reflectorch 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of reflectorch might be problematic. Click here for more details.
- reflectorch/__init__.py +17 -17
- reflectorch/data_generation/__init__.py +128 -128
- reflectorch/data_generation/dataset.py +210 -210
- reflectorch/data_generation/likelihoods.py +80 -80
- reflectorch/data_generation/noise.py +470 -470
- reflectorch/data_generation/priors/__init__.py +60 -60
- reflectorch/data_generation/priors/base.py +55 -55
- reflectorch/data_generation/priors/exp_subprior_sampler.py +298 -298
- reflectorch/data_generation/priors/independent_priors.py +195 -195
- reflectorch/data_generation/priors/multilayer_models.py +311 -311
- reflectorch/data_generation/priors/multilayer_structures.py +104 -104
- reflectorch/data_generation/priors/no_constraints.py +206 -206
- reflectorch/data_generation/priors/parametric_models.py +841 -841
- reflectorch/data_generation/priors/parametric_subpriors.py +369 -369
- reflectorch/data_generation/priors/params.py +252 -252
- reflectorch/data_generation/priors/sampler_strategies.py +369 -369
- reflectorch/data_generation/priors/scaler_mixin.py +65 -65
- reflectorch/data_generation/priors/subprior_sampler.py +371 -371
- reflectorch/data_generation/priors/utils.py +118 -118
- reflectorch/data_generation/process_data.py +41 -41
- reflectorch/data_generation/q_generator.py +280 -280
- reflectorch/data_generation/reflectivity/__init__.py +102 -102
- reflectorch/data_generation/reflectivity/abeles.py +97 -97
- reflectorch/data_generation/reflectivity/kinematical.py +70 -70
- reflectorch/data_generation/reflectivity/memory_eff.py +105 -105
- reflectorch/data_generation/reflectivity/numpy_implementations.py +120 -120
- reflectorch/data_generation/reflectivity/smearing.py +138 -138
- reflectorch/data_generation/reflectivity/smearing_pointwise.py +109 -109
- reflectorch/data_generation/scale_curves.py +112 -112
- reflectorch/data_generation/smearing.py +98 -98
- reflectorch/data_generation/utils.py +223 -223
- reflectorch/extensions/jupyter/__init__.py +11 -6
- reflectorch/extensions/jupyter/api.py +85 -0
- reflectorch/extensions/jupyter/callbacks.py +34 -34
- reflectorch/extensions/jupyter/components.py +758 -0
- reflectorch/extensions/jupyter/custom_select.py +268 -0
- reflectorch/extensions/jupyter/log_widget.py +241 -0
- reflectorch/extensions/jupyter/model_selection.py +495 -0
- reflectorch/extensions/jupyter/plotly_plot_manager.py +329 -0
- reflectorch/extensions/jupyter/widget.py +625 -0
- reflectorch/extensions/matplotlib/__init__.py +5 -5
- reflectorch/extensions/matplotlib/losses.py +32 -32
- reflectorch/extensions/refnx/refnx_conversion.py +76 -76
- reflectorch/inference/__init__.py +28 -24
- reflectorch/inference/inference_model.py +847 -1374
- reflectorch/inference/input_interface.py +239 -0
- reflectorch/inference/loading_data.py +36 -36
- reflectorch/inference/multilayer_fitter.py +171 -171
- reflectorch/inference/multilayer_inference_model.py +193 -193
- reflectorch/inference/plotting.py +523 -516
- reflectorch/inference/preprocess_exp/__init__.py +6 -6
- reflectorch/inference/preprocess_exp/attenuation.py +36 -36
- reflectorch/inference/preprocess_exp/cut_with_q_ratio.py +31 -31
- reflectorch/inference/preprocess_exp/footprint.py +81 -81
- reflectorch/inference/preprocess_exp/interpolation.py +19 -19
- reflectorch/inference/preprocess_exp/normalize.py +21 -21
- reflectorch/inference/preprocess_exp/preprocess.py +121 -121
- reflectorch/inference/query_matcher.py +81 -81
- reflectorch/inference/record_time.py +43 -43
- reflectorch/inference/sampler_solution.py +56 -56
- reflectorch/inference/scipy_fitter.py +272 -262
- reflectorch/inference/torch_fitter.py +87 -87
- reflectorch/ml/__init__.py +32 -32
- reflectorch/ml/basic_trainer.py +292 -292
- reflectorch/ml/callbacks.py +80 -80
- reflectorch/ml/dataloaders.py +26 -26
- reflectorch/ml/loggers.py +55 -55
- reflectorch/ml/schedulers.py +355 -355
- reflectorch/ml/trainers.py +200 -200
- reflectorch/ml/utils.py +2 -2
- reflectorch/models/__init__.py +15 -15
- reflectorch/models/activations.py +50 -50
- reflectorch/models/encoders/__init__.py +19 -19
- reflectorch/models/encoders/conv_encoder.py +218 -218
- reflectorch/models/encoders/conv_res_net.py +115 -115
- reflectorch/models/encoders/fno.py +133 -133
- reflectorch/models/encoders/integral_kernel_embedding.py +389 -389
- reflectorch/models/networks/__init__.py +14 -14
- reflectorch/models/networks/mlp_networks.py +434 -434
- reflectorch/models/networks/residual_net.py +156 -156
- reflectorch/paths.py +29 -27
- reflectorch/runs/__init__.py +31 -31
- reflectorch/runs/config.py +25 -25
- reflectorch/runs/slurm_utils.py +93 -93
- reflectorch/runs/train.py +78 -78
- reflectorch/runs/utils.py +404 -404
- reflectorch/test_config.py +4 -4
- reflectorch/train.py +4 -4
- reflectorch/train_on_cluster.py +4 -4
- reflectorch/utils.py +97 -97
- {reflectorch-1.4.0.dist-info → reflectorch-1.5.0.dist-info}/METADATA +129 -126
- reflectorch-1.5.0.dist-info/RECORD +96 -0
- {reflectorch-1.4.0.dist-info → reflectorch-1.5.0.dist-info}/licenses/LICENSE.txt +20 -20
- reflectorch-1.4.0.dist-info/RECORD +0 -88
- {reflectorch-1.4.0.dist-info → reflectorch-1.5.0.dist-info}/WHEEL +0 -0
- {reflectorch-1.4.0.dist-info → reflectorch-1.5.0.dist-info}/top_level.txt +0 -0
|
@@ -1,262 +1,272 @@
|
|
|
1
|
-
import warnings
|
|
2
|
-
|
|
3
|
-
import numpy as np
|
|
4
|
-
from scipy.optimize import minimize, curve_fit
|
|
5
|
-
import torch
|
|
6
|
-
|
|
7
|
-
from reflectorch.data_generation.priors.base import PriorSampler
|
|
8
|
-
from reflectorch.data_generation.reflectivity import abeles_np
|
|
9
|
-
|
|
10
|
-
__all__ = [
|
|
11
|
-
"standard_refl_fit",
|
|
12
|
-
"refl_fit",
|
|
13
|
-
"fit_refl_curve",
|
|
14
|
-
"restore_masked_params",
|
|
15
|
-
"get_fit_with_growth",
|
|
16
|
-
]
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
def standard_restore_params(fitted_params) -> dict:
|
|
20
|
-
num_layers = (fitted_params.size - 2) // 3
|
|
21
|
-
|
|
22
|
-
return dict(
|
|
23
|
-
thickness=fitted_params[:num_layers],
|
|
24
|
-
roughness=fitted_params[num_layers:2 * num_layers + 1],
|
|
25
|
-
sld=fitted_params[2 * num_layers + 1:],
|
|
26
|
-
)
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
def mse_loss(curve1, curve2):
|
|
30
|
-
return np.sum((curve1 - curve2) ** 2)
|
|
31
|
-
|
|
32
|
-
def standard_refl_fit(
|
|
33
|
-
q: np.ndarray, curve: np.ndarray,
|
|
34
|
-
init_params: np.ndarray,
|
|
35
|
-
bounds: np.ndarray = None,
|
|
36
|
-
refl_generator=abeles_np,
|
|
37
|
-
restore_params_func=standard_restore_params,
|
|
38
|
-
scale_curve_func=np.log10,
|
|
39
|
-
**kwargs
|
|
40
|
-
):
|
|
41
|
-
if bounds is not None:
|
|
42
|
-
kwargs['bounds'] = bounds
|
|
43
|
-
init_params = np.clip(init_params, *bounds)
|
|
44
|
-
|
|
45
|
-
res = curve_fit(
|
|
46
|
-
standard_get_scaled_curve_func(
|
|
47
|
-
refl_generator=refl_generator,
|
|
48
|
-
restore_params_func=restore_params_func,
|
|
49
|
-
scale_curve_func=scale_curve_func,
|
|
50
|
-
),
|
|
51
|
-
q, scale_curve_func(curve),
|
|
52
|
-
p0=init_params, **kwargs
|
|
53
|
-
)
|
|
54
|
-
|
|
55
|
-
curve = refl_generator(q, **restore_params_func(res[0]))
|
|
56
|
-
return res[0], curve
|
|
57
|
-
|
|
58
|
-
def refl_fit(
|
|
59
|
-
q: np.ndarray,
|
|
60
|
-
curve: np.ndarray,
|
|
61
|
-
init_params: np.ndarray,
|
|
62
|
-
prior_sampler: PriorSampler,
|
|
63
|
-
bounds: np.ndarray = None,
|
|
64
|
-
error_bars: np.ndarray = None,
|
|
65
|
-
scale_curve_func=np.log10,
|
|
66
|
-
method: str = 'trf', #'lm', 'trf'
|
|
67
|
-
|
|
68
|
-
reflectivity_kwargs: dict = None,
|
|
69
|
-
**kwargs
|
|
70
|
-
):
|
|
71
|
-
if bounds is not None:
|
|
72
|
-
# introduce a small perturbation for fixed bounds
|
|
73
|
-
epsilon = 1e-6
|
|
74
|
-
adjusted_bounds = bounds.copy()
|
|
75
|
-
|
|
76
|
-
for i in range(bounds.shape[1]):
|
|
77
|
-
if bounds[0, i] == bounds[1, i]:
|
|
78
|
-
adjusted_bounds[0, i] -= epsilon
|
|
79
|
-
adjusted_bounds[1, i] += epsilon
|
|
80
|
-
|
|
81
|
-
init_params = np.clip(init_params, *adjusted_bounds)
|
|
82
|
-
if method != 'lm':
|
|
83
|
-
kwargs['bounds'] = adjusted_bounds
|
|
84
|
-
|
|
85
|
-
reflectivity_kwargs = reflectivity_kwargs or {}
|
|
86
|
-
for key, value in reflectivity_kwargs.items():
|
|
87
|
-
if isinstance(value, float):
|
|
88
|
-
reflectivity_kwargs[key] = torch.tensor([[value]], dtype=torch.float64)
|
|
89
|
-
elif isinstance(value, np.ndarray):
|
|
90
|
-
reflectivity_kwargs[key] = torch.tensor(value, dtype=torch.float32).unsqueeze(0)
|
|
91
|
-
|
|
92
|
-
curve = np.clip(curve, a_min=1e-12, a_max=None)
|
|
93
|
-
|
|
94
|
-
if error_bars is not None and scale_curve_func == np.log10:
|
|
95
|
-
error_bars = np.clip(error_bars, a_min=1e-20, a_max=None)
|
|
96
|
-
scaled_error_bars = error_bars / (curve * np.log(10))
|
|
97
|
-
else:
|
|
98
|
-
scaled_error_bars = None
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
)
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
)
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
def
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
return
|
|
231
|
-
|
|
232
|
-
return
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
def
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
def
|
|
262
|
-
|
|
1
|
+
import warnings
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
from scipy.optimize import minimize, curve_fit
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from reflectorch.data_generation.priors.base import PriorSampler
|
|
8
|
+
from reflectorch.data_generation.reflectivity import abeles_np
|
|
9
|
+
|
|
10
|
+
__all__ = [
|
|
11
|
+
"standard_refl_fit",
|
|
12
|
+
"refl_fit",
|
|
13
|
+
"fit_refl_curve",
|
|
14
|
+
"restore_masked_params",
|
|
15
|
+
"get_fit_with_growth",
|
|
16
|
+
]
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def standard_restore_params(fitted_params) -> dict:
|
|
20
|
+
num_layers = (fitted_params.size - 2) // 3
|
|
21
|
+
|
|
22
|
+
return dict(
|
|
23
|
+
thickness=fitted_params[:num_layers],
|
|
24
|
+
roughness=fitted_params[num_layers:2 * num_layers + 1],
|
|
25
|
+
sld=fitted_params[2 * num_layers + 1:],
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def mse_loss(curve1, curve2):
|
|
30
|
+
return np.sum((curve1 - curve2) ** 2)
|
|
31
|
+
|
|
32
|
+
def standard_refl_fit(
|
|
33
|
+
q: np.ndarray, curve: np.ndarray,
|
|
34
|
+
init_params: np.ndarray,
|
|
35
|
+
bounds: np.ndarray = None,
|
|
36
|
+
refl_generator=abeles_np,
|
|
37
|
+
restore_params_func=standard_restore_params,
|
|
38
|
+
scale_curve_func=np.log10,
|
|
39
|
+
**kwargs
|
|
40
|
+
):
|
|
41
|
+
if bounds is not None:
|
|
42
|
+
kwargs['bounds'] = bounds
|
|
43
|
+
init_params = np.clip(init_params, *bounds)
|
|
44
|
+
|
|
45
|
+
res = curve_fit(
|
|
46
|
+
standard_get_scaled_curve_func(
|
|
47
|
+
refl_generator=refl_generator,
|
|
48
|
+
restore_params_func=restore_params_func,
|
|
49
|
+
scale_curve_func=scale_curve_func,
|
|
50
|
+
),
|
|
51
|
+
q, scale_curve_func(curve),
|
|
52
|
+
p0=init_params, **kwargs
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
curve = refl_generator(q, **restore_params_func(res[0]))
|
|
56
|
+
return res[0], curve
|
|
57
|
+
|
|
58
|
+
def refl_fit(
|
|
59
|
+
q: np.ndarray,
|
|
60
|
+
curve: np.ndarray,
|
|
61
|
+
init_params: np.ndarray,
|
|
62
|
+
prior_sampler: PriorSampler,
|
|
63
|
+
bounds: np.ndarray = None,
|
|
64
|
+
error_bars: np.ndarray = None,
|
|
65
|
+
scale_curve_func=np.log10,
|
|
66
|
+
method: str = 'trf', #'lm', 'trf'
|
|
67
|
+
polishing_max_steps: int = None,
|
|
68
|
+
reflectivity_kwargs: dict = None,
|
|
69
|
+
**kwargs
|
|
70
|
+
):
|
|
71
|
+
if bounds is not None:
|
|
72
|
+
# introduce a small perturbation for fixed bounds
|
|
73
|
+
epsilon = 1e-6
|
|
74
|
+
adjusted_bounds = bounds.copy()
|
|
75
|
+
|
|
76
|
+
for i in range(bounds.shape[1]):
|
|
77
|
+
if bounds[0, i] == bounds[1, i]:
|
|
78
|
+
adjusted_bounds[0, i] -= epsilon
|
|
79
|
+
adjusted_bounds[1, i] += epsilon
|
|
80
|
+
|
|
81
|
+
init_params = np.clip(init_params, *adjusted_bounds)
|
|
82
|
+
if method != 'lm':
|
|
83
|
+
kwargs['bounds'] = adjusted_bounds
|
|
84
|
+
|
|
85
|
+
reflectivity_kwargs = reflectivity_kwargs or {}
|
|
86
|
+
for key, value in reflectivity_kwargs.items():
|
|
87
|
+
if isinstance(value, float):
|
|
88
|
+
reflectivity_kwargs[key] = torch.tensor([[value]], dtype=torch.float64)
|
|
89
|
+
elif isinstance(value, np.ndarray):
|
|
90
|
+
reflectivity_kwargs[key] = torch.tensor(value, dtype=torch.float32).unsqueeze(0)
|
|
91
|
+
|
|
92
|
+
curve = np.clip(curve, a_min=1e-12, a_max=None)
|
|
93
|
+
|
|
94
|
+
if error_bars is not None and scale_curve_func == np.log10:
|
|
95
|
+
error_bars = np.clip(error_bars, a_min=1e-20, a_max=None)
|
|
96
|
+
scaled_error_bars = error_bars / (curve * np.log(10))
|
|
97
|
+
else:
|
|
98
|
+
scaled_error_bars = None
|
|
99
|
+
|
|
100
|
+
if polishing_max_steps is not None:
|
|
101
|
+
if method == 'lm':
|
|
102
|
+
kwargs['maxfev'] = polishing_max_steps
|
|
103
|
+
else:
|
|
104
|
+
kwargs['max_nfev'] = polishing_max_steps
|
|
105
|
+
|
|
106
|
+
res = curve_fit(
|
|
107
|
+
f=get_scaled_curve_func(
|
|
108
|
+
scale_curve_func=scale_curve_func,
|
|
109
|
+
prior_sampler=prior_sampler,
|
|
110
|
+
reflectivity_kwargs=reflectivity_kwargs,
|
|
111
|
+
),
|
|
112
|
+
xdata=q,
|
|
113
|
+
ydata=scale_curve_func(curve).reshape(-1),
|
|
114
|
+
p0=init_params,
|
|
115
|
+
sigma=scaled_error_bars,
|
|
116
|
+
absolute_sigma=True,
|
|
117
|
+
method=method,
|
|
118
|
+
**kwargs
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
curve = prior_sampler.param_model.reflectivity(torch.tensor(q, dtype=torch.float64),
|
|
122
|
+
torch.tensor(res[0], dtype=torch.float64).unsqueeze(0),
|
|
123
|
+
**reflectivity_kwargs).squeeze().numpy()
|
|
124
|
+
# cov matrix --> variance of the parameter estimate
|
|
125
|
+
if res[1] is not None and np.ndim(res[1]) == 2 and np.all(np.isfinite(res[1])):
|
|
126
|
+
pol_param_errs = np.sqrt(np.diag(res[1]))
|
|
127
|
+
else:
|
|
128
|
+
pol_param_errs = np.full_like(res[1], np.nan)
|
|
129
|
+
return res[0], pol_param_errs, curve
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
def get_fit_with_growth(
|
|
133
|
+
q: np.ndarray,
|
|
134
|
+
curve: np.ndarray,
|
|
135
|
+
init_params: np.ndarray,
|
|
136
|
+
bounds: np.ndarray = None,
|
|
137
|
+
init_d_change: float = 0.,
|
|
138
|
+
max_d_change: float = 30.,
|
|
139
|
+
scale_curve_func=np.log10,
|
|
140
|
+
**kwargs
|
|
141
|
+
):
|
|
142
|
+
init_params = np.array(list(init_params) + [init_d_change])
|
|
143
|
+
if bounds is not None:
|
|
144
|
+
bounds = np.concatenate([bounds, np.array([0, max_d_change])[..., None]], -1)
|
|
145
|
+
|
|
146
|
+
params, curve = standard_refl_fit(
|
|
147
|
+
q,
|
|
148
|
+
curve,
|
|
149
|
+
init_params,
|
|
150
|
+
bounds,
|
|
151
|
+
refl_generator=growth_reflectivity,
|
|
152
|
+
restore_params_func=get_restore_params_with_growth_func(q_size=q.size, d_idx=0),
|
|
153
|
+
scale_curve_func=scale_curve_func,
|
|
154
|
+
**kwargs
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
params[0] += params[-1] / 2
|
|
158
|
+
return params, curve
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
def fit_refl_curve(q: np.ndarray, curve: np.ndarray,
|
|
162
|
+
init_params: np.ndarray,
|
|
163
|
+
bounds: np.ndarray = None,
|
|
164
|
+
refl_generator=abeles_np,
|
|
165
|
+
restore_params_func=standard_restore_params,
|
|
166
|
+
scale_curve_func=np.log10,
|
|
167
|
+
**kwargs
|
|
168
|
+
) -> np.ndarray:
|
|
169
|
+
fitting_func = get_fitting_func(
|
|
170
|
+
q=q, curve=curve,
|
|
171
|
+
refl_generator=refl_generator,
|
|
172
|
+
restore_params_func=restore_params_func,
|
|
173
|
+
scale_curve_func=scale_curve_func,
|
|
174
|
+
)
|
|
175
|
+
|
|
176
|
+
res = minimize(fitting_func, init_params, bounds=bounds, **kwargs)
|
|
177
|
+
|
|
178
|
+
if not res.success:
|
|
179
|
+
warnings.warn(f"Minimization did not converge.")
|
|
180
|
+
return res.x
|
|
181
|
+
|
|
182
|
+
def standard_get_scaled_curve_func(
|
|
183
|
+
refl_generator=abeles_np,
|
|
184
|
+
restore_params_func=standard_restore_params,
|
|
185
|
+
scale_curve_func=np.log10,
|
|
186
|
+
):
|
|
187
|
+
def scaled_curve_func(q, *fitted_params):
|
|
188
|
+
fitted_params = restore_params_func(np.asarray(fitted_params))
|
|
189
|
+
fitted_curve = refl_generator(q, **fitted_params)
|
|
190
|
+
scaled_curve = scale_curve_func(fitted_curve)
|
|
191
|
+
return scaled_curve
|
|
192
|
+
|
|
193
|
+
return scaled_curve_func
|
|
194
|
+
|
|
195
|
+
def get_scaled_curve_func(
|
|
196
|
+
scale_curve_func=np.log10,
|
|
197
|
+
prior_sampler: PriorSampler = None,
|
|
198
|
+
reflectivity_kwargs: dict = None,
|
|
199
|
+
):
|
|
200
|
+
reflectivity_kwargs = reflectivity_kwargs or {}
|
|
201
|
+
|
|
202
|
+
def scaled_curve_func(q, *fitted_params):
|
|
203
|
+
q_tensor = torch.from_numpy(q).to(torch.float64)
|
|
204
|
+
fitted_params_tensor = torch.tensor(fitted_params, dtype=torch.float64).unsqueeze(0)
|
|
205
|
+
|
|
206
|
+
fitted_curve_tensor = prior_sampler.param_model.reflectivity(q_tensor, fitted_params_tensor, **reflectivity_kwargs)
|
|
207
|
+
fitted_curve = fitted_curve_tensor.squeeze().numpy()
|
|
208
|
+
|
|
209
|
+
scaled_curve = scale_curve_func(fitted_curve)
|
|
210
|
+
|
|
211
|
+
return scaled_curve.reshape(-1)
|
|
212
|
+
|
|
213
|
+
return scaled_curve_func
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
def get_fitting_func(
|
|
217
|
+
q: np.ndarray,
|
|
218
|
+
curve: np.ndarray,
|
|
219
|
+
refl_generator=abeles_np,
|
|
220
|
+
restore_params_func=standard_restore_params,
|
|
221
|
+
scale_curve_func=np.log10,
|
|
222
|
+
loss_func=mse_loss,
|
|
223
|
+
):
|
|
224
|
+
scaled_curve = scale_curve_func(curve)
|
|
225
|
+
|
|
226
|
+
def fitting_func(fitted_params):
|
|
227
|
+
fitted_params = restore_params_func(fitted_params)
|
|
228
|
+
fitted_curve = refl_generator(q, **fitted_params)
|
|
229
|
+
loss = loss_func(scale_curve_func(fitted_curve), scaled_curve)
|
|
230
|
+
return loss
|
|
231
|
+
|
|
232
|
+
return fitting_func
|
|
233
|
+
|
|
234
|
+
|
|
235
|
+
def restore_masked_params(fixed_params, fixed_mask):
|
|
236
|
+
def restore_params(fitted_params) -> dict:
|
|
237
|
+
params = np.empty_like(fixed_mask).astype(fitted_params.dtype)
|
|
238
|
+
params[fixed_mask] = fixed_params
|
|
239
|
+
params[~fixed_mask] = fitted_params
|
|
240
|
+
return standard_restore_params(params)
|
|
241
|
+
|
|
242
|
+
return restore_params
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
def base_params2growth(base_params: dict, d_shift: np.ndarray, d_idx: int = 0) -> dict:
|
|
246
|
+
d_init = base_params['thickness'][None]
|
|
247
|
+
q_size = d_shift.size
|
|
248
|
+
d = d_init.repeat(q_size, 0)
|
|
249
|
+
d[:, d_idx] = d[:, d_idx] + d_shift
|
|
250
|
+
|
|
251
|
+
roughness = np.broadcast_to(base_params['roughness'][None], (q_size, base_params['roughness'].size))
|
|
252
|
+
sld = np.broadcast_to(base_params['sld'][None], (q_size, base_params['sld'].size))
|
|
253
|
+
|
|
254
|
+
return {
|
|
255
|
+
'thickness': d,
|
|
256
|
+
'roughness': roughness,
|
|
257
|
+
'sld': sld,
|
|
258
|
+
}
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+
def get_restore_params_with_growth_func(q_size: int, d_idx: int = 0):
|
|
262
|
+
def restore_params_with_growth(fitted_params) -> dict:
|
|
263
|
+
fitted_params, delta_d = fitted_params[:-1], fitted_params[-1]
|
|
264
|
+
base_params = standard_restore_params(fitted_params)
|
|
265
|
+
d_shift = np.linspace(0, delta_d, q_size)
|
|
266
|
+
return base_params2growth(base_params, d_shift, d_idx)
|
|
267
|
+
|
|
268
|
+
return restore_params_with_growth
|
|
269
|
+
|
|
270
|
+
|
|
271
|
+
def growth_reflectivity(q: np.ndarray, **kwargs):
|
|
272
|
+
return abeles_np(q[..., None], **kwargs).flatten()
|