553
- app = create_app()
1465
+ @router.get("/hello")
1466
+ async def hello():
1467
+ return {"message": "Hello from custom router!"}
1554
1468
 
1555
- # 4. Extend like normal FastAPI
1556
- app.include_router(my_router)
1469
+ app.include_router(router)
1557
1470
 
1471
+ # Add custom MCP tool
1558
1472
  @app.mcp_server.tool()
1559
1473
  async def my_tool(query: str) -> dict:
1560
- """Custom MCP tool."""
1474
+ """Custom MCP tool available to agents."""
1561
1475
  return {"result": query}
1562
1476
  ```
1563
1477
 
1564
- ### Project Structure
1478
+ ### Custom Models (Auto-Detected)
1479
+
1480
+ ```python
1481
+ # models/__init__.py
1482
+ import rem
1483
+ from rem.models.core import CoreModel
1484
+ from pydantic import Field
1565
1485
 
1486
+ @rem.register_model
1487
+ class MyEntity(CoreModel):
1488
+ """Custom entity - auto-registered for schema generation."""
1489
+ name: str = Field(description="Entity name")
1490
+ status: str = Field(default="active")
1566
1491
  ```
1567
- my-rem-app/
1568
- ├── my_app/
1569
- │ ├── main.py # Entry point (create_app + extensions)
1570
- │ ├── models.py # Custom models (inherit CoreModel)
1571
- │ └── routers/ # Custom FastAPI routers
1572
- ├── schemas/
1573
- │ ├── agents/ # Custom agent YAML schemas
1574
- │ └── evaluators/ # Custom evaluator schemas
1575
- ├── sql/migrations/ # Custom SQL migrations
1576
- └── pyproject.toml
1492
+
1493
+ Run `rem db schema generate` to include your models in the database schema.
1494
+
1495
+ ### Custom Agents (Auto-Detected)
1496
+
1497
+ ```yaml
1498
+ # agents/my-agent.yaml
1499
+ type: object
1500
+ description: |
1501
+ You are a helpful assistant that...
1502
+
1503
+ properties:
1504
+ answer:
1505
+ type: string
1506
+ description: Your response
1507
+
1508
+ required:
1509
+ - answer
1510
+
1511
+ json_schema_extra:
1512
+ kind: agent
1513
+ name: my-agent
1514
+ version: "1.0.0"
1515
+ tools:
1516
+ - search_rem
1517
+ ```
1518
+
1519
+ Test with: `rem ask my-agent "Hello!"`
1520
+
1521
+ ### Example Custom Router
1522
+
1523
+ ```python
1524
+ # routers/analytics.py
1525
+ from fastapi import APIRouter, Depends
1526
+ from rem.services.postgres import get_postgres_service
1527
+
1528
+ router = APIRouter(prefix="/analytics", tags=["analytics"])
1529
+
1530
+ @router.get("/stats")
1531
+ async def get_stats():
1532
+ """Get database statistics."""
1533
+ db = get_postgres_service()
1534
+ if not db:
1535
+ return {"error": "Database not available"}
1536
+
1537
+ await db.connect()
1538
+ try:
1539
+ result = await db.execute(
1540
+ "SELECT COUNT(*) as count FROM resources"
1541
+ )
1542
+ return {"resource_count": result[0]["count"]}
1543
+ finally:
1544
+ await db.disconnect()
1545
+
1546
+ @router.get("/recent")
1547
+ async def get_recent(limit: int = 10):
1548
+ """Get recent resources."""
1549
+ db = get_postgres_service()
1550
+ if not db:
1551
+ return {"error": "Database not available"}
1552
+
1553
+ await db.connect()
1554
+ try:
1555
+ result = await db.execute(
1556
+ f"SELECT label, category, created_at FROM resources ORDER BY created_at DESC LIMIT {limit}"
1557
+ )
1558
+ return {"resources": result}
1559
+ finally:
1560
+ await db.disconnect()
1561
+ ```
1562
+
1563
+ Include in main.py:
1564
+
1565
+ ```python
1566
+ from routers.analytics import router as analytics_router
1567
+ app.include_router(analytics_router)
1577
1568
  ```
1578
1569
 
1579
- Generate this structure with: `rem scaffold my-app`
1570
+ ### Running the App
1571
+
1572
+ ```bash
1573
+ # Development (auto-reload)
1574
+ uv run uvicorn main:app --reload --port 8000
1575
+
1576
+ # Or use rem serve
1577
+ uv run rem serve --reload
1578
+
1579
+ # Test agent
1580
+ uv run rem ask my-agent "What can you help me with?"
1581
+
1582
+ # Test custom endpoint
1583
+ curl http://localhost:8000/analytics/stats
1584
+ ```
1580
1585
 
1581
1586
  ### Extension Points
1582
1587
 
@@ -1588,6 +1593,37 @@ Generate this structure with: `rem scaffold my-app`
1588
1593
  | **MCP Prompts** | `@app.mcp_server.prompt()` or `app.mcp_server.add_prompt(fn)` |
1589
1594
  | **Models** | `rem.register_models(Model)` then `rem db schema generate` |
1590
1595
  | **Agent Schemas** | `rem.register_schema_path("./schemas")` or `SCHEMA__PATHS` env var |
1596
+ | **SQL Migrations** | Place in `sql/migrations/` (auto-detected) |
1597
+
1598
+ ### Custom Migrations
1599
+
1600
+ REM automatically discovers migrations from two sources:
1601
+
1602
+ 1. **Package migrations** (001-099): Built-in migrations from the `remdb` package
1603
+ 2. **User migrations** (100+): Your custom migrations in `./sql/migrations/`
1604
+
1605
+ **Convention**: Place custom SQL files in `sql/migrations/` relative to your project root:
1606
+
1607
+ ```
1608
+ my-rem-app/
1609
+ ├── sql/
1610
+ │ └── migrations/
1611
+ │ ├── 100_custom_table.sql # Runs after package migrations
1612
+ │ ├── 101_add_indexes.sql
1613
+ │ └── 102_custom_functions.sql
1614
+ └── ...
1615
+ ```
1616
+
1617
+ **Numbering**: Use 100+ for user migrations to ensure they run after package migrations (001-099). All migrations are sorted by filename, so proper numbering ensures correct execution order.
1618
+
1619
+ **Running migrations**:
1620
+ ```bash
1621
+ # Apply all migrations (package + user)
1622
+ rem db migrate
1623
+
1624
+ # Apply with background indexes (for production)
1625
+ rem db migrate --background-indexes
1626
+ ```
1591
1627
 
1592
1628
  ## License
1593
1629