reduced-3dgs 1.8.19__cp312-cp312-win_amd64.whl → 1.9.0__cp312-cp312-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of reduced-3dgs might be problematic. Click here for more details.
- reduced_3dgs/diff_gaussian_rasterization/_C.cp312-win_amd64.pyd +0 -0
- reduced_3dgs/importance/diff_gaussian_rasterization/_C.cp312-win_amd64.pyd +0 -0
- reduced_3dgs/importance/trainer.py +52 -2
- reduced_3dgs/simple_knn/_C.cp312-win_amd64.pyd +0 -0
- {reduced_3dgs-1.8.19.dist-info → reduced_3dgs-1.9.0.dist-info}/METADATA +1 -1
- {reduced_3dgs-1.8.19.dist-info → reduced_3dgs-1.9.0.dist-info}/RECORD +9 -9
- {reduced_3dgs-1.8.19.dist-info → reduced_3dgs-1.9.0.dist-info}/WHEEL +0 -0
- {reduced_3dgs-1.8.19.dist-info → reduced_3dgs-1.9.0.dist-info}/licenses/LICENSE.md +0 -0
- {reduced_3dgs-1.8.19.dist-info → reduced_3dgs-1.9.0.dist-info}/top_level.txt +0 -0
|
Binary file
|
|
Binary file
|
|
@@ -75,7 +75,7 @@ def count_render(self: GaussianModel, viewpoint_camera: Camera):
|
|
|
75
75
|
}
|
|
76
76
|
|
|
77
77
|
|
|
78
|
-
def
|
|
78
|
+
def prune_list(model: GaussianModel, dataset: CameraDataset):
|
|
79
79
|
gaussian_count = torch.zeros(model.get_xyz.shape[0], device=model.get_xyz.device, dtype=torch.int)
|
|
80
80
|
opacity_important_score = torch.zeros(model.get_xyz.shape[0], device=model.get_xyz.device, dtype=torch.float)
|
|
81
81
|
T_alpha_important_score = torch.zeros(model.get_xyz.shape[0], device=model.get_xyz.device, dtype=torch.float)
|
|
@@ -84,7 +84,57 @@ def prune_gaussians(model: GaussianModel, dataset: CameraDataset):
|
|
|
84
84
|
gaussian_count += out["gaussians_count"]
|
|
85
85
|
opacity_important_score += out["opacity_important_score"]
|
|
86
86
|
T_alpha_important_score += out["T_alpha_important_score"]
|
|
87
|
-
return
|
|
87
|
+
return gaussian_count, opacity_important_score, T_alpha_important_score
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
# return importance score with adaptive volume measure described in paper
|
|
91
|
+
def calculate_v_imp_score(gaussians: GaussianModel, imp_list, v_pow):
|
|
92
|
+
"""
|
|
93
|
+
:param gaussians: A data structure containing Gaussian components with a get_scaling method.
|
|
94
|
+
:param imp_list: The importance scores for each Gaussian component.
|
|
95
|
+
:param v_pow: The power to which the volume ratios are raised.
|
|
96
|
+
:return: A list of adjusted values (v_list) used for pruning.
|
|
97
|
+
"""
|
|
98
|
+
# Calculate the volume of each Gaussian component
|
|
99
|
+
volume = torch.prod(gaussians.get_scaling, dim=1)
|
|
100
|
+
# Determine the kth_percent_largest value
|
|
101
|
+
index = int(len(volume) * 0.9)
|
|
102
|
+
sorted_volume, _ = torch.sort(volume, descending=True)
|
|
103
|
+
kth_percent_largest = sorted_volume[index]
|
|
104
|
+
# Calculate v_list
|
|
105
|
+
v_list = torch.pow(volume / kth_percent_largest, v_pow)
|
|
106
|
+
v_list = v_list * imp_list
|
|
107
|
+
return v_list
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
def score2mask(percent, import_score: list, threshold=None):
|
|
111
|
+
sorted_tensor, _ = torch.sort(import_score, dim=0)
|
|
112
|
+
index_nth_percentile = int(percent * (sorted_tensor.shape[0] - 1))
|
|
113
|
+
value_nth_percentile = sorted_tensor[index_nth_percentile]
|
|
114
|
+
thr = min(threshold, value_nth_percentile) if threshold is not None else value_nth_percentile
|
|
115
|
+
prune_mask = (import_score <= thr)
|
|
116
|
+
return prune_mask
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
def prune_gaussians(gaussians: GaussianModel, dataset: CameraDataset, prune_type="important_score", prune_percent=0.1, prune_thr=None, v_pow=0.1):
|
|
120
|
+
gaussian_list, opacity_imp_list, T_alpha_imp_list = prune_list(gaussians, dataset)
|
|
121
|
+
match prune_type:
|
|
122
|
+
case "important_score":
|
|
123
|
+
mask = score2mask(prune_percent, opacity_imp_list, prune_thr)
|
|
124
|
+
case "v_important_score":
|
|
125
|
+
v_list = calculate_v_imp_score(gaussians, opacity_imp_list, v_pow)
|
|
126
|
+
mask = score2mask(prune_percent, v_list, prune_thr)
|
|
127
|
+
case "max_v_important_score":
|
|
128
|
+
v_list = opacity_imp_list * torch.max(gaussians.get_scaling, dim=1)[0]
|
|
129
|
+
mask = score2mask(prune_percent, v_list, prune_thr)
|
|
130
|
+
case "count":
|
|
131
|
+
mask = score2mask(prune_percent, gaussian_list, prune_thr)
|
|
132
|
+
case "T_alpha":
|
|
133
|
+
# new importance score defined by doji
|
|
134
|
+
mask = score2mask(prune_percent, T_alpha_imp_list, prune_thr)
|
|
135
|
+
case _:
|
|
136
|
+
raise Exception("Unsupportive prunning method")
|
|
137
|
+
return mask
|
|
88
138
|
|
|
89
139
|
|
|
90
140
|
class ImportancePruner(DensifierWrapper):
|
|
Binary file
|
|
@@ -2,12 +2,12 @@ reduced_3dgs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
|
2
2
|
reduced_3dgs/combinations.py,sha256=FrZLxd3AZlHPSq_WJeEdGWH5zh40rAuV5txxr8HsSPY,7031
|
|
3
3
|
reduced_3dgs/quantize.py,sha256=Y44qHyFdOIqke7NoeqXmyKloS43j-al74ZiNsuZZHbM,2527
|
|
4
4
|
reduced_3dgs/train.py,sha256=jXHdXk05o_ebHjx_VBzcY6fRNn9EdKve6Tf5YC5an0o,9803
|
|
5
|
-
reduced_3dgs/diff_gaussian_rasterization/_C.cp312-win_amd64.pyd,sha256=
|
|
5
|
+
reduced_3dgs/diff_gaussian_rasterization/_C.cp312-win_amd64.pyd,sha256=5Os7BEOlxKniCxHvB-_5MvuKgP8yixMiKkhzvAS_fp0,1640448
|
|
6
6
|
reduced_3dgs/diff_gaussian_rasterization/__init__.py,sha256=oV6JjTc-50MscX4XHeIWSgLr3l8Y25knBIs-0gRbJr4,7932
|
|
7
7
|
reduced_3dgs/importance/__init__.py,sha256=neJsbY5cLikEGBQGdR4MjwCQ5VWVikT1357DwL0EtWU,289
|
|
8
8
|
reduced_3dgs/importance/combinations.py,sha256=Hxl0Syx2PD3l2bDzJ29_b2YdfC3etm3BH7gbteujGSU,1730
|
|
9
|
-
reduced_3dgs/importance/trainer.py,sha256=
|
|
10
|
-
reduced_3dgs/importance/diff_gaussian_rasterization/_C.cp312-win_amd64.pyd,sha256=
|
|
9
|
+
reduced_3dgs/importance/trainer.py,sha256=eYMmvVXFdNGEJ6vrOv8hglM0CGUyo0gTret4rsmIAE4,7717
|
|
10
|
+
reduced_3dgs/importance/diff_gaussian_rasterization/_C.cp312-win_amd64.pyd,sha256=al6Z7zOfq-IhoTwC1VYpTgcg-82Sl3xoTmVr04Fz16s,1320448
|
|
11
11
|
reduced_3dgs/importance/diff_gaussian_rasterization/__init__.py,sha256=Tix8auyXBb_QFQtXrV3sLE9kdnl5zgHH0BbqcFzDp84,12850
|
|
12
12
|
reduced_3dgs/pruning/__init__.py,sha256=E_YxJ9cDV_B6EJbYUBEcuRYMIht_C72rI1VJUXFCLpM,201
|
|
13
13
|
reduced_3dgs/pruning/combinations.py,sha256=UivTfbSMmaWYVi9E4OF-_AZA-WBWniMiX-wKUftezF8,2331
|
|
@@ -20,9 +20,9 @@ reduced_3dgs/quantization/wrapper.py,sha256=cyXqfJgo9b3fS7DYXxOk5LmQudvrEhweOebF
|
|
|
20
20
|
reduced_3dgs/shculling/__init__.py,sha256=nP2BejDCUdCmJNRbg0hfhHREO6jyZXwIcRiw6ttVgqo,149
|
|
21
21
|
reduced_3dgs/shculling/gaussian_model.py,sha256=f8QWaL09vaV9Tcf6Dngjg_Fmk1wTQPAjWhuhI_N02Y8,2877
|
|
22
22
|
reduced_3dgs/shculling/trainer.py,sha256=9hwR77djhZpyf-URhwKHjnLbe0ZAOS-DIw58RzkcHXQ,6369
|
|
23
|
-
reduced_3dgs/simple_knn/_C.cp312-win_amd64.pyd,sha256=
|
|
24
|
-
reduced_3dgs-1.
|
|
25
|
-
reduced_3dgs-1.
|
|
26
|
-
reduced_3dgs-1.
|
|
27
|
-
reduced_3dgs-1.
|
|
28
|
-
reduced_3dgs-1.
|
|
23
|
+
reduced_3dgs/simple_knn/_C.cp312-win_amd64.pyd,sha256=6OTzXT1Qq-1SrJdpslCxK49iPxila7MCYewY7wjps4k,1267712
|
|
24
|
+
reduced_3dgs-1.9.0.dist-info/licenses/LICENSE.md,sha256=LQ4_LAqlncGkg_mQy5ykMAFtQDSPB0eKmIEtBut0yjw,4916
|
|
25
|
+
reduced_3dgs-1.9.0.dist-info/METADATA,sha256=aUf_QT29FqRs9fkUn8fVi2BpHWfdeGYnB9bxA-hYVgQ,13014
|
|
26
|
+
reduced_3dgs-1.9.0.dist-info/WHEEL,sha256=6TCqs2-PEvxKuqw0d1ghd6tAo1nX2NnQFqKrzb5XC4g,101
|
|
27
|
+
reduced_3dgs-1.9.0.dist-info/top_level.txt,sha256=PpU5aT3-baSCdqCtTaZknoB32H93UeKCkYDkRCCZMEI,13
|
|
28
|
+
reduced_3dgs-1.9.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|