reflectorch 1.3.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of reflectorch might be problematic. Click here for more details.

Files changed (96) hide show
  1. reflectorch/__init__.py +17 -17
  2. reflectorch/data_generation/__init__.py +128 -126
  3. reflectorch/data_generation/dataset.py +210 -210
  4. reflectorch/data_generation/likelihoods.py +80 -80
  5. reflectorch/data_generation/noise.py +470 -470
  6. reflectorch/data_generation/priors/__init__.py +60 -60
  7. reflectorch/data_generation/priors/base.py +55 -55
  8. reflectorch/data_generation/priors/exp_subprior_sampler.py +298 -298
  9. reflectorch/data_generation/priors/independent_priors.py +195 -195
  10. reflectorch/data_generation/priors/multilayer_models.py +311 -311
  11. reflectorch/data_generation/priors/multilayer_structures.py +104 -104
  12. reflectorch/data_generation/priors/no_constraints.py +206 -206
  13. reflectorch/data_generation/priors/parametric_models.py +841 -841
  14. reflectorch/data_generation/priors/parametric_subpriors.py +369 -369
  15. reflectorch/data_generation/priors/params.py +252 -252
  16. reflectorch/data_generation/priors/sampler_strategies.py +369 -369
  17. reflectorch/data_generation/priors/scaler_mixin.py +65 -65
  18. reflectorch/data_generation/priors/subprior_sampler.py +371 -371
  19. reflectorch/data_generation/priors/utils.py +118 -118
  20. reflectorch/data_generation/process_data.py +41 -41
  21. reflectorch/data_generation/q_generator.py +280 -246
  22. reflectorch/data_generation/reflectivity/__init__.py +102 -102
  23. reflectorch/data_generation/reflectivity/abeles.py +97 -97
  24. reflectorch/data_generation/reflectivity/kinematical.py +70 -70
  25. reflectorch/data_generation/reflectivity/memory_eff.py +105 -105
  26. reflectorch/data_generation/reflectivity/numpy_implementations.py +120 -120
  27. reflectorch/data_generation/reflectivity/smearing.py +138 -138
  28. reflectorch/data_generation/reflectivity/smearing_pointwise.py +109 -109
  29. reflectorch/data_generation/scale_curves.py +112 -112
  30. reflectorch/data_generation/smearing.py +98 -98
  31. reflectorch/data_generation/utils.py +223 -222
  32. reflectorch/extensions/jupyter/__init__.py +11 -6
  33. reflectorch/extensions/jupyter/api.py +85 -0
  34. reflectorch/extensions/jupyter/callbacks.py +34 -34
  35. reflectorch/extensions/jupyter/components.py +758 -0
  36. reflectorch/extensions/jupyter/custom_select.py +268 -0
  37. reflectorch/extensions/jupyter/log_widget.py +241 -0
  38. reflectorch/extensions/jupyter/model_selection.py +495 -0
  39. reflectorch/extensions/jupyter/plotly_plot_manager.py +329 -0
  40. reflectorch/extensions/jupyter/widget.py +625 -0
  41. reflectorch/extensions/matplotlib/__init__.py +5 -5
  42. reflectorch/extensions/matplotlib/losses.py +32 -32
  43. reflectorch/extensions/refnx/refnx_conversion.py +76 -76
  44. reflectorch/inference/__init__.py +28 -24
  45. reflectorch/inference/inference_model.py +847 -851
  46. reflectorch/inference/input_interface.py +239 -0
  47. reflectorch/inference/loading_data.py +37 -0
  48. reflectorch/inference/multilayer_fitter.py +171 -171
  49. reflectorch/inference/multilayer_inference_model.py +193 -193
  50. reflectorch/inference/plotting.py +524 -98
  51. reflectorch/inference/preprocess_exp/__init__.py +6 -6
  52. reflectorch/inference/preprocess_exp/attenuation.py +36 -36
  53. reflectorch/inference/preprocess_exp/cut_with_q_ratio.py +31 -31
  54. reflectorch/inference/preprocess_exp/footprint.py +81 -81
  55. reflectorch/inference/preprocess_exp/interpolation.py +19 -16
  56. reflectorch/inference/preprocess_exp/normalize.py +21 -21
  57. reflectorch/inference/preprocess_exp/preprocess.py +121 -121
  58. reflectorch/inference/query_matcher.py +81 -81
  59. reflectorch/inference/record_time.py +43 -43
  60. reflectorch/inference/sampler_solution.py +56 -56
  61. reflectorch/inference/scipy_fitter.py +272 -248
  62. reflectorch/inference/torch_fitter.py +87 -87
  63. reflectorch/ml/__init__.py +32 -32
  64. reflectorch/ml/basic_trainer.py +292 -292
  65. reflectorch/ml/callbacks.py +80 -80
  66. reflectorch/ml/dataloaders.py +26 -26
  67. reflectorch/ml/loggers.py +55 -55
  68. reflectorch/ml/schedulers.py +355 -355
  69. reflectorch/ml/trainers.py +200 -191
  70. reflectorch/ml/utils.py +2 -2
  71. reflectorch/models/__init__.py +15 -14
  72. reflectorch/models/activations.py +50 -50
  73. reflectorch/models/encoders/__init__.py +19 -17
  74. reflectorch/models/encoders/conv_encoder.py +218 -218
  75. reflectorch/models/encoders/conv_res_net.py +115 -115
  76. reflectorch/models/encoders/fno.py +133 -133
  77. reflectorch/models/encoders/integral_kernel_embedding.py +390 -0
  78. reflectorch/models/networks/__init__.py +14 -14
  79. reflectorch/models/networks/mlp_networks.py +434 -428
  80. reflectorch/models/networks/residual_net.py +156 -156
  81. reflectorch/paths.py +29 -27
  82. reflectorch/runs/__init__.py +31 -31
  83. reflectorch/runs/config.py +25 -25
  84. reflectorch/runs/slurm_utils.py +93 -93
  85. reflectorch/runs/train.py +78 -78
  86. reflectorch/runs/utils.py +404 -401
  87. reflectorch/test_config.py +4 -4
  88. reflectorch/train.py +4 -4
  89. reflectorch/train_on_cluster.py +4 -4
  90. reflectorch/utils.py +98 -68
  91. {reflectorch-1.3.0.dist-info → reflectorch-1.5.0.dist-info}/METADATA +129 -125
  92. reflectorch-1.5.0.dist-info/RECORD +96 -0
  93. {reflectorch-1.3.0.dist-info → reflectorch-1.5.0.dist-info}/WHEEL +1 -1
  94. {reflectorch-1.3.0.dist-info → reflectorch-1.5.0.dist-info}/licenses/LICENSE.txt +20 -20
  95. reflectorch-1.3.0.dist-info/RECORD +0 -86
  96. {reflectorch-1.3.0.dist-info → reflectorch-1.5.0.dist-info}/top_level.txt +0 -0
@@ -1,87 +1,87 @@
1
- from tqdm import trange
2
-
3
- import torch
4
- from torch import nn, Tensor
5
-
6
- from reflectorch.data_generation import LogLikelihood, reflectivity, PriorSampler
7
-
8
-
9
- class ReflGradientFit(object):
10
- """Directly optimizes the thin film parameters using a Pytorch optimizer
11
-
12
- Args:
13
- q (Tensor): the q positions
14
- exp_curve (Tensor): the experimental reflectivity curve
15
- prior_sampler (PriorSampler): the prior sampler
16
- params (Tensor): the initial thin film parameters
17
- fit_indices (Tensor): the indices of the thin film parameters which are to be fitted
18
- sigmas (Tensor, optional): error bars of the reflectivity curve, if not provided they are derived from ``rel_err`` and ``abs_err``. Defaults to None.
19
- optim_cls (Type[torch.optim.Optimizer], optional): the Pytorch optimizer class. Defaults to None.
20
- lr (float, optional): the learning rate. Defaults to 1e-2.
21
- rel_err (float, optional): the relative error in the reflectivity curve. Defaults to 0.1.
22
- abs_err (float, optional): the absolute error in the reflectivity curve. Defaults to 1e-7.
23
- """
24
- def __init__(self,
25
- q: Tensor,
26
- exp_curve: Tensor,
27
- prior_sampler: PriorSampler,
28
- params: Tensor,
29
- fit_indices: Tensor,
30
- sigmas: Tensor = None,
31
- optim_cls=None,
32
- lr: float = 1e-2,
33
- rel_err: float = 0.1,
34
- abs_err: float = 1e-7,
35
- ):
36
- self.q = q
37
-
38
- if sigmas is None:
39
- sigmas = exp_curve * rel_err + abs_err
40
-
41
- self.likelihood = LogLikelihood(q, exp_curve, prior_sampler, sigmas)
42
-
43
- self.num_layers = params.shape[-1] // 3
44
- self.fit_indices = fit_indices
45
- self.init_params = params.clone()
46
- self.params_to_fit = nn.Parameter(self.init_params[fit_indices].clone())
47
-
48
- optim_cls = optim_cls or torch.optim.Adam
49
- self.optim = optim_cls([self.params_to_fit], lr)
50
-
51
- self.losses = []
52
-
53
- @property
54
- def params(self):
55
- params = self.init_params.clone()
56
- params[self.fit_indices] = self.params_to_fit
57
- return params
58
-
59
- def calc_log_likelihood(self):
60
- return self.likelihood.calc_log_likelihood(self.refl())
61
-
62
- def calc_log_prob_loss(self):
63
- return - self.calc_log_likelihood().mean()
64
-
65
- def refl(self):
66
- d, sigma, rho = torch.split(self.params, [self.num_layers, self.num_layers + 1, self.num_layers + 1], -1)
67
- return reflectivity(self.q, d, sigma, rho)
68
-
69
- def run(self, num_iterations: int = 500, disable_tqdm: bool = False):
70
- """Runs the optimization process
71
-
72
- Args:
73
- num_iterations (int, optional): number of iterations the optimization is run for. Defaults to 500.
74
- disable_tqdm (bool, optional): whether to disable the prograss bar. Defaults to False.
75
- """
76
- pbar = trange(num_iterations, disable=disable_tqdm)
77
-
78
- for _ in pbar:
79
- self.optim.zero_grad()
80
- loss = self.calc_log_prob_loss()
81
- loss.backward()
82
- self.optim.step()
83
- self.losses.append(loss.item())
84
- pbar.set_description(f'Loss = {loss.item():.2e}')
85
-
86
- def clear(self):
87
- self.losses.clear()
1
+ from tqdm import trange
2
+
3
+ import torch
4
+ from torch import nn, Tensor
5
+
6
+ from reflectorch.data_generation import LogLikelihood, reflectivity, PriorSampler
7
+
8
+
9
+ class ReflGradientFit(object):
10
+ """Directly optimizes the thin film parameters using a Pytorch optimizer
11
+
12
+ Args:
13
+ q (Tensor): the q positions
14
+ exp_curve (Tensor): the experimental reflectivity curve
15
+ prior_sampler (PriorSampler): the prior sampler
16
+ params (Tensor): the initial thin film parameters
17
+ fit_indices (Tensor): the indices of the thin film parameters which are to be fitted
18
+ sigmas (Tensor, optional): error bars of the reflectivity curve, if not provided they are derived from ``rel_err`` and ``abs_err``. Defaults to None.
19
+ optim_cls (Type[torch.optim.Optimizer], optional): the Pytorch optimizer class. Defaults to None.
20
+ lr (float, optional): the learning rate. Defaults to 1e-2.
21
+ rel_err (float, optional): the relative error in the reflectivity curve. Defaults to 0.1.
22
+ abs_err (float, optional): the absolute error in the reflectivity curve. Defaults to 1e-7.
23
+ """
24
+ def __init__(self,
25
+ q: Tensor,
26
+ exp_curve: Tensor,
27
+ prior_sampler: PriorSampler,
28
+ params: Tensor,
29
+ fit_indices: Tensor,
30
+ sigmas: Tensor = None,
31
+ optim_cls=None,
32
+ lr: float = 1e-2,
33
+ rel_err: float = 0.1,
34
+ abs_err: float = 1e-7,
35
+ ):
36
+ self.q = q
37
+
38
+ if sigmas is None:
39
+ sigmas = exp_curve * rel_err + abs_err
40
+
41
+ self.likelihood = LogLikelihood(q, exp_curve, prior_sampler, sigmas)
42
+
43
+ self.num_layers = params.shape[-1] // 3
44
+ self.fit_indices = fit_indices
45
+ self.init_params = params.clone()
46
+ self.params_to_fit = nn.Parameter(self.init_params[fit_indices].clone())
47
+
48
+ optim_cls = optim_cls or torch.optim.Adam
49
+ self.optim = optim_cls([self.params_to_fit], lr)
50
+
51
+ self.losses = []
52
+
53
+ @property
54
+ def params(self):
55
+ params = self.init_params.clone()
56
+ params[self.fit_indices] = self.params_to_fit
57
+ return params
58
+
59
+ def calc_log_likelihood(self):
60
+ return self.likelihood.calc_log_likelihood(self.refl())
61
+
62
+ def calc_log_prob_loss(self):
63
+ return - self.calc_log_likelihood().mean()
64
+
65
+ def refl(self):
66
+ d, sigma, rho = torch.split(self.params, [self.num_layers, self.num_layers + 1, self.num_layers + 1], -1)
67
+ return reflectivity(self.q, d, sigma, rho)
68
+
69
+ def run(self, num_iterations: int = 500, disable_tqdm: bool = False):
70
+ """Runs the optimization process
71
+
72
+ Args:
73
+ num_iterations (int, optional): number of iterations the optimization is run for. Defaults to 500.
74
+ disable_tqdm (bool, optional): whether to disable the prograss bar. Defaults to False.
75
+ """
76
+ pbar = trange(num_iterations, disable=disable_tqdm)
77
+
78
+ for _ in pbar:
79
+ self.optim.zero_grad()
80
+ loss = self.calc_log_prob_loss()
81
+ loss.backward()
82
+ self.optim.step()
83
+ self.losses.append(loss.item())
84
+ pbar.set_description(f'Loss = {loss.item():.2e}')
85
+
86
+ def clear(self):
87
+ self.losses.clear()
@@ -1,32 +1,32 @@
1
- from reflectorch.ml.basic_trainer import *
2
- from reflectorch.ml.callbacks import *
3
- from reflectorch.ml.trainers import *
4
- from reflectorch.ml.loggers import *
5
- from reflectorch.ml.schedulers import *
6
- from reflectorch.ml.dataloaders import *
7
-
8
- __all__ = [
9
- 'Trainer',
10
- 'TrainerCallback',
11
- 'DataLoader',
12
- 'PeriodicTrainerCallback',
13
- 'SaveBestModel',
14
- 'LogLosses',
15
- 'Logger',
16
- 'Loggers',
17
- 'PrintLogger',
18
- 'TensorBoardLogger',
19
- 'ScheduleBatchSize',
20
- 'ScheduleLR',
21
- 'StepLR',
22
- 'CyclicLR',
23
- 'LogCyclicLR',
24
- 'ReduceLROnPlateau',
25
- 'OneCycleLR',
26
- 'CosineAnnealingWithWarmup',
27
- 'ReflectivityDataLoader',
28
- 'MultilayerDataLoader',
29
- 'RealTimeSimTrainer',
30
- 'DenoisingAETrainer',
31
- 'PointEstimatorTrainer',
32
- ]
1
+ from reflectorch.ml.basic_trainer import *
2
+ from reflectorch.ml.callbacks import *
3
+ from reflectorch.ml.trainers import *
4
+ from reflectorch.ml.loggers import *
5
+ from reflectorch.ml.schedulers import *
6
+ from reflectorch.ml.dataloaders import *
7
+
8
+ __all__ = [
9
+ 'Trainer',
10
+ 'TrainerCallback',
11
+ 'DataLoader',
12
+ 'PeriodicTrainerCallback',
13
+ 'SaveBestModel',
14
+ 'LogLosses',
15
+ 'Logger',
16
+ 'Loggers',
17
+ 'PrintLogger',
18
+ 'TensorBoardLogger',
19
+ 'ScheduleBatchSize',
20
+ 'ScheduleLR',
21
+ 'StepLR',
22
+ 'CyclicLR',
23
+ 'LogCyclicLR',
24
+ 'ReduceLROnPlateau',
25
+ 'OneCycleLR',
26
+ 'CosineAnnealingWithWarmup',
27
+ 'ReflectivityDataLoader',
28
+ 'MultilayerDataLoader',
29
+ 'RealTimeSimTrainer',
30
+ 'DenoisingAETrainer',
31
+ 'PointEstimatorTrainer',
32
+ ]