remdb 0.3.0__py3-none-any.whl → 0.3.127__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of remdb might be problematic. Click here for more details.

Files changed (106) hide show
  1. rem/__init__.py +129 -2
  2. rem/agentic/README.md +76 -0
  3. rem/agentic/__init__.py +15 -0
  4. rem/agentic/agents/__init__.py +16 -2
  5. rem/agentic/agents/sse_simulator.py +502 -0
  6. rem/agentic/context.py +51 -25
  7. rem/agentic/llm_provider_models.py +301 -0
  8. rem/agentic/mcp/tool_wrapper.py +29 -3
  9. rem/agentic/otel/setup.py +93 -4
  10. rem/agentic/providers/phoenix.py +32 -43
  11. rem/agentic/providers/pydantic_ai.py +168 -24
  12. rem/agentic/schema.py +358 -21
  13. rem/agentic/tools/rem_tools.py +3 -3
  14. rem/api/README.md +238 -1
  15. rem/api/deps.py +255 -0
  16. rem/api/main.py +154 -37
  17. rem/api/mcp_router/resources.py +1 -1
  18. rem/api/mcp_router/server.py +26 -5
  19. rem/api/mcp_router/tools.py +465 -7
  20. rem/api/middleware/tracking.py +172 -0
  21. rem/api/routers/admin.py +494 -0
  22. rem/api/routers/auth.py +124 -0
  23. rem/api/routers/chat/completions.py +402 -20
  24. rem/api/routers/chat/models.py +88 -10
  25. rem/api/routers/chat/otel_utils.py +33 -0
  26. rem/api/routers/chat/sse_events.py +542 -0
  27. rem/api/routers/chat/streaming.py +642 -45
  28. rem/api/routers/dev.py +81 -0
  29. rem/api/routers/feedback.py +268 -0
  30. rem/api/routers/messages.py +473 -0
  31. rem/api/routers/models.py +78 -0
  32. rem/api/routers/query.py +360 -0
  33. rem/api/routers/shared_sessions.py +406 -0
  34. rem/auth/middleware.py +126 -27
  35. rem/cli/commands/README.md +237 -64
  36. rem/cli/commands/ask.py +13 -10
  37. rem/cli/commands/cluster.py +1808 -0
  38. rem/cli/commands/configure.py +5 -6
  39. rem/cli/commands/db.py +396 -139
  40. rem/cli/commands/experiments.py +293 -73
  41. rem/cli/commands/process.py +22 -15
  42. rem/cli/commands/scaffold.py +47 -0
  43. rem/cli/commands/schema.py +97 -50
  44. rem/cli/main.py +29 -6
  45. rem/config.py +10 -3
  46. rem/models/core/core_model.py +7 -1
  47. rem/models/core/rem_query.py +5 -2
  48. rem/models/entities/__init__.py +21 -0
  49. rem/models/entities/domain_resource.py +38 -0
  50. rem/models/entities/feedback.py +123 -0
  51. rem/models/entities/message.py +30 -1
  52. rem/models/entities/session.py +83 -0
  53. rem/models/entities/shared_session.py +180 -0
  54. rem/models/entities/user.py +10 -3
  55. rem/registry.py +373 -0
  56. rem/schemas/agents/rem.yaml +7 -3
  57. rem/services/content/providers.py +94 -140
  58. rem/services/content/service.py +92 -20
  59. rem/services/dreaming/affinity_service.py +2 -16
  60. rem/services/dreaming/moment_service.py +2 -15
  61. rem/services/embeddings/api.py +24 -17
  62. rem/services/embeddings/worker.py +16 -16
  63. rem/services/phoenix/EXPERIMENT_DESIGN.md +3 -3
  64. rem/services/phoenix/client.py +302 -28
  65. rem/services/postgres/README.md +159 -15
  66. rem/services/postgres/__init__.py +2 -1
  67. rem/services/postgres/diff_service.py +531 -0
  68. rem/services/postgres/pydantic_to_sqlalchemy.py +427 -129
  69. rem/services/postgres/repository.py +132 -0
  70. rem/services/postgres/schema_generator.py +291 -9
  71. rem/services/postgres/service.py +6 -6
  72. rem/services/rate_limit.py +113 -0
  73. rem/services/rem/README.md +14 -0
  74. rem/services/rem/parser.py +44 -9
  75. rem/services/rem/service.py +36 -2
  76. rem/services/session/compression.py +24 -1
  77. rem/services/session/reload.py +1 -1
  78. rem/services/user_service.py +98 -0
  79. rem/settings.py +313 -29
  80. rem/sql/background_indexes.sql +21 -16
  81. rem/sql/migrations/001_install.sql +387 -54
  82. rem/sql/migrations/002_install_models.sql +2320 -393
  83. rem/sql/migrations/003_optional_extensions.sql +326 -0
  84. rem/sql/migrations/004_cache_system.sql +548 -0
  85. rem/utils/__init__.py +18 -0
  86. rem/utils/constants.py +97 -0
  87. rem/utils/date_utils.py +228 -0
  88. rem/utils/embeddings.py +17 -4
  89. rem/utils/files.py +167 -0
  90. rem/utils/mime_types.py +158 -0
  91. rem/utils/model_helpers.py +156 -1
  92. rem/utils/schema_loader.py +282 -35
  93. rem/utils/sql_paths.py +146 -0
  94. rem/utils/sql_types.py +3 -1
  95. rem/utils/vision.py +9 -14
  96. rem/workers/README.md +14 -14
  97. rem/workers/__init__.py +3 -1
  98. rem/workers/db_listener.py +579 -0
  99. rem/workers/db_maintainer.py +74 -0
  100. rem/workers/unlogged_maintainer.py +463 -0
  101. {remdb-0.3.0.dist-info → remdb-0.3.127.dist-info}/METADATA +464 -289
  102. {remdb-0.3.0.dist-info → remdb-0.3.127.dist-info}/RECORD +104 -73
  103. {remdb-0.3.0.dist-info → remdb-0.3.127.dist-info}/WHEEL +1 -1
  104. rem/sql/002_install_models.sql +0 -1068
  105. rem/sql/install_models.sql +0 -1038
  106. {remdb-0.3.0.dist-info → remdb-0.3.127.dist-info}/entry_points.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: remdb
3
- Version: 0.3.0
3
+ Version: 0.3.127
4
4
  Summary: Resources Entities Moments - Bio-inspired memory system for agentic AI workloads
5
5
  Project-URL: Homepage, https://github.com/Percolation-Labs/reminiscent
6
6
  Project-URL: Documentation, https://github.com/Percolation-Labs/reminiscent/blob/main/README.md
@@ -14,7 +14,7 @@ Classifier: Intended Audience :: Developers
14
14
  Classifier: License :: OSI Approved :: MIT License
15
15
  Classifier: Programming Language :: Python :: 3.12
16
16
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
17
- Requires-Python: >=3.12
17
+ Requires-Python: <3.13,>=3.12
18
18
  Requires-Dist: aioboto3>=13.0.0
19
19
  Requires-Dist: arize-phoenix>=5.0.0
20
20
  Requires-Dist: asyncpg>=0.30.0
@@ -23,11 +23,10 @@ Requires-Dist: click>=8.1.0
23
23
  Requires-Dist: fastapi>=0.115.0
24
24
  Requires-Dist: fastmcp>=0.5.0
25
25
  Requires-Dist: gitpython>=3.1.45
26
- Requires-Dist: gmft==0.3.1
27
26
  Requires-Dist: hypercorn>=0.17.0
28
27
  Requires-Dist: itsdangerous>=2.0.0
29
28
  Requires-Dist: json-schema-to-pydantic>=0.2.0
30
- Requires-Dist: kreuzberg[gmft]>=3.21.0
29
+ Requires-Dist: kreuzberg<4.0.0,>=3.21.0
31
30
  Requires-Dist: loguru>=0.7.0
32
31
  Requires-Dist: openinference-instrumentation-pydantic-ai>=0.1.0
33
32
  Requires-Dist: opentelemetry-api>=1.28.0
@@ -102,32 +101,30 @@ Cloud-native unified memory infrastructure for agentic AI systems built with Pyd
102
101
  - **Database Layer**: PostgreSQL 18 with pgvector for multi-index memory (KV + Vector + Graph)
103
102
  - **REM Query Dialect**: Custom query language with O(1) lookups, semantic search, graph traversal
104
103
  - **Ingestion & Dreaming**: Background workers for content extraction and progressive index enrichment (0% → 100% answerable)
105
- - **Observability & Evals**: OpenTelemetry tracing + Arize Phoenix + LLM-as-a-Judge evaluation framework
104
+ - **Observability & Evals**: OpenTelemetry tracing supporting LLM-as-a-Judge evaluation frameworks
106
105
 
107
106
  ## Features
108
107
 
109
108
  | Feature | Description | Benefits |
110
109
  |---------|-------------|----------|
111
110
  | **OpenAI-Compatible Chat API** | Drop-in replacement for OpenAI chat completions API with streaming support | Use with existing OpenAI clients, switch models across providers (OpenAI, Anthropic, etc.) |
112
- | **Built-in MCP Server** | FastMCP server with 4 tools + 3 resources for memory operations | Export memory to Claude Desktop, Cursor, or any MCP-compatible host |
111
+ | **Built-in MCP Server** | FastMCP server with 4 tools + 5 resources for memory operations | Export memory to Claude Desktop, Cursor, or any MCP-compatible host |
113
112
  | **REM Query Engine** | Multi-index query system (LOOKUP, FUZZY, SEARCH, SQL, TRAVERSE) with custom dialect | O(1) lookups, semantic search, graph traversal - all tenant-isolated |
114
113
  | **Dreaming Workers** | Background workers for entity extraction, moment generation, and affinity matching | Automatic knowledge graph construction from resources (0% → 100% query answerable) |
115
114
  | **PostgreSQL + pgvector** | CloudNativePG with PostgreSQL 18, pgvector extension, streaming replication | Production-ready vector search, no external vector DB needed |
116
115
  | **AWS EKS Recipe** | Complete infrastructure-as-code with Pulumi, Karpenter, ArgoCD | Deploy to production EKS in minutes with auto-scaling and GitOps |
117
116
  | **JSON Schema Agents** | Dynamic agent creation from YAML schemas via Pydantic AI factory | Define agents declaratively, version control schemas, load dynamically |
118
- | **Content Providers** | Audio transcription (Whisper), vision (GPT-4V, Claude), PDFs, DOCX, images | Multimodal ingestion out of the box with format detection |
119
- | **Configurable Embeddings** | Provider-agnostic embedding system (OpenAI, Cohere, Jina) | Switch embedding providers via env vars, no code changes |
117
+ | **Content Providers** | Audio transcription (Whisper), vision (OpenAI, Anthropic, Gemini), PDFs, DOCX, PPTX, XLSX, images | Multimodal ingestion out of the box with format detection |
118
+ | **Configurable Embeddings** | OpenAI embedding system (text-embedding-3-small) | Production-ready embeddings, additional providers planned |
120
119
  | **Multi-Tenancy** | Tenant isolation at database level with automatic scoping | SaaS-ready with complete data separation per tenant |
121
- | **Streaming Everything** | SSE for chat, background workers for embeddings, async throughout | Real-time responses, non-blocking operations, scalable |
122
120
  | **Zero Vendor Lock-in** | Raw HTTP clients (no OpenAI SDK), swappable providers, open standards | Not tied to any vendor, easy to migrate, full control |
123
121
 
124
122
  ## Quick Start
125
123
 
126
124
  Choose your path:
127
125
 
128
- - **Option 1: Package Users with Example Data** (Recommended for first-time users) - PyPI + example datasets
129
- - **Option 2: Package Users** (Recommended for non-developers) - PyPI package + dockerized database
130
- - **Option 3: Developers** - Clone repo, local development with uv
126
+ - **Option 1: Package Users with Example Data** (Recommended) - PyPI + example datasets
127
+ - **Option 2: Developers** - Clone repo, local development with uv
131
128
 
132
129
  ---
133
130
 
@@ -136,169 +133,78 @@ Choose your path:
136
133
  **Best for**: First-time users who want to explore REM with curated example datasets.
137
134
 
138
135
  ```bash
136
+ # Install system dependencies (tesseract for OCR)
137
+ brew install tesseract # macOS (Linux/Windows: see tesseract-ocr.github.io)
138
+
139
139
  # Install remdb
140
- pip install remdb[all]
140
+ pip install "remdb[all]"
141
141
 
142
142
  # Clone example datasets
143
143
  git clone https://github.com/Percolation-Labs/remstack-lab.git
144
144
  cd remstack-lab
145
145
 
146
- # Configure REM (interactive wizard)
147
- rem configure --install
146
+ # Start PostgreSQL with docker-compose
147
+ curl -O https://gist.githubusercontent.com/percolating-sirsh/d117b673bc0edfdef1a5068ccd3cf3e5/raw/docker-compose.prebuilt.yml
148
+ docker compose -f docker-compose.prebuilt.yml up -d postgres
148
149
 
149
- # Start PostgreSQL
150
- docker run -d \
151
- --name rem-postgres \
152
- -e POSTGRES_USER=rem \
153
- -e POSTGRES_PASSWORD=rem \
154
- -e POSTGRES_DB=rem \
155
- -p 5050:5432 \
156
- pgvector/pgvector:pg18
150
+ # Configure REM (creates ~/.rem/config.yaml and installs database schema)
151
+ # Add --claude-desktop to register with Claude Desktop app
152
+ rem configure --install --claude-desktop
157
153
 
158
154
  # Load quickstart dataset
159
- rem db load --file datasets/quickstart/sample_data.yaml --user-id demo-user
155
+ rem db load datasets/quickstart/sample_data.yaml
160
156
 
161
157
  # Ask questions
162
- rem ask --user-id demo-user "What documents exist in the system?"
163
- rem ask --user-id demo-user "Show me meetings about API design"
158
+ rem ask "What documents exist in the system?"
159
+ rem ask "Show me meetings about API design"
160
+
161
+ # Ingest files (PDF, DOCX, images, etc.)
162
+ rem process ingest datasets/formats/files/bitcoin_whitepaper.pdf --category research --tags bitcoin,whitepaper
164
163
 
165
- # Try other datasets
166
- rem db load --file datasets/domains/recruitment/scenarios/candidate_pipeline/data.yaml --user-id my-company
167
- rem ask --user-id my-company "Show me candidates with Python experience"
164
+ # Query ingested content
165
+ rem ask "What is the Bitcoin whitepaper about?"
168
166
  ```
169
167
 
170
168
  **What you get:**
171
169
  - Quickstart: 3 users, 3 resources, 3 moments, 4 messages
172
170
  - Domain datasets: recruitment, legal, enterprise, misc
173
171
  - Format examples: engrams, documents, conversations, files
174
- - Jupyter notebooks and experiments
175
172
 
176
173
  **Learn more**: [remstack-lab repository](https://github.com/Percolation-Labs/remstack-lab)
177
174
 
178
- ---
179
-
180
- ## Option 2: Package Users (No Example Data)
181
-
182
- **Best for**: Using REM as a service (API + CLI) without modifying code, bringing your own data.
175
+ ### Using the API
183
176
 
184
- ### Step 1: Start Database and API with Docker Compose
177
+ Once configured, you can also use the OpenAI-compatible chat completions API:
185
178
 
186
179
  ```bash
187
- # Create a project directory
188
- mkdir my-rem-project && cd my-rem-project
189
-
190
- # Download docker-compose file from public gist
191
- curl -O https://gist.githubusercontent.com/percolating-sirsh/d117b673bc0edfdef1a5068ccd3cf3e5/raw/docker-compose.prebuilt.yml
192
-
193
- # IMPORTANT: Export API keys BEFORE running docker compose
194
- # Docker Compose reads env vars at startup - exporting them after won't work!
195
-
196
- # Required: OpenAI for embeddings (text-embedding-3-small)
197
- export OPENAI_API_KEY="sk-..."
198
-
199
- # Recommended: At least one chat completion provider
200
- export ANTHROPIC_API_KEY="sk-ant-..." # Claude Sonnet 4.5 (high quality)
201
- export CEREBRAS_API_KEY="csk-..." # Cerebras (fast, cheap inference)
202
-
203
- # Start PostgreSQL + API
180
+ # Start the API server (if not using docker-compose for API)
204
181
  docker compose -f docker-compose.prebuilt.yml up -d
205
182
 
206
- # Verify services are running
207
- curl http://localhost:8000/health
208
- ```
209
-
210
- This starts:
211
- - **PostgreSQL** with pgvector on port **5051** (connection: `postgresql://rem:rem@localhost:5051/rem`)
212
- - **REM API** on port **8000** with OpenAI-compatible chat completions + MCP server
213
- - Uses pre-built Docker image from Docker Hub (no local build required)
214
-
215
- ### Step 2: Install and Configure CLI (REQUIRED)
216
-
217
- **This step is required** before you can use REM - it installs the database schema and configures your LLM API keys.
218
-
219
- ```bash
220
- # Install remdb package from PyPI
221
- pip install remdb[all]
222
-
223
- # Configure REM (defaults to port 5051 for package users)
224
- rem configure --install --claude-desktop
183
+ # Test the API
184
+ curl -X POST http://localhost:8000/api/v1/chat/completions \
185
+ -H "Content-Type: application/json" \
186
+ -H "X-Session-Id: a1b2c3d4-e5f6-7890-abcd-ef1234567890" \
187
+ -d '{
188
+ "model": "anthropic:claude-sonnet-4-5-20250929",
189
+ "messages": [{"role": "user", "content": "What documents did Sarah Chen author?"}],
190
+ "stream": false
191
+ }'
225
192
  ```
226
193
 
227
- The interactive wizard will:
228
- 1. **Configure PostgreSQL**: Defaults to `postgresql://rem:rem@localhost:5051/rem` (prebuilt docker-compose)
229
- - Just press Enter to accept defaults
230
- - Custom database: Enter your own host/port/credentials
231
- 2. **Configure LLM providers**: Enter your OpenAI/Anthropic API keys
232
- 3. **Install database tables**: Creates schema, functions, indexes (**required for CLI/API to work**)
233
- 4. **Register with Claude Desktop**: Adds REM MCP server to Claude
234
-
235
- Configuration saved to `~/.rem/config.yaml` (can edit with `rem configure --edit`)
236
-
237
194
  **Port Guide:**
238
195
  - **5051**: Package users with `docker-compose.prebuilt.yml` (pre-built image)
239
196
  - **5050**: Developers with `docker-compose.yml` (local build)
240
- - **Custom**: Your own PostgreSQL database
241
197
 
242
198
  **Next Steps:**
243
199
  - See [CLI Reference](#cli-reference) for all available commands
244
200
  - See [REM Query Dialect](#rem-query-dialect) for query examples
245
201
  - See [API Endpoints](#api-endpoints) for OpenAI-compatible API usage
246
202
 
247
- ### Step 3: Load Sample Data (Optional but Recommended)
248
-
249
- **Option A: Clone example datasets** (Recommended - works with all README examples)
250
-
251
- ```bash
252
- # Clone datasets repository
253
- git clone https://github.com/Percolation-Labs/remstack-lab.git
254
-
255
- # Load quickstart dataset
256
- rem db load --file remstack-lab/datasets/quickstart/sample_data.yaml --user-id demo-user
257
-
258
- # Test with sample queries
259
- rem ask --user-id demo-user "What documents exist in the system?"
260
- rem ask --user-id demo-user "Show me meetings about API design"
261
- rem ask --user-id demo-user "Who is Sarah Chen?"
262
-
263
- # Try domain-specific datasets
264
- rem db load --file remstack-lab/datasets/domains/recruitment/scenarios/candidate_pipeline/data.yaml --user-id my-company
265
- rem ask --user-id my-company "Show me candidates with Python experience"
266
- ```
267
-
268
- **Option B: Bring your own data**
269
-
270
- ```bash
271
- # Ingest your own files
272
- echo "REM is a bio-inspired memory system for agentic AI workloads." > test-doc.txt
273
- rem process ingest test-doc.txt --user-id test-user --category documentation --tags rem,ai
274
-
275
- # Query your ingested data
276
- rem ask --user-id test-user "What do you know about REM from my knowledge base?"
277
- ```
278
-
279
- ### Step 4: Test the API
280
-
281
- ```bash
282
- # Test the OpenAI-compatible chat completions API
283
- curl -X POST http://localhost:8000/api/v1/chat/completions \
284
- -H "Content-Type: application/json" \
285
- -H "X-User-Id: demo-user" \
286
- -d '{
287
- "model": "anthropic:claude-sonnet-4-5-20250929",
288
- "messages": [{"role": "user", "content": "What documents did Sarah Chen author?"}],
289
- "stream": false
290
- }'
291
- ```
292
-
293
- **Available Commands:**
294
- - `rem ask` - Natural language queries to REM
295
- - `rem process ingest <file>` - Full ingestion pipeline (storage + parsing + embedding + database)
296
- - `rem process uri <file>` - READ-ONLY parsing (no database storage, useful for testing parsers)
297
- - `rem db load --file <yaml>` - Load structured datasets directly
203
+ ---
298
204
 
299
205
  ## Example Datasets
300
206
 
301
- 🎯 **Recommended**: Clone [remstack-lab](https://github.com/Percolation-Labs/remstack-lab) for curated datasets organized by domain and format.
207
+ Clone [remstack-lab](https://github.com/Percolation-Labs/remstack-lab) for curated datasets organized by domain and format.
302
208
 
303
209
  **What's included:**
304
210
  - **Quickstart**: Minimal dataset (3 users, 3 resources, 3 moments) - perfect for first-time users
@@ -311,13 +217,10 @@ curl -X POST http://localhost:8000/api/v1/chat/completions \
311
217
  cd remstack-lab
312
218
 
313
219
  # Load any dataset
314
- rem db load --file datasets/quickstart/sample_data.yaml --user-id demo-user
220
+ rem db load --file datasets/quickstart/sample_data.yaml
315
221
 
316
222
  # Explore formats
317
- rem db load --file datasets/formats/engrams/scenarios/team_meeting/team_standup_meeting.yaml --user-id demo-user
318
-
319
- # Try domain-specific examples
320
- rem db load --file datasets/domains/recruitment/scenarios/candidate_pipeline/data.yaml --user-id acme-corp
223
+ rem db load --file datasets/formats/engrams/scenarios/team_meeting/team_standup_meeting.yaml
321
224
  ```
322
225
 
323
226
  ## See Also
@@ -411,30 +314,24 @@ json_schema_extra:
411
314
  ```bash
412
315
  # Ingest the schema (stores in database schemas table)
413
316
  rem process ingest my-research-assistant.yaml \
414
- --user-id my-user \
415
317
  --category agents \
416
318
  --tags custom,research
417
319
 
418
320
  # Verify schema is in database (should show schema details)
419
- rem ask "LOOKUP 'my-research-assistant' FROM schemas" --user-id my-user
321
+ rem ask "LOOKUP 'my-research-assistant' FROM schemas"
420
322
  ```
421
323
 
422
324
  **Step 3: Use Your Custom Agent**
423
325
 
424
326
  ```bash
425
327
  # Run a query with your custom agent
426
- rem ask research-assistant "Find documents about machine learning architecture" \
427
- --user-id my-user
328
+ rem ask research-assistant "Find documents about machine learning architecture"
428
329
 
429
330
  # With streaming
430
- rem ask research-assistant "Summarize recent API design documents" \
431
- --user-id my-user \
432
- --stream
331
+ rem ask research-assistant "Summarize recent API design documents" --stream
433
332
 
434
333
  # With session continuity
435
- rem ask research-assistant "What did we discuss about ML?" \
436
- --user-id my-user \
437
- --session-id abc-123
334
+ rem ask research-assistant "What did we discuss about ML?" --session-id c3d4e5f6-a7b8-9012-cdef-345678901234
438
335
  ```
439
336
 
440
337
  ### Agent Schema Structure
@@ -477,38 +374,25 @@ REM provides **4 built-in MCP tools** your agents can use:
477
374
 
478
375
  ### Multi-User Isolation
479
376
 
480
- Custom agents are **scoped by `user_id`**, ensuring complete data isolation:
377
+ For multi-tenant deployments, custom agents are **scoped by `user_id`**, ensuring complete data isolation. Use `--user-id` flag when you need tenant separation:
481
378
 
482
379
  ```bash
483
- # User A creates a custom agent
484
- rem process ingest my-agent.yaml --user-id user-a --category agents
485
-
486
- # User B cannot see User A's agent
487
- rem ask my-agent "test" --user-id user-b
488
- # ❌ Error: Schema not found (LOOKUP returns no results for user-b)
380
+ # Create agent for specific tenant
381
+ rem process ingest my-agent.yaml --user-id tenant-a --category agents
489
382
 
490
- # User A can use their agent
491
- rem ask my-agent "test" --user-id user-a
492
- # ✅ Works - LOOKUP finds schema for user-a
383
+ # Query with tenant context
384
+ rem ask my-agent "test" --user-id tenant-a
493
385
  ```
494
386
 
495
- ### Advanced: Ontology Extractors
496
-
497
- Custom agents can also be used as **ontology extractors** to extract structured knowledge from files. See [CLAUDE.md](../CLAUDE.md#ontology-extraction-pattern) for details on:
498
- - Multi-provider testing (`provider_configs`)
499
- - Semantic search configuration (`embedding_fields`)
500
- - File matching rules (`OntologyConfig`)
501
- - Dreaming workflow integration
502
-
503
387
  ### Troubleshooting
504
388
 
505
389
  **Schema not found error:**
506
390
  ```bash
507
391
  # Check if schema was ingested correctly
508
- rem ask "SEARCH 'my-agent' FROM schemas" --user-id my-user
392
+ rem ask "SEARCH 'my-agent' FROM schemas"
509
393
 
510
- # List all schemas for your user
511
- rem ask "SELECT name, category, created_at FROM schemas ORDER BY created_at DESC LIMIT 10" --user-id my-user
394
+ # List all schemas
395
+ rem ask "SELECT name, category, created_at FROM schemas ORDER BY created_at DESC LIMIT 10"
512
396
  ```
513
397
 
514
398
  **Agent not loading tools:**
@@ -533,15 +417,15 @@ REM provides a custom query language designed for **LLM-driven iterated retrieva
533
417
  Unlike traditional single-shot SQL queries, the REM dialect is optimized for **multi-turn exploration** where LLMs participate in query planning:
534
418
 
535
419
  - **Iterated Queries**: Queries return partial results that LLMs use to refine subsequent queries
536
- - **Composable WITH Syntax**: Chain operations together (e.g., `TRAVERSE FROM ... WITH LOOKUP "..."`)
420
+ - **Composable WITH Syntax**: Chain operations together (e.g., `TRAVERSE edge_type WITH LOOKUP "..."`)
537
421
  - **Mixed Indexes**: Combines exact lookups (O(1)), semantic search (vector), and graph traversal
538
422
  - **Query Planner Participation**: Results include metadata for LLMs to decide next steps
539
423
 
540
424
  **Example Multi-Turn Flow**:
541
425
  ```
542
426
  Turn 1: LOOKUP "sarah-chen" → Returns entity + available edge types
543
- Turn 2: TRAVERSE FROM "sarah-chen" TYPE "authored_by" DEPTH 1 → Returns connected documents
544
- Turn 3: SEARCH "architecture decisions" WITH TRAVERSE FROM "sarah-chen" Combines semantic + graph
427
+ Turn 2: TRAVERSE authored_by WITH LOOKUP "sarah-chen" DEPTH 1 → Returns connected documents
428
+ Turn 3: SEARCH "architecture decisions" Semantic search, then explore graph from results
545
429
  ```
546
430
 
547
431
  This enables LLMs to **progressively build context** rather than requiring perfect queries upfront.
@@ -594,8 +478,8 @@ SEARCH "contract disputes" FROM resources WHERE tags @> ARRAY['legal'] LIMIT 5
594
478
  Follow `graph_edges` relationships across the knowledge graph.
595
479
 
596
480
  ```sql
597
- TRAVERSE FROM "sarah-chen" TYPE "authored_by" DEPTH 2
598
- TRAVERSE FROM "api-design-v2" TYPE "references,depends_on" DEPTH 3
481
+ TRAVERSE authored_by WITH LOOKUP "sarah-chen" DEPTH 2
482
+ TRAVERSE references,depends_on WITH LOOKUP "api-design-v2" DEPTH 3
599
483
  ```
600
484
 
601
485
  **Features**:
@@ -688,7 +572,7 @@ SEARCH "API migration planning" FROM resources LIMIT 5
688
572
  LOOKUP "tidb-migration-spec" FROM resources
689
573
 
690
574
  # Query 3: Find related people
691
- TRAVERSE FROM "tidb-migration-spec" TYPE "authored_by,reviewed_by" DEPTH 1
575
+ TRAVERSE authored_by,reviewed_by WITH LOOKUP "tidb-migration-spec" DEPTH 1
692
576
 
693
577
  # Query 4: Recent activity
694
578
  SELECT * FROM moments WHERE
@@ -705,7 +589,7 @@ All queries automatically scoped by `user_id` for complete data isolation:
705
589
  SEARCH "contracts" FROM resources LIMIT 10
706
590
 
707
591
  -- No cross-user data leakage
708
- TRAVERSE FROM "project-x" TYPE "references" DEPTH 3
592
+ TRAVERSE references WITH LOOKUP "project-x" DEPTH 3
709
593
  ```
710
594
 
711
595
  ## API Endpoints
@@ -717,8 +601,8 @@ POST /api/v1/chat/completions
717
601
  ```
718
602
 
719
603
  **Headers**:
720
- - `X-Tenant-Id`: Tenant identifier (required for REM)
721
- - `X-User-Id`: User identifier
604
+ - `X-User-Id`: User identifier (required for data isolation, uses default if not provided)
605
+ - `X-Tenant-Id`: Deprecated - use `X-User-Id` instead (kept for backwards compatibility)
722
606
  - `X-Session-Id`: Session/conversation identifier
723
607
  - `X-Agent-Schema`: Agent schema URI to use
724
608
 
@@ -857,81 +741,144 @@ rem serve --log-level debug
857
741
 
858
742
  ### Database Management
859
743
 
860
- #### `rem db migrate` - Run Migrations
744
+ REM uses a **code-as-source-of-truth** approach for database schema management. Pydantic models define the schema, and the database is kept in sync via diff-based migrations.
745
+
746
+ #### Schema Management Philosophy
861
747
 
862
- Apply database migrations (install.sql and install_models.sql).
748
+ **Two migration files only:**
749
+ - `001_install.sql` - Core infrastructure (extensions, functions, KV store)
750
+ - `002_install_models.sql` - Entity tables (auto-generated from Pydantic models)
751
+
752
+ **No incremental migrations** (003, 004, etc.) - the models file is always regenerated to match code.
753
+
754
+ #### `rem db schema generate` - Regenerate Schema SQL
755
+
756
+ Generate `002_install_models.sql` from registered Pydantic models.
863
757
 
864
758
  ```bash
865
- # Apply all migrations
866
- rem db migrate
759
+ # Regenerate from model registry
760
+ rem db schema generate
867
761
 
868
- # Core infrastructure only (extensions, functions)
869
- rem db migrate --install
762
+ # Output: src/rem/sql/migrations/002_install_models.sql
763
+ ```
870
764
 
871
- # Entity tables only (Resource, Message, etc.)
872
- rem db migrate --models
765
+ This generates:
766
+ - CREATE TABLE statements for each registered entity
767
+ - Embeddings tables (`embeddings_<table>`)
768
+ - KV_STORE triggers for cache maintenance
769
+ - Foreground indexes (GIN for JSONB, B-tree for lookups)
873
770
 
874
- # Background indexes (HNSW for vectors)
875
- rem db migrate --background-indexes
771
+ #### `rem db diff` - Detect Schema Drift
876
772
 
877
- # Custom connection string
878
- rem db migrate --connection "postgresql://user:pass@host:5432/db"
773
+ Compare Pydantic models against the live database using Alembic autogenerate.
879
774
 
880
- # Custom SQL directory
881
- rem db migrate --sql-dir /path/to/sql
775
+ ```bash
776
+ # Show additive changes only (default, safe for production)
777
+ rem db diff
778
+
779
+ # Show all changes including drops
780
+ rem db diff --strategy full
781
+
782
+ # Show additive + safe type widenings
783
+ rem db diff --strategy safe
784
+
785
+ # CI mode: exit 1 if drift detected
786
+ rem db diff --check
787
+
788
+ # Generate migration SQL for changes
789
+ rem db diff --generate
882
790
  ```
883
791
 
884
- #### `rem db status` - Migration Status
792
+ **Migration Strategies:**
793
+ | Strategy | Description |
794
+ |----------|-------------|
795
+ | `additive` | Only ADD columns/tables/indexes (safe, no data loss) - **default** |
796
+ | `full` | All changes including DROPs (use with caution) |
797
+ | `safe` | Additive + safe column type widenings (e.g., VARCHAR(50) → VARCHAR(256)) |
798
+
799
+ **Output shows:**
800
+ - `+ ADD COLUMN` - Column in model but not in DB
801
+ - `- DROP COLUMN` - Column in DB but not in model (only with `--strategy full`)
802
+ - `~ ALTER COLUMN` - Column type or constraints differ
803
+ - `+ CREATE TABLE` / `- DROP TABLE` - Table additions/removals
885
804
 
886
- Show applied migrations and execution times.
805
+ #### `rem db apply` - Apply SQL Directly
806
+
807
+ Apply a SQL file directly to the database (bypasses migration tracking).
887
808
 
888
809
  ```bash
889
- rem db status
810
+ # Apply with audit logging (default)
811
+ rem db apply src/rem/sql/migrations/002_install_models.sql
812
+
813
+ # Preview without executing
814
+ rem db apply --dry-run src/rem/sql/migrations/002_install_models.sql
815
+
816
+ # Apply without audit logging
817
+ rem db apply --no-log src/rem/sql/migrations/002_install_models.sql
890
818
  ```
891
819
 
892
- #### `rem db rebuild-cache` - Rebuild KV Cache
820
+ #### `rem db migrate` - Initial Setup
893
821
 
894
- Rebuild KV_STORE cache from entity tables (after database restart or bulk imports).
822
+ Apply standard migrations (001 + 002). Use for initial setup only.
895
823
 
896
824
  ```bash
897
- rem db rebuild-cache
825
+ # Apply infrastructure + entity tables
826
+ rem db migrate
827
+
828
+ # Include background indexes (HNSW for vectors)
829
+ rem db migrate --background-indexes
898
830
  ```
899
831
 
900
- ### Schema Management
832
+ #### Database Workflows
833
+
834
+ **Initial Setup (Local):**
835
+ ```bash
836
+ rem db schema generate # Generate from models
837
+ rem db migrate # Apply 001 + 002
838
+ rem db diff # Verify no drift
839
+ ```
901
840
 
902
- #### `rem db schema generate` - Generate SQL Schema
841
+ **Adding/Modifying Models:**
842
+ ```bash
843
+ # 1. Edit models in src/rem/models/entities/
844
+ # 2. Register new models in src/rem/registry.py
845
+ rem db schema generate # Regenerate schema
846
+ rem db diff # See what changed
847
+ rem db apply src/rem/sql/migrations/002_install_models.sql
848
+ ```
903
849
 
904
- Generate database schema from Pydantic models.
850
+ **CI/CD Pipeline:**
851
+ ```bash
852
+ rem db diff --check # Fail build if drift detected
853
+ ```
905
854
 
855
+ **Remote Database (Production/Staging):**
906
856
  ```bash
907
- # Generate install_models.sql from entity models
908
- rem db schema generate \
909
- --models src/rem/models/entities \
910
- --output rem/src/rem/sql/install_models.sql
857
+ # Port-forward to cluster database
858
+ kubectl port-forward -n <namespace> svc/rem-postgres-rw 5433:5432 &
859
+
860
+ # Override connection for diff check
861
+ POSTGRES__CONNECTION_STRING="postgresql://rem:rem@localhost:5433/rem" rem db diff
911
862
 
912
- # Generate migration file
913
- rem db schema generate \
914
- --models src/rem/models/entities \
915
- --output rem/src/rem/sql/migrations/003_add_fields.sql
863
+ # Apply changes if needed
864
+ POSTGRES__CONNECTION_STRING="postgresql://rem:rem@localhost:5433/rem" \
865
+ rem db apply src/rem/sql/migrations/002_install_models.sql
916
866
  ```
917
867
 
918
- #### `rem db schema indexes` - Generate Background Indexes
868
+ #### `rem db rebuild-cache` - Rebuild KV Cache
919
869
 
920
- Generate SQL for background index creation (HNSW for vectors).
870
+ Rebuild KV_STORE cache from entity tables (after database restart or bulk imports).
921
871
 
922
872
  ```bash
923
- # Generate background_indexes.sql
924
- rem db schema indexes \
925
- --models src/rem/models/entities \
926
- --output rem/src/rem/sql/background_indexes.sql
873
+ rem db rebuild-cache
927
874
  ```
928
875
 
929
876
  #### `rem db schema validate` - Validate Models
930
877
 
931
- Validate Pydantic models for schema generation.
878
+ Validate registered Pydantic models for schema generation.
932
879
 
933
880
  ```bash
934
- rem db schema validate --models src/rem/models/entities
881
+ rem db schema validate
935
882
  ```
936
883
 
937
884
  ### File Processing
@@ -941,22 +888,14 @@ rem db schema validate --models src/rem/models/entities
941
888
  Process files with optional custom extractor (ontology extraction).
942
889
 
943
890
  ```bash
944
- # Process all completed files for tenant
945
- rem process files \
946
- --tenant-id acme-corp \
947
- --status completed \
948
- --limit 10
891
+ # Process all completed files
892
+ rem process files --status completed --limit 10
949
893
 
950
894
  # Process with custom extractor
951
- rem process files \
952
- --tenant-id acme-corp \
953
- --extractor cv-parser-v1 \
954
- --limit 50
895
+ rem process files --extractor cv-parser-v1 --limit 50
955
896
 
956
- # Process files from the last 7 days
957
- rem process files \
958
- --tenant-id acme-corp \
959
- --lookback-hours 168
897
+ # Process files for specific user
898
+ rem process files --user-id user-123 --status completed
960
899
  ```
961
900
 
962
901
  #### `rem process ingest` - Ingest File into REM
@@ -964,14 +903,13 @@ rem process files \
964
903
  Ingest a file into REM with full pipeline (storage + parsing + embedding + database).
965
904
 
966
905
  ```bash
967
- # Ingest local file
906
+ # Ingest local file with metadata
968
907
  rem process ingest /path/to/document.pdf \
969
- --user-id user-123 \
970
908
  --category legal \
971
909
  --tags contract,2024
972
910
 
973
911
  # Ingest with minimal options
974
- rem process ingest ./meeting-notes.md --user-id user-123
912
+ rem process ingest ./meeting-notes.md
975
913
  ```
976
914
 
977
915
  #### `rem process uri` - Parse File (Read-Only)
@@ -996,28 +934,17 @@ rem process uri s3://bucket/key.docx --output text
996
934
  Run full dreaming workflow: extractors → moments → affinity → user model.
997
935
 
998
936
  ```bash
999
- # Full workflow for user
1000
- rem dreaming full \
1001
- --user-id user-123 \
1002
- --tenant-id acme-corp
937
+ # Full workflow (uses default user from settings)
938
+ rem dreaming full
1003
939
 
1004
940
  # Skip ontology extractors
1005
- rem dreaming full \
1006
- --user-id user-123 \
1007
- --tenant-id acme-corp \
1008
- --skip-extractors
941
+ rem dreaming full --skip-extractors
1009
942
 
1010
943
  # Process last 24 hours only
1011
- rem dreaming full \
1012
- --user-id user-123 \
1013
- --tenant-id acme-corp \
1014
- --lookback-hours 24
944
+ rem dreaming full --lookback-hours 24
1015
945
 
1016
- # Limit resources processed
1017
- rem dreaming full \
1018
- --user-id user-123 \
1019
- --tenant-id acme-corp \
1020
- --limit 100
946
+ # Limit resources processed for specific user
947
+ rem dreaming full --user-id user-123 --limit 100
1021
948
  ```
1022
949
 
1023
950
  #### `rem dreaming custom` - Custom Extractor
@@ -1025,16 +952,11 @@ rem dreaming full \
1025
952
  Run specific ontology extractor on user's data.
1026
953
 
1027
954
  ```bash
1028
- # Run CV parser on user's files
1029
- rem dreaming custom \
1030
- --user-id user-123 \
1031
- --tenant-id acme-corp \
1032
- --extractor cv-parser-v1
955
+ # Run CV parser on files
956
+ rem dreaming custom --extractor cv-parser-v1
1033
957
 
1034
- # Process last week's files
958
+ # Process last week's files with limit
1035
959
  rem dreaming custom \
1036
- --user-id user-123 \
1037
- --tenant-id acme-corp \
1038
960
  --extractor contract-analyzer-v1 \
1039
961
  --lookback-hours 168 \
1040
962
  --limit 50
@@ -1045,17 +967,11 @@ rem dreaming custom \
1045
967
  Extract temporal narratives from resources.
1046
968
 
1047
969
  ```bash
1048
- # Generate moments for user
1049
- rem dreaming moments \
1050
- --user-id user-123 \
1051
- --tenant-id acme-corp \
1052
- --limit 50
970
+ # Generate moments
971
+ rem dreaming moments --limit 50
1053
972
 
1054
973
  # Process last 7 days
1055
- rem dreaming moments \
1056
- --user-id user-123 \
1057
- --tenant-id acme-corp \
1058
- --lookback-hours 168
974
+ rem dreaming moments --lookback-hours 168
1059
975
  ```
1060
976
 
1061
977
  #### `rem dreaming affinity` - Build Relationships
@@ -1063,17 +979,11 @@ rem dreaming moments \
1063
979
  Build semantic relationships between resources using embeddings.
1064
980
 
1065
981
  ```bash
1066
- # Build affinity graph for user
1067
- rem dreaming affinity \
1068
- --user-id user-123 \
1069
- --tenant-id acme-corp \
1070
- --limit 100
982
+ # Build affinity graph
983
+ rem dreaming affinity --limit 100
1071
984
 
1072
985
  # Process recent resources only
1073
- rem dreaming affinity \
1074
- --user-id user-123 \
1075
- --tenant-id acme-corp \
1076
- --lookback-hours 24
986
+ rem dreaming affinity --lookback-hours 24
1077
987
  ```
1078
988
 
1079
989
  #### `rem dreaming user-model` - Update User Model
@@ -1082,9 +992,7 @@ Update user model from recent activity (preferences, interests, patterns).
1082
992
 
1083
993
  ```bash
1084
994
  # Update user model
1085
- rem dreaming user-model \
1086
- --user-id user-123 \
1087
- --tenant-id acme-corp
995
+ rem dreaming user-model
1088
996
  ```
1089
997
 
1090
998
  ### Evaluation & Experiments
@@ -1176,14 +1084,11 @@ Test Pydantic AI agent with natural language queries.
1176
1084
  # Ask a question
1177
1085
  rem ask "What documents did Sarah Chen author?"
1178
1086
 
1179
- # With context headers
1180
- rem ask "Find all resources about API design" \
1181
- --user-id user-123 \
1182
- --tenant-id acme-corp
1183
-
1184
1087
  # Use specific agent schema
1185
- rem ask "Analyze this contract" \
1186
- --agent-schema contract-analyzer-v1
1088
+ rem ask contract-analyzer "Analyze this contract"
1089
+
1090
+ # Stream response
1091
+ rem ask "Find all resources about API design" --stream
1187
1092
  ```
1188
1093
 
1189
1094
  ### Global Options
@@ -1231,7 +1136,7 @@ export API__RELOAD=true
1231
1136
  rem serve
1232
1137
  ```
1233
1138
 
1234
- ## Development (For Contributors)
1139
+ ## Option 2: Development (For Contributors)
1235
1140
 
1236
1141
  **Best for**: Contributing to REM or customizing the codebase.
1237
1142
 
@@ -1335,6 +1240,30 @@ S3__BUCKET_NAME=rem-storage
1335
1240
  S3__REGION=us-east-1
1336
1241
  ```
1337
1242
 
1243
+ ### Building Docker Images
1244
+
1245
+ We tag Docker images with three labels for traceability:
1246
+ 1. `latest` - Always points to most recent build
1247
+ 2. `<git-sha>` - Short commit hash for exact version tracing
1248
+ 3. `<version>` - Semantic version from `pyproject.toml`
1249
+
1250
+ ```bash
1251
+ # Build and push multi-platform image to Docker Hub
1252
+ VERSION=$(grep '^version' pyproject.toml | cut -d'"' -f2) && \
1253
+ docker buildx build --platform linux/amd64,linux/arm64 \
1254
+ -t percolationlabs/rem:latest \
1255
+ -t percolationlabs/rem:$(git rev-parse --short HEAD) \
1256
+ -t percolationlabs/rem:$VERSION \
1257
+ --push \
1258
+ -f Dockerfile .
1259
+
1260
+ # Load locally for testing (single platform, no push)
1261
+ docker buildx build --platform linux/arm64 \
1262
+ -t percolationlabs/rem:latest \
1263
+ --load \
1264
+ -f Dockerfile .
1265
+ ```
1266
+
1338
1267
  ### Production Deployment (Optional)
1339
1268
 
1340
1269
  For production deployment to AWS EKS with Kubernetes, see the main repository README:
@@ -1450,6 +1379,252 @@ TraverseQuery ::= TRAVERSE [<edge_types:list>] WITH <initial_query:Query> [DEPTH
1450
1379
 
1451
1380
  **Stage 4** (100% answerable): Mature graph with rich historical data. All query types fully functional with high-quality results.
1452
1381
 
1382
+ ## Troubleshooting
1383
+
1384
+ ### Apple Silicon Mac: "Failed to build kreuzberg" Error
1385
+
1386
+ **Problem**: Installation fails with `ERROR: Failed building wheel for kreuzberg` on Apple Silicon Macs.
1387
+
1388
+ **Root Cause**: REM uses `kreuzberg>=4.0.0rc1` for document parsing with native ONNX/Rust table extraction. Kreuzberg 4.0.0rc1 provides pre-built wheels for ARM64 macOS (`macosx_14_0_arm64.whl`) but NOT for x86_64 (Intel) macOS. If you're using an x86_64 Python binary (running under Rosetta 2), pip cannot find a compatible wheel and attempts to build from source, which fails.
1389
+
1390
+ **Solution**: Use ARM64 (native) Python instead of x86_64 Python.
1391
+
1392
+ **Step 1: Verify your Python architecture**
1393
+
1394
+ ```bash
1395
+ python3 -c "import platform; print(f'Machine: {platform.machine()}')"
1396
+ ```
1397
+
1398
+ - **Correct**: `Machine: arm64` (native ARM Python)
1399
+ - **Wrong**: `Machine: x86_64` (Intel Python under Rosetta)
1400
+
1401
+ **Step 2: Install ARM Python via Homebrew** (if not already installed)
1402
+
1403
+ ```bash
1404
+ # Install ARM Python
1405
+ brew install python@3.12
1406
+
1407
+ # Verify it's ARM
1408
+ /opt/homebrew/bin/python3.12 -c "import platform; print(platform.machine())"
1409
+ # Should output: arm64
1410
+ ```
1411
+
1412
+ **Step 3: Create venv with ARM Python**
1413
+
1414
+ ```bash
1415
+ # Use full path to ARM Python
1416
+ /opt/homebrew/bin/python3.12 -m venv .venv
1417
+
1418
+ # Activate and install
1419
+ source .venv/bin/activate
1420
+ pip install "remdb[all]"
1421
+ ```
1422
+
1423
+ **Why This Happens**: Some users have both Intel Homebrew (`/usr/local`) and ARM Homebrew (`/opt/homebrew`) installed. If your system `python3` points to the Intel version at `/usr/local/bin/python3`, you'll hit this issue. The fix is to explicitly use the ARM Python from `/opt/homebrew/bin/python3.12`.
1424
+
1425
+ **Verification**: After successful installation, you should see:
1426
+ ```
1427
+ Using cached kreuzberg-4.0.0rc1-cp310-abi3-macosx_14_0_arm64.whl (19.8 MB)
1428
+ Successfully installed ... kreuzberg-4.0.0rc1 ... remdb-0.3.10
1429
+ ```
1430
+
1431
+ ## Using REM as a Library
1432
+
1433
+ REM wraps FastAPI - extend it exactly as you would any FastAPI app.
1434
+
1435
+ ### Recommended Project Structure
1436
+
1437
+ REM auto-detects `./agents/` and `./models/` folders - no configuration needed:
1438
+
1439
+ ```
1440
+ my-rem-app/
1441
+ ├── agents/ # Auto-detected for agent schemas
1442
+ │ ├── my-agent.yaml # Custom agent (rem ask my-agent "query")
1443
+ │ └── another-agent.yaml
1444
+ ├── models/ # Auto-detected if __init__.py exists
1445
+ │ └── __init__.py # Register models with @rem.register_model
1446
+ ├── routers/ # Custom FastAPI routers
1447
+ │ └── custom.py
1448
+ ├── main.py # Entry point
1449
+ └── pyproject.toml
1450
+ ```
1451
+
1452
+ ### Quick Start
1453
+
1454
+ ```python
1455
+ # main.py
1456
+ from rem import create_app
1457
+ from fastapi import APIRouter
1458
+
1459
+ # Create REM app (auto-detects ./agents/ and ./models/)
1460
+ app = create_app()
1461
+
1462
+ # Add custom router
1463
+ router = APIRouter(prefix="/custom", tags=["custom"])
1464
+
1465
+ @router.get("/hello")
1466
+ async def hello():
1467
+ return {"message": "Hello from custom router!"}
1468
+
1469
+ app.include_router(router)
1470
+
1471
+ # Add custom MCP tool
1472
+ @app.mcp_server.tool()
1473
+ async def my_tool(query: str) -> dict:
1474
+ """Custom MCP tool available to agents."""
1475
+ return {"result": query}
1476
+ ```
1477
+
1478
+ ### Custom Models (Auto-Detected)
1479
+
1480
+ ```python
1481
+ # models/__init__.py
1482
+ import rem
1483
+ from rem.models.core import CoreModel
1484
+ from pydantic import Field
1485
+
1486
+ @rem.register_model
1487
+ class MyEntity(CoreModel):
1488
+ """Custom entity - auto-registered for schema generation."""
1489
+ name: str = Field(description="Entity name")
1490
+ status: str = Field(default="active")
1491
+ ```
1492
+
1493
+ Run `rem db schema generate` to include your models in the database schema.
1494
+
1495
+ ### Custom Agents (Auto-Detected)
1496
+
1497
+ ```yaml
1498
+ # agents/my-agent.yaml
1499
+ type: object
1500
+ description: |
1501
+ You are a helpful assistant that...
1502
+
1503
+ properties:
1504
+ answer:
1505
+ type: string
1506
+ description: Your response
1507
+
1508
+ required:
1509
+ - answer
1510
+
1511
+ json_schema_extra:
1512
+ kind: agent
1513
+ name: my-agent
1514
+ version: "1.0.0"
1515
+ tools:
1516
+ - search_rem
1517
+ ```
1518
+
1519
+ Test with: `rem ask my-agent "Hello!"`
1520
+
1521
+ ### Example Custom Router
1522
+
1523
+ ```python
1524
+ # routers/analytics.py
1525
+ from fastapi import APIRouter, Depends
1526
+ from rem.services.postgres import get_postgres_service
1527
+
1528
+ router = APIRouter(prefix="/analytics", tags=["analytics"])
1529
+
1530
+ @router.get("/stats")
1531
+ async def get_stats():
1532
+ """Get database statistics."""
1533
+ db = get_postgres_service()
1534
+ if not db:
1535
+ return {"error": "Database not available"}
1536
+
1537
+ await db.connect()
1538
+ try:
1539
+ result = await db.execute(
1540
+ "SELECT COUNT(*) as count FROM resources"
1541
+ )
1542
+ return {"resource_count": result[0]["count"]}
1543
+ finally:
1544
+ await db.disconnect()
1545
+
1546
+ @router.get("/recent")
1547
+ async def get_recent(limit: int = 10):
1548
+ """Get recent resources."""
1549
+ db = get_postgres_service()
1550
+ if not db:
1551
+ return {"error": "Database not available"}
1552
+
1553
+ await db.connect()
1554
+ try:
1555
+ result = await db.execute(
1556
+ f"SELECT label, category, created_at FROM resources ORDER BY created_at DESC LIMIT {limit}"
1557
+ )
1558
+ return {"resources": result}
1559
+ finally:
1560
+ await db.disconnect()
1561
+ ```
1562
+
1563
+ Include in main.py:
1564
+
1565
+ ```python
1566
+ from routers.analytics import router as analytics_router
1567
+ app.include_router(analytics_router)
1568
+ ```
1569
+
1570
+ ### Running the App
1571
+
1572
+ ```bash
1573
+ # Development (auto-reload)
1574
+ uv run uvicorn main:app --reload --port 8000
1575
+
1576
+ # Or use rem serve
1577
+ uv run rem serve --reload
1578
+
1579
+ # Test agent
1580
+ uv run rem ask my-agent "What can you help me with?"
1581
+
1582
+ # Test custom endpoint
1583
+ curl http://localhost:8000/analytics/stats
1584
+ ```
1585
+
1586
+ ### Extension Points
1587
+
1588
+ | Extension | How |
1589
+ |-----------|-----|
1590
+ | **Routes** | `app.include_router(router)` or `@app.get()` |
1591
+ | **MCP Tools** | `@app.mcp_server.tool()` decorator or `app.mcp_server.add_tool(fn)` |
1592
+ | **MCP Resources** | `@app.mcp_server.resource("uri://...")` or `app.mcp_server.add_resource(fn)` |
1593
+ | **MCP Prompts** | `@app.mcp_server.prompt()` or `app.mcp_server.add_prompt(fn)` |
1594
+ | **Models** | `rem.register_models(Model)` then `rem db schema generate` |
1595
+ | **Agent Schemas** | `rem.register_schema_path("./schemas")` or `SCHEMA__PATHS` env var |
1596
+ | **SQL Migrations** | Place in `sql/migrations/` (auto-detected) |
1597
+
1598
+ ### Custom Migrations
1599
+
1600
+ REM automatically discovers migrations from two sources:
1601
+
1602
+ 1. **Package migrations** (001-099): Built-in migrations from the `remdb` package
1603
+ 2. **User migrations** (100+): Your custom migrations in `./sql/migrations/`
1604
+
1605
+ **Convention**: Place custom SQL files in `sql/migrations/` relative to your project root:
1606
+
1607
+ ```
1608
+ my-rem-app/
1609
+ ├── sql/
1610
+ │ └── migrations/
1611
+ │ ├── 100_custom_table.sql # Runs after package migrations
1612
+ │ ├── 101_add_indexes.sql
1613
+ │ └── 102_custom_functions.sql
1614
+ └── ...
1615
+ ```
1616
+
1617
+ **Numbering**: Use 100+ for user migrations to ensure they run after package migrations (001-099). All migrations are sorted by filename, so proper numbering ensures correct execution order.
1618
+
1619
+ **Running migrations**:
1620
+ ```bash
1621
+ # Apply all migrations (package + user)
1622
+ rem db migrate
1623
+
1624
+ # Apply with background indexes (for production)
1625
+ rem db migrate --background-indexes
1626
+ ```
1627
+
1453
1628
  ## License
1454
1629
 
1455
1630
  MIT