reflectorch 1.2.1__py3-none-any.whl → 1.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of reflectorch might be problematic. Click here for more details.

Files changed (37) hide show
  1. reflectorch/data_generation/__init__.py +2 -0
  2. reflectorch/data_generation/dataset.py +27 -7
  3. reflectorch/data_generation/noise.py +115 -9
  4. reflectorch/data_generation/priors/parametric_models.py +90 -15
  5. reflectorch/data_generation/priors/parametric_subpriors.py +28 -7
  6. reflectorch/data_generation/priors/sampler_strategies.py +67 -3
  7. reflectorch/data_generation/q_generator.py +31 -11
  8. reflectorch/data_generation/reflectivity/__init__.py +53 -11
  9. reflectorch/data_generation/reflectivity/kinematical.py +4 -5
  10. reflectorch/data_generation/reflectivity/smearing.py +25 -10
  11. reflectorch/data_generation/reflectivity/smearing_pointwise.py +110 -0
  12. reflectorch/data_generation/smearing.py +42 -11
  13. reflectorch/data_generation/utils.py +92 -18
  14. reflectorch/extensions/refnx/refnx_conversion.py +77 -0
  15. reflectorch/inference/inference_model.py +216 -103
  16. reflectorch/inference/plotting.py +98 -0
  17. reflectorch/inference/scipy_fitter.py +84 -7
  18. reflectorch/ml/__init__.py +2 -0
  19. reflectorch/ml/basic_trainer.py +18 -6
  20. reflectorch/ml/callbacks.py +5 -4
  21. reflectorch/ml/loggers.py +25 -0
  22. reflectorch/ml/schedulers.py +116 -0
  23. reflectorch/ml/trainers.py +122 -23
  24. reflectorch/models/__init__.py +1 -1
  25. reflectorch/models/encoders/__init__.py +0 -2
  26. reflectorch/models/encoders/conv_encoder.py +54 -40
  27. reflectorch/models/encoders/fno.py +23 -16
  28. reflectorch/models/networks/__init__.py +2 -0
  29. reflectorch/models/networks/mlp_networks.py +324 -152
  30. reflectorch/models/networks/residual_net.py +31 -5
  31. reflectorch/runs/train.py +0 -1
  32. reflectorch/runs/utils.py +43 -9
  33. {reflectorch-1.2.1.dist-info → reflectorch-1.3.0.dist-info}/METADATA +19 -17
  34. {reflectorch-1.2.1.dist-info → reflectorch-1.3.0.dist-info}/RECORD +37 -34
  35. {reflectorch-1.2.1.dist-info → reflectorch-1.3.0.dist-info}/WHEEL +1 -1
  36. {reflectorch-1.2.1.dist-info → reflectorch-1.3.0.dist-info/licenses}/LICENSE.txt +0 -0
  37. {reflectorch-1.2.1.dist-info → reflectorch-1.3.0.dist-info}/top_level.txt +0 -0
@@ -50,6 +50,8 @@ class ConstantQ(QGenerator):
50
50
  q = q[1:]
51
51
  else:
52
52
  q = q[:-1]
53
+ self.q_min = q.min().item()
54
+ self.q_max = q.max().item()
53
55
  self.q = q
54
56
 
55
57
  def get_batch(self, batch_size: int, context: dict = None) -> Tensor:
@@ -63,14 +65,26 @@ class ConstantQ(QGenerator):
63
65
  """
64
66
  return self.q.clone()[None].expand(batch_size, self.q.shape[0])
65
67
 
68
+ def scale_q(self, q):
69
+ """Scales the q values to the range [-1, 1].
70
+
71
+ Args:
72
+ q (Tensor): unscaled q values
73
+
74
+ Returns:
75
+ Tensor: scaled q values
76
+ """
77
+ scaled_q_01 = (q - self.q_min) / (self.q_max - self.q_min)
78
+ return 2.0 * (scaled_q_01 - 0.5)
79
+
66
80
 
67
81
  class VariableQ(QGenerator):
68
82
  """Q generator for reflectivity curves with variable discretization
69
83
 
70
84
  Args:
71
- q_min_range (list, optional): the range for sampling the minimum q value of the curves, *q_min*. Defaults to [0.01, 0.03].
72
- q_max_range (list, optional): the range for sampling the maximum q value of the curves, *q_max*. Defaults to [0.1, 0.5].
73
- n_q_range (list, optional): the range for the number of points in the curves (equidistantly sampled between *q_min* and *q_max*,
85
+ q_min_range (list, optional): the range for sampling the minimum q value of the curves, q_min. Defaults to [0.01, 0.03].
86
+ q_max_range (list, optional): the range for sampling the maximum q value of the curves, q_max. Defaults to [0.1, 0.5].
87
+ n_q_range (list, optional): the range for the number of points in the curves (equidistantly sampled between q_min and q_max,
74
88
  the number of points varies between batches but is constant within a batch). Defaults to [64, 256].
75
89
  device (optional): the Pytorch device. Defaults to DEFAULT_DEVICE.
76
90
  dtype (optional): the Pytorch data type. Defaults to DEFAULT_DTYPE.
@@ -80,12 +94,14 @@ class VariableQ(QGenerator):
80
94
  q_min_range: Tuple[float, float] = (0.01, 0.03),
81
95
  q_max_range: Tuple[float, float] = (0.1, 0.5),
82
96
  n_q_range: Tuple[int, int] = (64, 256),
97
+ mode: str = 'equidistant',
83
98
  device=DEFAULT_DEVICE,
84
99
  dtype=DEFAULT_DTYPE,
85
100
  ):
86
101
  self.q_min_range = q_min_range
87
102
  self.q_max_range = q_max_range
88
103
  self.n_q_range = n_q_range
104
+ self.mode = mode
89
105
  self.device = device
90
106
  self.dtype = dtype
91
107
 
@@ -98,14 +114,18 @@ class VariableQ(QGenerator):
98
114
  Returns:
99
115
  Tensor: generated batch of q values
100
116
  """
101
- q_min = np.random.uniform(*self.q_min_range, batch_size)
102
- q_max = np.random.uniform(*self.q_max_range, batch_size)
103
- if self.n_q_range[0] == self.n_q_range[1]:
104
- n_q = self.n_q_range[0]
105
- else:
106
- n_q = np.random.randint(self.n_q_range[0], self.n_q_range[1] + 1)
107
-
108
- q = torch.from_numpy(np.linspace(q_min, q_max, n_q).T).to(self.device).to(self.dtype)
117
+
118
+ q_min = torch.rand(batch_size, device=self.device, dtype=self.dtype) * (self.q_min_range[1] - self.q_min_range[0]) + self.q_min_range[0]
119
+ q_max = torch.rand(batch_size, device=self.device, dtype=self.dtype) * (self.q_max_range[1] - self.q_max_range[0]) + self.q_max_range[0]
120
+
121
+ n_q = torch.randint(self.n_q_range[0], self.n_q_range[1] + 1, (1,), device=self.device).item()
122
+
123
+ if self.mode == 'equidistant':
124
+ q = torch.linspace(0, 1, n_q, device=self.device, dtype=self.dtype)
125
+ elif self.mode == 'random':
126
+ q = torch.rand(n_q, device=self.device, dtype=self.dtype).sort().values
127
+
128
+ q = q_min[:, None] + q * (q_max - q_min)[:, None]
109
129
 
110
130
  return q
111
131
 
@@ -10,6 +10,7 @@ from reflectorch.data_generation.reflectivity.numpy_implementations import (
10
10
  abeles_np,
11
11
  )
12
12
  from reflectorch.data_generation.reflectivity.smearing import abeles_constant_smearing
13
+ from reflectorch.data_generation.reflectivity.smearing_pointwise import abeles_pointwise_smearing
13
14
  from reflectorch.data_generation.reflectivity.kinematical import kinematical_approximation
14
15
 
15
16
 
@@ -20,9 +21,15 @@ def reflectivity(
20
21
  sld: Tensor,
21
22
  dq: Tensor = None,
22
23
  gauss_num: int = 51,
23
- constant_dq: bool = True,
24
+ constant_dq: bool = False,
24
25
  log: bool = False,
25
- abeles_func=None,
26
+ q_shift: Tensor = 0.0,
27
+ r_scale: Tensor = 1.0,
28
+ background: Tensor = 0.0,
29
+ solvent_vf = None,
30
+ solvent_mode = 'fronting',
31
+ abeles_func = None,
32
+ **abeles_kwargs
26
33
  ):
27
34
  """Function which computes the reflectivity curves from thin film parameters.
28
35
  By default it uses the fast implementation of the Abeles matrix formalism.
@@ -37,24 +44,59 @@ def reflectivity(
37
44
  Either dq if ``constant_dq`` is ``True`` or dq/q if ``constant_dq`` is ``False``. Defaults to None.
38
45
  gauss_num (int, optional): the number of gaussians for curve smearing. Defaults to 51.
39
46
  constant_dq (bool, optional): if ``True`` the smearing is constant (constant dq at each point in the curve)
40
- otherwise the smearing is linear (constant dq/q at each point in the curve). Defaults to True.
47
+ otherwise the smearing is linear (constant dq/q at each point in the curve). Defaults to False.
41
48
  log (bool, optional): if True the base 10 logarithm of the reflectivity curves is returned. Defaults to False.
49
+ q_shift (float or Tensor, optional): misalignment in q.
50
+ r_scale (float or Tensor, optional): normalization factor (scales reflectivity).
51
+ background (float or Tensor, optional): background intensity.
42
52
  abeles_func (Callable, optional): a function implementing the simulation of the reflectivity curves, if different than the default Abeles matrix implementation ('abeles'). Defaults to None.
43
-
53
+ abeles_kwargs: Additional arguments specific to the chosen `abeles_func`.
44
54
  Returns:
45
- Tensor: tensor containing the simulated reflectivity curves with shape [batch_size, n_points]
55
+ Tensor: the computed reflectivity curves
46
56
  """
47
57
  abeles_func = abeles_func or abeles
48
- q = torch.atleast_2d(q)
58
+ q = torch.atleast_2d(q) + q_shift
59
+ q = torch.clamp(q, min=0.0)
60
+
61
+ if solvent_vf is not None:
62
+ num_layers = thickness.shape[-1]
63
+ if solvent_mode == 'fronting':
64
+ assert sld.shape[-1] == num_layers + 2
65
+ assert solvent_vf.shape[-1] == num_layers
66
+ solvent_sld = sld[..., [0]]
67
+ idx = slice(1, num_layers)
68
+ sld[..., idx] = solvent_vf * solvent_sld + (1.0 - solvent_vf) * sld[..., idx]
69
+ elif solvent_mode == 'backing':
70
+ solvent_sld = sld[..., [-1]]
71
+ idx = slice(1, num_layers) if sld.shape[-1] == num_layers + 2 else slice(0, num_layers)
72
+ sld[..., idx] = solvent_vf * solvent_sld + (1.0 - solvent_vf) * sld[..., idx]
73
+ else:
74
+ raise NotImplementedError
49
75
 
50
76
  if dq is None:
51
- reflectivity_curves = abeles_func(q, thickness, roughness, sld)
77
+ reflectivity_curves = abeles_func(q, thickness, roughness, sld, **abeles_kwargs)
52
78
  else:
53
- reflectivity_curves = abeles_constant_smearing(
54
- q, thickness, roughness, sld,
55
- dq=dq, gauss_num=gauss_num, constant_dq=constant_dq, abeles_func=abeles_func
56
- )
79
+ if dq.shape[-1] > 1:
80
+ reflectivity_curves = abeles_pointwise_smearing(
81
+ q=q, dq=dq, thickness=thickness, roughness=roughness, sld=sld,
82
+ abeles_func=abeles_func, gauss_num=gauss_num,
83
+ **abeles_kwargs,
84
+ )
85
+ else:
86
+ reflectivity_curves = abeles_constant_smearing(
87
+ q, thickness, roughness, sld,
88
+ dq=dq, gauss_num=gauss_num, constant_dq=constant_dq, abeles_func=abeles_func,
89
+ **abeles_kwargs,
90
+ )
91
+
92
+ if isinstance(r_scale, Tensor):
93
+ r_scale = r_scale.view(-1, *[1] * (reflectivity_curves.dim() - 1))
94
+ if isinstance(background, Tensor):
95
+ background = background.view(-1, *[1] * (reflectivity_curves.dim() - 1))
96
+
97
+ reflectivity_curves = reflectivity_curves * r_scale + background
57
98
 
58
99
  if log:
59
100
  reflectivity_curves = torch.log10(reflectivity_curves)
101
+
60
102
  return reflectivity_curves
@@ -51,7 +51,7 @@ def kinematical_approximation(
51
51
 
52
52
  substrate_sld = sld[:, -1:]
53
53
 
54
- rf = _get_resnel_reflectivity(q, substrate_sld[:, None])
54
+ rf = _get_fresnel_reflectivity(q, substrate_sld[:, None])
55
55
 
56
56
  r = torch.clamp_max_(r * rf / substrate_sld.real ** 2, 1.)
57
57
 
@@ -61,12 +61,11 @@ def kinematical_approximation(
61
61
  return r
62
62
 
63
63
 
64
- def _get_resnel_reflectivity(q, substrate_slds):
65
- _RE_CONST = 0.28174103675406496
64
+ def _get_fresnel_reflectivity(q, substrate_slds):
65
+ _RE_CONST = 0.28174103675406496 # 2/sqrt(16*pi)
66
66
 
67
67
  q_c = torch.sqrt(substrate_slds + 0j) / _RE_CONST * 2
68
68
  q_prime = torch.sqrt(q ** 2 - q_c ** 2 + 0j)
69
69
  r_f = ((q - q_prime) / (q + q_prime)).abs().float() ** 2
70
70
 
71
- return r_f.squeeze(-1)
72
-
71
+ return r_f.squeeze(-1)
@@ -14,26 +14,41 @@ def abeles_constant_smearing(
14
14
  roughness: Tensor,
15
15
  sld: Tensor,
16
16
  dq: Tensor = None,
17
- gauss_num: int = 51,
18
- constant_dq: bool = True,
17
+ gauss_num: int = 31,
18
+ constant_dq: bool = False,
19
19
  abeles_func=None,
20
+ **abeles_kwargs
20
21
  ):
21
22
  abeles_func = abeles_func or abeles
23
+
24
+ if dq.dtype != thickness.dtype:
25
+ q = q.to(thickness)
26
+
27
+ if dq.dtype != thickness.dtype:
28
+ dq = dq.to(thickness)
29
+
30
+ if q.shape[0] == 1:
31
+ q = q.repeat(thickness.shape[0], 1)
32
+
22
33
  q_lin = _get_q_axes(q, dq, gauss_num, constant_dq=constant_dq)
23
34
  kernels = _get_t_gauss_kernels(dq, gauss_num)
24
-
25
- curves = abeles_func(q_lin, thickness, roughness, sld)
35
+
36
+ curves = abeles_func(q_lin, thickness, roughness, sld, **abeles_kwargs)
26
37
 
27
38
  padding = (kernels.shape[-1] - 1) // 2
39
+ padded_curves = pad(curves, (padding, padding), 'reflect')
40
+
28
41
  smeared_curves = conv1d(
29
- pad(curves[None], (padding, padding), 'reflect'), kernels[:, None], groups=kernels.shape[0],
30
- )[0]
42
+ padded_curves, kernels[:, None], groups=kernels.shape[0],
43
+ )
31
44
 
32
45
  if q.shape[0] != smeared_curves.shape[0]:
33
- q = q.expand(smeared_curves.shape[0], *q.shape[1:])
34
-
46
+ repeat_factor = smeared_curves.shape[0] // q.shape[0]
47
+ q = q.repeat(repeat_factor, 1)
48
+ q_lin = q_lin.repeat(repeat_factor, 1)
49
+
35
50
  smeared_curves = _batch_linear_interp1d(q_lin, smeared_curves, q)
36
-
51
+
37
52
  return smeared_curves
38
53
 
39
54
 
@@ -55,7 +70,7 @@ def _get_t_gauss_kernels(resolutions: Tensor, gaussnum: int = 51):
55
70
  return gauss_y
56
71
 
57
72
 
58
- def _get_q_axes(q: Tensor, resolutions: Tensor, gaussnum: int = 51, constant_dq: bool = True):
73
+ def _get_q_axes(q: Tensor, resolutions: Tensor, gaussnum: int = 51, constant_dq: bool = False):
59
74
  if constant_dq:
60
75
  return _get_q_axes_for_constant_dq(q, resolutions, gaussnum)
61
76
  else:
@@ -0,0 +1,110 @@
1
+ import torch
2
+ import scipy
3
+ import numpy as np
4
+ from functools import lru_cache
5
+ from typing import Tuple
6
+
7
+ from reflectorch.data_generation.reflectivity.abeles import abeles
8
+
9
+ #Pytorch version based on the JAX implementation of pointwise smearing in the refnx package.
10
+
11
+ @lru_cache(maxsize=128)
12
+ def gauss_legendre(n: int) -> Tuple[torch.Tensor, torch.Tensor]:
13
+ """
14
+ Calculate Gaussian quadrature abscissae and weights.
15
+
16
+ Args:
17
+ n (int): Gaussian quadrature order.
18
+
19
+ Returns:
20
+ Tuple[torch.Tensor, torch.Tensor]: The abscissae and weights for Gauss-Legendre integration.
21
+ """
22
+ return scipy.special.p_roots(n)
23
+
24
+ def gauss(x: torch.Tensor) -> torch.Tensor:
25
+ """
26
+ Calculate the Gaussian function.
27
+
28
+ Args:
29
+ x (torch.Tensor): Input tensor.
30
+
31
+ Returns:
32
+ torch.Tensor: Output tensor after applying the Gaussian function.
33
+ """
34
+ return torch.exp(-0.5 * x * x)
35
+
36
+ def abeles_pointwise_smearing(
37
+ q: torch.Tensor,
38
+ dq: torch.Tensor,
39
+ thickness: torch.Tensor,
40
+ roughness: torch.Tensor,
41
+ sld: torch.Tensor,
42
+ gauss_num: int = 17,
43
+ abeles_func=None,
44
+ **abeles_kwargs,
45
+ ) -> torch.Tensor:
46
+ """
47
+ Compute reflectivity with variable smearing using Gaussian quadrature.
48
+
49
+ Args:
50
+ q (torch.Tensor): The momentum transfer (q) values.
51
+ dq (torch.Tensor): The resolution for curve smearing.
52
+ thickness (torch.Tensor): The layer thicknesses.
53
+ roughness (torch.Tensor): The interlayer roughnesses.
54
+ sld (torch.Tensor): The SLDs of the layers.
55
+ sld_magnetic (torch.Tensor, optional): The magnetic SLDs of the layers.
56
+ magnetization_angle (torch.Tensor, optional): The magnetization angles.
57
+ polarizer_eff (torch.Tensor, optional): The polarizer efficiency.
58
+ analyzer_eff (torch.Tensor, optional): The analyzer efficiency.
59
+ abeles_func (Callable, optional): A function implementing the simulation of the reflectivity curves.
60
+ gauss_num (int, optional): Gaussian quadrature order. Defaults to 17.
61
+
62
+ Returns:
63
+ torch.Tensor: The computed reflectivity curves.
64
+ """
65
+ abeles_func = abeles_func or abeles
66
+
67
+ if q.shape[0] == 1:
68
+ q = q.repeat(thickness.shape[0], 1)
69
+
70
+ _FWHM = 2 * np.sqrt(2 * np.log(2.0))
71
+ _INTLIMIT = 3.5
72
+
73
+ bs = q.shape[0]
74
+ nq = q.shape[-1]
75
+ device = q.device
76
+
77
+ quad_order = gauss_num
78
+ abscissa, weights = gauss_legendre(quad_order)
79
+ abscissa = torch.tensor(abscissa)[None, :, None].to(device)
80
+ weights = torch.tensor(weights)[None, :, None].to(device)
81
+ prefactor = 1.0 / np.sqrt(2 * np.pi)
82
+
83
+ gaussvals = prefactor * gauss(abscissa * _INTLIMIT)
84
+
85
+ va = q[:, None, :] - _INTLIMIT * dq[:, None, :] / _FWHM
86
+ vb = q[:, None, :] + _INTLIMIT * dq[:, None, :] / _FWHM
87
+
88
+ qvals_for_res_0 = (abscissa * (vb - va) + vb + va) / 2
89
+ qvals_for_res = qvals_for_res_0.reshape(bs, -1)
90
+
91
+ refl_curves = abeles_func(
92
+ q=qvals_for_res,
93
+ thickness=thickness,
94
+ roughness=roughness,
95
+ sld=sld,
96
+ **abeles_kwargs
97
+ )
98
+
99
+ # Handle multiple channels
100
+ if refl_curves.dim() == 3:
101
+ n_channels = refl_curves.shape[1]
102
+ refl_curves = refl_curves.reshape(bs, n_channels, quad_order, nq)
103
+ refl_curves = refl_curves * gaussvals.unsqueeze(1) * weights.unsqueeze(1)
104
+ refl_curves = torch.sum(refl_curves, dim=2) * _INTLIMIT
105
+ else:
106
+ refl_curves = refl_curves.reshape(bs, quad_order, nq)
107
+ refl_curves = refl_curves * gaussvals * weights
108
+ refl_curves = torch.sum(refl_curves, dim=1) * _INTLIMIT
109
+
110
+ return refl_curves
@@ -9,15 +9,15 @@ class Smearing(object):
9
9
  The intensity at a q point will be the average of the intensities of neighbouring q points, weighted by a gaussian profile.
10
10
 
11
11
  Args:
12
- sigma_range (tuple, optional): the range for sampling the resolutions. Defaults to (1e-4, 5e-3).
12
+ sigma_range (tuple, optional): the range for sampling the resolutions. Defaults to (0.01, 0.1).
13
13
  constant_dq (bool, optional): if ``True`` the smearing is constant (the resolution is given by the constant dq at each point in the curve)
14
14
  otherwise the smearing is linear (the resolution is given by the constant dq/q at each point in the curve). Defaults to True.
15
15
  gauss_num (int, optional): the number of interpolating gaussian profiles. Defaults to 31.
16
16
  share_smeared (float, optional): the share of curves in the batch for which the resolution smearing is applied. Defaults to 0.2.
17
17
  """
18
18
  def __init__(self,
19
- sigma_range: tuple = (1e-4, 5e-3),
20
- constant_dq: bool = True,
19
+ sigma_range: tuple = (0.01, 0.1),
20
+ constant_dq: bool = False,
21
21
  gauss_num: int = 31,
22
22
  share_smeared: float = 0.2,
23
23
  ):
@@ -38,31 +38,62 @@ class Smearing(object):
38
38
  indices = torch.zeros(batch_size, device=device, dtype=torch.bool)
39
39
  indices[torch.randperm(batch_size, device=device)[:num_smeared]] = True
40
40
  return dq, indices
41
+
42
+ def scale_resolutions(self, resolutions: Tensor) -> Tensor:
43
+ """Scales the q-resolution values to [-1,1] range using the internal sigma range"""
44
+ sigma_min = 0.0 if self.share_smeared != 1.0 else self.sigma_min
45
+ return 2 * (resolutions - sigma_min) / (self.sigma_max - sigma_min) - 1
46
+
47
+ def get_curves(self, q_values: Tensor, params: BasicParams, refl_kwargs:dict = None):
48
+ refl_kwargs = refl_kwargs or {}
41
49
 
42
- def get_curves(self, q_values: Tensor, params: BasicParams):
43
50
  dq, indices = self.generate_resolutions(params.batch_size, device=params.device, dtype=params.dtype)
51
+ q_resolutions = torch.zeros(q_values.shape[0], 1, dtype=q_values.dtype, device=q_values.device)
44
52
 
45
53
  if dq is None:
46
- return params.reflectivity(q_values, log=False)
47
-
48
- curves = torch.empty(params.batch_size, q_values.shape[-1], device=params.device, dtype=params.dtype)
54
+ return params.reflectivity(q_values, **refl_kwargs), q_resolutions
55
+
56
+ refl_kwargs_not_smeared = {}
57
+ refl_kwargs_smeared = {}
58
+ for key, value in refl_kwargs.items():
59
+ if isinstance(value, torch.Tensor) and value.shape[0] == params.batch_size:
60
+ refl_kwargs_not_smeared[key] = value[~indices]
61
+ refl_kwargs_smeared[key] = value[indices]
62
+ else:
63
+ refl_kwargs_not_smeared[key] = value
64
+ refl_kwargs_smeared[key] = value
49
65
 
66
+ # Compute unsmeared reflectivity
50
67
  if (~indices).sum().item():
51
68
  if q_values.dim() == 2 and q_values.shape[0] > 1:
52
69
  q = q_values[~indices]
53
70
  else:
54
71
  q = q_values
55
72
 
56
- curves[~indices] = params[~indices].reflectivity(q, log=False)
73
+ reflectivity_not_smeared = params[~indices].reflectivity(q, **refl_kwargs_not_smeared)
74
+ else:
75
+ reflectivity_not_smeared = None
57
76
 
77
+ # Compute smeared reflectivity
58
78
  if indices.sum().item():
59
79
  if q_values.dim() == 2 and q_values.shape[0] > 1:
60
80
  q = q_values[indices]
61
81
  else:
62
82
  q = q_values
63
83
 
64
- curves[indices] = params[indices].reflectivity(
65
- q, dq=dq, constant_dq=self.constant_dq, log=False, gauss_num=self.gauss_num
84
+ reflectivity_smeared = params[indices].reflectivity(
85
+ q, dq=dq, constant_dq=self.constant_dq, gauss_num=self.gauss_num, **refl_kwargs_smeared
66
86
  )
87
+ else:
88
+ reflectivity_smeared = None
89
+
90
+ curves = torch.empty(params.batch_size, q_values.shape[-1], device=params.device, dtype=params.dtype)
91
+
92
+ if (~indices).sum().item():
93
+ curves[~indices] = reflectivity_not_smeared
94
+
95
+ curves[indices] = reflectivity_smeared
96
+
97
+ q_resolutions[indices] = dq
67
98
 
68
- return curves
99
+ return curves, q_resolutions
@@ -57,7 +57,7 @@ def get_reversed_params(thicknesses: Tensor, roughnesses: Tensor, slds: Tensor):
57
57
  return reversed_params
58
58
 
59
59
 
60
- def get_density_profiles(
60
+ def get_density_profiles_sld(
61
61
  thicknesses: Tensor,
62
62
  roughnesses: Tensor,
63
63
  slds: Tensor,
@@ -120,29 +120,103 @@ def get_erf(z, z0, sigma, amp):
120
120
  def get_gauss(z, z0, sigma, amp):
121
121
  return amp / (sigma * sqrt(2 * pi)) * torch.exp(- (z - z0) ** 2 / 2 / sigma ** 2)
122
122
 
123
+ def get_density_profiles(
124
+ thicknesses: torch.Tensor,
125
+ roughnesses: torch.Tensor,
126
+ slds: torch.Tensor,
127
+ ambient_sld: torch.Tensor = None,
128
+ z_axis: torch.Tensor = None,
129
+ num: int = 1000,
130
+ padding_left: float = 0.2,
131
+ padding_right: float = 1.1,
132
+ ):
133
+ """
134
+ Args:
135
+ thicknesses (Tensor): finite layer thicknesses.
136
+ roughnesses (Tensor): interface roughnesses for all transitions (ambient→layer1 ... layerN→substrate).
137
+ slds (Tensor): SLDs for the finite layers + substrate.
138
+ ambient_sld (Tensor, optional): SLD for the top ambient. Defaults to 0.0 if None.
139
+ z_axis (Tensor, optional): a custom depth axis. If None, a linear axis is generated.
140
+ num (int): number of points in the generated z-axis (if z_axis is None).
141
+ padding_left (float): factor to extend the negative (above the surface) portion of z-axis.
142
+ padding_right (float): factor to extend the positive (into the sample) portion of z-axis.
143
+
144
+ Returns:
145
+ (z_axis, profile, d_profile)
146
+ z_axis: 1D Tensor of shape (num, ) with the depth coordinates.
147
+ profile: 2D Tensor of shape (batch_size, num) giving the SLD at each depth.
148
+ d_profile: 2D Tensor of shape (batch_size, num) giving d(SLD)/dz at each depth.
149
+ """
150
+
151
+ bs, n = thicknesses.shape
152
+ assert roughnesses.shape == (bs, n + 1), (
153
+ f"Roughnesses must be (batch_size, num_layers+1). Found {roughnesses.shape} instead."
154
+ )
155
+ assert slds.shape == (bs, n + 1), (
156
+ f"SLDs must be (batch_size, num_layers+1). Found {slds.shape} instead."
157
+ )
158
+ assert torch.all(thicknesses >= 0), "Negative thickness encountered."
159
+ assert torch.all(roughnesses >= 0), "Negative roughness encountered."
160
+
161
+ if ambient_sld is None:
162
+ ambient_sld = torch.zeros((bs, 1), device=thicknesses.device)
163
+ else:
164
+ if ambient_sld.ndim == 1:
165
+ ambient_sld = ambient_sld.unsqueeze(-1)
166
+
167
+ slds_all = torch.cat([ambient_sld, slds], dim=-1) # new dimension: n+2
168
+ d_rhos = torch.diff(slds_all, dim=-1) # (bs, n+1)
169
+
170
+ interfaces = torch.cat([
171
+ torch.zeros((bs, 1), device=thicknesses.device), # z=0 for ambient→layer1
172
+ thicknesses
173
+ ], dim=-1).cumsum(dim=-1) # now shape => (bs, n+1)
174
+
175
+ total_thickness = interfaces[..., -1].max()
176
+ if z_axis is None:
177
+ z_axis = torch.linspace(
178
+ -padding_left * total_thickness,
179
+ padding_right * total_thickness,
180
+ num,
181
+ device=thicknesses.device
182
+ ) # shape => (num,)
183
+ if z_axis.ndim == 1:
184
+ z_axis = z_axis.unsqueeze(0) # shape => (1, num)
185
+
186
+ z_b = z_axis.repeat(bs, 1).unsqueeze(1) # (bs, 1, num)
187
+ interfaces_b = interfaces.unsqueeze(-1) # (bs, n+1, 1)
188
+ sigmas_b = (roughnesses * sqrt(2)).unsqueeze(-1) # (bs, n+1, 1)
189
+ d_rhos_b = d_rhos.unsqueeze(-1) # (bs, n+1, 1)
190
+
191
+ profile = get_erf(z_b, interfaces_b, sigmas_b, d_rhos_b).sum(dim=1) # (bs, num)
192
+ if ambient_sld is not None:
193
+ profile = profile + ambient_sld
194
+
195
+ d_profile = get_gauss(z_b, interfaces_b, sigmas_b, d_rhos_b).sum(dim=1) # (bs, num)
196
+
197
+ return z_axis.squeeze(0), profile, d_profile
123
198
 
124
199
  def get_param_labels(
125
200
  num_layers: int, *,
126
201
  thickness_name: str = 'Thickness',
127
202
  roughness_name: str = 'Roughness',
128
203
  sld_name: str = 'SLD',
129
- substrate_name: str = 'sub',
130
- ) -> List[str]:
131
- thickness_labels = [f'{thickness_name} L{num_layers - i}' for i in range(num_layers)]
132
- roughness_labels = [f'{roughness_name} L{num_layers - i}' for i in range(num_layers)] + [f'{roughness_name} {substrate_name}']
133
- sld_labels = [f'{sld_name} L{num_layers - i}' for i in range(num_layers)] + [f'{sld_name} {substrate_name}']
134
- return thickness_labels + roughness_labels + sld_labels
135
-
136
- def get_param_labels_absorption_model(
137
- num_layers: int, *,
138
- thickness_name: str = 'Thickness',
139
- roughness_name: str = 'Roughness',
140
- real_sld_name: str = 'SLD real',
141
204
  imag_sld_name: str = 'SLD imag',
142
205
  substrate_name: str = 'sub',
206
+ parameterization_type: str = 'standard',
207
+ number_top_to_bottom: bool = False,
143
208
  ) -> List[str]:
144
- thickness_labels = [f'{thickness_name} L{num_layers - i}' for i in range(num_layers)]
145
- roughness_labels = [f'{roughness_name} L{num_layers - i}' for i in range(num_layers)] + [f'{roughness_name} {substrate_name}']
146
- real_sld_labels = [f'{real_sld_name} L{num_layers - i}' for i in range(num_layers)] + [f'{real_sld_name} {substrate_name}']
147
- imag_sld_labels = [f'{imag_sld_name} L{num_layers - i}' for i in range(num_layers)] + [f'{imag_sld_name} {substrate_name}']
148
- return thickness_labels + roughness_labels + real_sld_labels + imag_sld_labels
209
+ def pos(i):
210
+ return i + 1 if number_top_to_bottom else num_layers - i
211
+
212
+ thickness_labels = [f'{thickness_name} L{pos(i)}' for i in range(num_layers)]
213
+ roughness_labels = [f'{roughness_name} L{pos(i)}' for i in range(num_layers)] + [f'{roughness_name} {substrate_name}']
214
+ sld_labels = [f'{sld_name} L{pos(i)}' for i in range(num_layers)] + [f'{sld_name} {substrate_name}']
215
+
216
+ all_labels = thickness_labels + roughness_labels + sld_labels
217
+
218
+ if parameterization_type == 'absorption':
219
+ imag_sld_labels = [f'{imag_sld_name} L{pos(i)}' for i in range(num_layers)] + [f'{imag_sld_name} {substrate_name}']
220
+ all_labels = all_labels + imag_sld_labels
221
+
222
+ return all_labels
@@ -0,0 +1,77 @@
1
+ import numpy as np
2
+ from functools import reduce
3
+ from operator import or_
4
+
5
+ from reflectorch.inference.inference_model import EasyInferenceModel
6
+ from reflectorch import BasicParams
7
+
8
+ import refnx
9
+ from refnx.dataset import ReflectDataset, Data1D
10
+ from refnx.analysis import Transform, CurveFitter, Objective, Model, Parameter
11
+ from refnx.reflect import SLD, Slab, ReflectModel
12
+
13
+ def covert_reflectorch_prediction_to_refnx_structure(inference_model: EasyInferenceModel, pred_params_object: BasicParams, prior_bounds: np.array):
14
+ assert inference_model.trainer.loader.prior_sampler.param_model.__class__.__name__ == 'StandardModel'
15
+
16
+ n_layers = inference_model.trainer.loader.prior_sampler.max_num_layers
17
+ init_thicknesses = pred_params_object.thicknesses.squeeze().tolist()
18
+ init_roughnesses = pred_params_object.roughnesses.squeeze().tolist()
19
+ init_slds = pred_params_object.slds.squeeze().tolist()
20
+
21
+ sld_objects = []
22
+
23
+ for sld in init_slds:
24
+ sld_objects.append(SLD(value=sld))
25
+
26
+ layer_objects = [SLD(0)()]
27
+ for i in range(n_layers):
28
+ layer_objects.append(sld_objects[i](init_thicknesses[i], init_roughnesses[i]))
29
+
30
+ layer_objects.append(sld_objects[-1](0, init_roughnesses[-1]))
31
+
32
+ thickness_bounds = prior_bounds[:n_layers]
33
+ roughness_bounds = prior_bounds[n_layers:2*n_layers+1]
34
+ sld_bounds = prior_bounds[2*n_layers+1:]
35
+
36
+ for i, layer in enumerate(layer_objects):
37
+ if i == 0:
38
+ print("Ambient (air)")
39
+ print(80 * '-')
40
+ elif i < n_layers+1:
41
+ layer.thick.setp(bounds=thickness_bounds[i-1], vary=True)
42
+ layer.rough.setp(bounds=roughness_bounds[i-1], vary=True)
43
+ layer.sld.real.setp(bounds=sld_bounds[i-1], vary=True)
44
+
45
+ print(f'Layer {i}')
46
+ print(f'Thickness: value {layer.thick.value}, vary {layer.thick.vary}, bounds {layer.thick.bounds}')
47
+ print(f'Roughness: value {layer.rough.value}, vary {layer.rough.vary}, bounds {layer.rough.bounds}')
48
+ print(f'SLD: value {layer.sld.real.value}, vary {layer.sld.real.vary}, bounds {layer.sld.real.bounds}')
49
+ print(80 * '-')
50
+ else: #substrate
51
+ layer.rough.setp(bounds=roughness_bounds[i-1], vary=True)
52
+ layer.sld.real.setp(bounds=sld_bounds[i-1], vary=True)
53
+
54
+ print(f'Substrate')
55
+ print(f'Thickness: value {layer.thick.value}, vary {layer.thick.vary}, bounds {layer.thick.bounds}')
56
+ print(f'Roughness: value {layer.rough.value}, vary {layer.rough.vary}, bounds {layer.rough.bounds}')
57
+ print(f'SLD: value {layer.sld.real.value}, vary {layer.sld.real.vary}, bounds {layer.sld.real.bounds}')
58
+
59
+ refnx_structure = reduce(or_, layer_objects)
60
+
61
+ return refnx_structure
62
+
63
+
64
+ ###Example usage:
65
+ # refnx_structure = covert_reflectorch_prediction_to_refnx_structure(inference_model, pred_params_object, prior_bounds)
66
+
67
+ # refnx_reflect_model = ReflectModel(refnx_structure, bkg=1e-10, dq=0.0)
68
+ # refnx_reflect_model.scale.setp(bounds=(0.8, 1.2), vary=True)
69
+ # refnx_reflect_model.q_offset.setp(bounds=(-0.01, 0.01), vary=True)
70
+ # refnx_reflect_model.bkg.setp(bounds=(1e-10, 1e-8), vary=True)
71
+
72
+
73
+ # data = Data1D(data=(q_model, exp_curve_interp))
74
+
75
+ # refnx_objective = Objective(refnx_reflect_model, data, transform=Transform("logY"))
76
+ # fitter = CurveFitter(refnx_objective)
77
+ # fitter.fit('least_squares')