reflexive 0.1.9__py3-none-any.whl → 1.0.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
reflexive/common/util.py DELETED
@@ -1,108 +0,0 @@
1
-
2
- # Utility functions
3
- from sklearn.preprocessing import MinMaxScaler
4
-
5
- class Util:
6
-
7
- def __init__(self):
8
- self.name = "Util"
9
-
10
- def sort_dict_by_value(self,d):
11
- return dict(sorted(d.items(), key=lambda x:x[1], reverse=True))
12
-
13
- def filter_dict_by_value(self,ngrams,min_val=3):
14
- filtered_ngrams = {}
15
- for k,v in ngrams.items():
16
- if v >=min_val:
17
- filtered_ngrams[k] = v
18
- return filtered_ngrams
19
-
20
- # Function to write dictionaries to both json and csv
21
- def writeDictJsonCSV(self,dictionary,path_file):
22
- with open(f"{path_file}.json",'w') as fp:
23
- fp.write(json.dumps(dictionary))
24
-
25
- ngram_df = pd.DataFrame.from_dict(dictionary,orient='index')
26
- ngram_df.to_csv(f"{path_file}.csv")
27
-
28
- # Input a series and output a list of lists with each maxn elements
29
- def series_to_chunked_list(self,series,maxn=25):
30
- l = list(series)
31
- return self.__chunk_list(l,maxn)
32
-
33
- # Chunk a list into a list of lists with maxn elements
34
- def __chunk_list(self,l,maxn=25):
35
- return [l[i:i + maxn] for i in range(0, len(l), maxn)]
36
-
37
- # Count named entities
38
- def count_entities(self,entities):
39
- counts = []
40
- for k,v in entities.items():
41
- counts.append((k,len(v)))
42
- return sorted(counts, key=lambda x: x[1], reverse=True)
43
-
44
- # Function for calculating proportions of features
45
- def ratios(self,elements):
46
- etotal = sum([v[1] for v in elements])
47
- if etotal==0:
48
- return elements
49
- else:
50
- proportioned = []
51
- for element in elements:
52
- prop_val = round((element[1]/etotal),4)
53
- proportioned.append((element[0],prop_val))
54
- return proportioned
55
-
56
-
57
-
58
- # Count labels associated with strings
59
- def count_labels(self,string_labels):
60
- counts = dict()
61
- for rt in string_labels:
62
- counts[rt[1]] = counts.setdefault(rt[1],0) + 1
63
- return sorted(counts.items(), key=lambda x: x[1], reverse=True)
64
-
65
- def count_keys(self,key_count_dict):
66
- counts = dict()
67
- for k,v in key_count_dict.items():
68
- counts[k] = counts.setdefault(k,0) + v
69
- return sorted(counts.items(), key=lambda x: x[1], reverse=True)
70
-
71
- # Total the values in list of tuples
72
- def tuple_values_total(self,tuples):
73
- tvs = [t[1] for t in tuples]
74
- return sum(tvs)
75
-
76
- #### SCALING AND NORMALISING
77
-
78
- # Outliers
79
-
80
- def outlier_fence(self,series):
81
- bounds = {}
82
- stats = series.describe()
83
- iqr = stats['75%'] - stats['25%']
84
- bounds["IQR"]=iqr
85
- upper = stats['75%']+1.5*iqr
86
- bounds["UPPER"]=upper
87
- lower = stats['25%']-1.5*iqr
88
- bounds["LOWER"]=lower
89
- return bounds
90
-
91
- # MinMax Scaling
92
- def scale_min_max(self,df_cols):
93
- scaler = MinMaxScaler()
94
- return scaler.fit_transform(df_cols)
95
-
96
- # Normalise domain term counts
97
- def normalise_domain_counts(self,domain_counts,text_size):
98
- norms = {}
99
- for k,v in domain_counts.items():
100
- norms[k] = round(v*text_size,3)
101
- return norms
102
-
103
- def normalise_scaled(self,df,feature,norm_feature = 'text_scaled'):
104
- tempdf = df[[feature,norm_feature]].copy()
105
- tempdf['norm_scaled'] = tempdf.apply(lambda r: round(r[feature]/(r[norm_feature]+0.01),4),axis=1)
106
- return tempdf['norm_scaled']
107
-
108
-
File without changes
@@ -1,20 +0,0 @@
1
- reflexive/__init__.py,sha256=DXmbgl_xMxd9Flqx3LXfbuYmYaJqzbDjB6r4mcPx75Y,292
2
- reflexive/analyse/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- reflexive/analyse/aws_nlp.py,sha256=7uRZg4lRt6t33wAA-ZaKCWKWrA8aQJn31GwFpl8FWqQ,8355
4
- reflexive/analyse/general.py,sha256=ZPHkJcwwiV0CZQYa7JX9qjM5fm41MCPAq58GjtEtLKY,4388
5
- reflexive/analyse/reflexive_expressions.py,sha256=YGd346EH78KMOrzfAyP07o7DOvfQF9mybDSc4bZuoio,5121
6
- reflexive/aws_connect/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
- reflexive/aws_connect/comprehend.py,sha256=eGbjf2Njy2KBTWd33GGrwFIk5e9GcKfUETBr_6mSvY0,7706
8
- reflexive/aws_connect/s3.py,sha256=l20haGTMmUPe_HjSi9jVu5oeyNC8VcVTD7X-CvDq1-o,3517
9
- reflexive/common/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
- reflexive/common/local.py,sha256=euhMmdRnL5c5d_Co2f2ehNP7Lv43T571tDCWQzpKaF4,1752
11
- reflexive/common/parameters.py,sha256=o0Yw3dvSdVvEC46Q1a_QK0mr7uDIb_SCmUYWUyspSM0,3305
12
- reflexive/common/util.py,sha256=OIfdQpkg3WLz0Ymm3OYlvOEE_ZGlI4KQHc8PYPb4vn8,3458
13
- reflexive/visual/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
- reflexive/visual/display.py,sha256=XiRC3Asx9Ed3xCNCt3_DlbF45JcifNbXH_B44jxqqp0,3886
15
- reflexive-0.1.9.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
16
- reflexive-0.1.9.dist-info/LICENSE.txt,sha256=WNHhf_5RCaeuKWyq_K39vmp9F28LxKsB4SpomwSZ2L0,11357
17
- reflexive-0.1.9.dist-info/METADATA,sha256=2y2QHK_2H-b3jXDbsgfl07pPxtLjPtU_fyDkpRrv-98,12037
18
- reflexive-0.1.9.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
19
- reflexive-0.1.9.dist-info/top_level.txt,sha256=pOMr-QGleRBRCFBozgvM-UUUmOjD_-naJfu1522E2V8,10
20
- reflexive-0.1.9.dist-info/RECORD,,