reduced-3dgs 1.10.1__cp310-cp310-win_amd64.whl → 1.10.2__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of reduced-3dgs might be problematic. Click here for more details.

@@ -0,0 +1,105 @@
1
+ from gaussian_splatting import GaussianModel
2
+ from gaussian_splatting.dataset import CameraDataset
3
+ from gaussian_splatting.dataset.colmap import colmap_init
4
+ from gaussian_splatting.trainer import AbstractTrainer
5
+ from gaussian_splatting.trainer.extensions import ScaleRegularizeTrainerWrapper
6
+ from reduced_3dgs.quantization import VectorQuantizeTrainerWrapper
7
+ from reduced_3dgs.shculling import VariableSHGaussianModel, SHCullingTrainer
8
+ from reduced_3dgs.pruning import PruningTrainer
9
+ from reduced_3dgs.combinations import PrunerInDensifyTrainer, SHCullingDensificationTrainer, SHCullingPruningTrainer, SHCullingPrunerInDensifyTrainer
10
+ from reduced_3dgs.combinations import CameraTrainableVariableSHGaussianModel, CameraSHCullingTrainer, CameraPruningTrainer
11
+ from reduced_3dgs.combinations import CameraPrunerInDensifyTrainer, CameraSHCullingDensifyTrainer, CameraSHCullingPruningTrainer, CameraSHCullingPruningDensifyTrainer
12
+
13
+
14
+ def prepare_gaussians(sh_degree: int, source: str, device: str, trainable_camera: bool = False, load_ply: str = None) -> GaussianModel:
15
+ if trainable_camera:
16
+ gaussians = CameraTrainableVariableSHGaussianModel(sh_degree).to(device)
17
+ gaussians.load_ply(load_ply) if load_ply else colmap_init(gaussians, source)
18
+ else:
19
+ gaussians = VariableSHGaussianModel(sh_degree).to(device)
20
+ gaussians.load_ply(load_ply) if load_ply else colmap_init(gaussians, source)
21
+ return gaussians
22
+
23
+
24
+ modes = {
25
+ "shculling": SHCullingTrainer,
26
+ "pruning": PruningTrainer,
27
+ "densify-pruning": PrunerInDensifyTrainer,
28
+ "densify-shculling": SHCullingDensificationTrainer,
29
+ "prune-shculling": SHCullingPruningTrainer,
30
+ "densify-prune-shculling": SHCullingPrunerInDensifyTrainer,
31
+ "camera-shculling": CameraSHCullingTrainer,
32
+ "camera-pruning": CameraPruningTrainer,
33
+ "camera-densify-pruning": CameraPrunerInDensifyTrainer,
34
+ "camera-densify-shculling": CameraSHCullingDensifyTrainer,
35
+ "camera-prune-shculling": CameraSHCullingPruningTrainer,
36
+ "camera-densify-prune-shculling": CameraSHCullingPruningDensifyTrainer,
37
+ }
38
+
39
+
40
+ def prepare_quantizer(
41
+ gaussians: GaussianModel,
42
+ scene_extent: float,
43
+ dataset: CameraDataset,
44
+ base_constructor,
45
+ load_quantized: str = None,
46
+
47
+ num_clusters=256,
48
+ num_clusters_rotation_re=None,
49
+ num_clusters_rotation_im=None,
50
+ num_clusters_opacity=None,
51
+ num_clusters_scaling=None,
52
+ num_clusters_features_dc=None,
53
+ num_clusters_features_rest=[],
54
+
55
+ quantize_from_iter=5000,
56
+ quantize_until_iter=30000,
57
+ quantize_interval=1000,
58
+ **configs):
59
+ trainer = VectorQuantizeTrainerWrapper(
60
+ base_constructor(
61
+ gaussians,
62
+ scene_extent=scene_extent,
63
+ dataset=dataset,
64
+ **configs
65
+ ),
66
+
67
+ num_clusters=num_clusters,
68
+ num_clusters_rotation_re=num_clusters_rotation_re,
69
+ num_clusters_rotation_im=num_clusters_rotation_im,
70
+ num_clusters_opacity=num_clusters_opacity,
71
+ num_clusters_scaling=num_clusters_scaling,
72
+ num_clusters_features_dc=num_clusters_features_dc,
73
+ num_clusters_features_rest=num_clusters_features_rest,
74
+
75
+ quantize_from_iter=quantize_from_iter,
76
+ quantize_until_iter=quantize_until_iter,
77
+ quantize_interval=quantize_interval,
78
+ )
79
+ if load_quantized:
80
+ trainer.quantizer.load_quantized(load_quantized)
81
+ return trainer, trainer.quantizer
82
+
83
+
84
+ def prepare_trainer(gaussians: GaussianModel, dataset: CameraDataset, mode: str, with_scale_reg=False, quantize: bool = False, load_quantized: str = None, configs={}) -> AbstractTrainer:
85
+ constructor = modes[mode]
86
+ if with_scale_reg:
87
+ constructor = lambda *args, **kwargs: ScaleRegularizeTrainerWrapper(modes[mode], *args, **kwargs)
88
+ if quantize:
89
+ trainer, quantizer = prepare_quantizer(
90
+ gaussians,
91
+ scene_extent=dataset.scene_extent(),
92
+ dataset=dataset,
93
+ base_constructor=modes[mode],
94
+ load_quantized=load_quantized,
95
+ **configs
96
+ )
97
+ else:
98
+ trainer = constructor(
99
+ gaussians,
100
+ scene_extent=dataset.scene_extent(),
101
+ dataset=dataset,
102
+ **configs
103
+ )
104
+ quantizer = None
105
+ return trainer, quantizer
reduced_3dgs/train.py CHANGED
@@ -1,129 +1,22 @@
1
1
  import os
2
2
  import random
3
3
  import shutil
4
- from typing import List, Tuple
4
+ from typing import List
5
5
  import torch
6
6
  from tqdm import tqdm
7
7
  from gaussian_splatting import GaussianModel
8
8
  from gaussian_splatting.dataset import CameraDataset
9
9
  from gaussian_splatting.utils import psnr
10
- from gaussian_splatting.dataset.colmap import colmap_init
11
10
  from gaussian_splatting.trainer import AbstractTrainer
12
- from gaussian_splatting.trainer.extensions import ScaleRegularizeTrainerWrapper
13
- from gaussian_splatting.train import prepare_dataset, save_cfg_args
14
- from reduced_3dgs.quantization import AbstractQuantizer, VectorQuantizeTrainerWrapper
15
- from reduced_3dgs.shculling import VariableSHGaussianModel, SHCullingTrainer
16
- from reduced_3dgs.pruning import PruningTrainer
17
- from reduced_3dgs.combinations import PrunerInDensifyTrainer, SHCullingDensificationTrainer, SHCullingPruningTrainer, SHCullingPrunerInDensifyTrainer
18
- from reduced_3dgs.combinations import CameraTrainableVariableSHGaussianModel, CameraSHCullingTrainer, CameraPruningTrainer
19
- from reduced_3dgs.combinations import CameraPrunerInDensifyTrainer, CameraSHCullingDensifyTrainer, CameraSHCullingPruningTrainer, CameraSHCullingPruningDensifyTrainer
11
+ from gaussian_splatting.prepare import prepare_dataset
12
+ from gaussian_splatting.train import save_cfg_args
13
+ from reduced_3dgs.quantization import AbstractQuantizer
14
+ from reduced_3dgs.prepare import modes, prepare_gaussians, prepare_trainer
20
15
 
21
16
 
22
- basemodes = {
23
- "shculling": SHCullingTrainer,
24
- "pruning": PruningTrainer,
25
- "densify-pruning": PrunerInDensifyTrainer,
26
- "densify-shculling": SHCullingDensificationTrainer,
27
- "prune-shculling": SHCullingPruningTrainer,
28
- "densify-prune-shculling": SHCullingPrunerInDensifyTrainer,
29
- }
30
- cameramodes = {
31
- "camera-shculling": CameraSHCullingTrainer,
32
- "camera-pruning": CameraPruningTrainer,
33
- "camera-densify-pruning": CameraPrunerInDensifyTrainer,
34
- "camera-densify-shculling": CameraSHCullingDensifyTrainer,
35
- "camera-prune-shculling": CameraSHCullingPruningTrainer,
36
- "camera-densify-prune-shculling": CameraSHCullingPruningDensifyTrainer,
37
- }
38
-
39
-
40
- def prepare_quantizer(
41
- gaussians: GaussianModel,
42
- scene_extent: float,
43
- dataset: CameraDataset,
44
- base_constructor,
45
- load_quantized: str = None,
46
-
47
- num_clusters=256,
48
- num_clusters_rotation_re=None,
49
- num_clusters_rotation_im=None,
50
- num_clusters_opacity=None,
51
- num_clusters_scaling=None,
52
- num_clusters_features_dc=None,
53
- num_clusters_features_rest=[],
54
-
55
- quantize_from_iter=5000,
56
- quantize_until_iter=30000,
57
- quantize_interval=1000,
58
- **configs):
59
- trainer = VectorQuantizeTrainerWrapper(
60
- base_constructor(
61
- gaussians,
62
- scene_extent=scene_extent,
63
- dataset=dataset,
64
- **configs
65
- ),
66
-
67
- num_clusters=num_clusters,
68
- num_clusters_rotation_re=num_clusters_rotation_re,
69
- num_clusters_rotation_im=num_clusters_rotation_im,
70
- num_clusters_opacity=num_clusters_opacity,
71
- num_clusters_scaling=num_clusters_scaling,
72
- num_clusters_features_dc=num_clusters_features_dc,
73
- num_clusters_features_rest=num_clusters_features_rest,
74
-
75
- quantize_from_iter=quantize_from_iter,
76
- quantize_until_iter=quantize_until_iter,
77
- quantize_interval=quantize_interval,
78
- )
79
- if load_quantized:
80
- trainer.quantizer.load_quantized(load_quantized)
81
- return trainer, trainer.quantizer
82
-
83
-
84
- def prepare_gaussians(sh_degree: int, source: str, device: str, trainable_camera: bool = False, load_ply: str = None) -> Tuple[CameraDataset, GaussianModel, AbstractTrainer]:
85
- if trainable_camera:
86
- gaussians = CameraTrainableVariableSHGaussianModel(sh_degree).to(device)
87
- gaussians.load_ply(load_ply) if load_ply else colmap_init(gaussians, source)
88
- else:
89
- gaussians = VariableSHGaussianModel(sh_degree).to(device)
90
- gaussians.load_ply(load_ply) if load_ply else colmap_init(gaussians, source)
91
- return gaussians
92
-
93
-
94
- def prepare_trainer(gaussians: GaussianModel, dataset: CameraDataset, mode: str, with_scale_reg=False, quantize: bool = False, load_quantized: str = None, configs={}) -> AbstractTrainer:
95
- if mode in basemodes:
96
- modes = basemodes
97
- elif mode in cameramodes:
98
- modes = cameramodes
99
- else:
100
- raise ValueError(f"Unknown mode: {mode}")
101
- constructor = modes[mode]
102
- if with_scale_reg:
103
- constructor = lambda *args, **kwargs: ScaleRegularizeTrainerWrapper(modes[mode], *args, **kwargs)
104
- if quantize:
105
- trainer, quantizer = prepare_quantizer(
106
- gaussians,
107
- scene_extent=dataset.scene_extent(),
108
- dataset=dataset,
109
- base_constructor=modes[mode],
110
- load_quantized=load_quantized,
111
- **configs
112
- )
113
- else:
114
- trainer = constructor(
115
- gaussians,
116
- scene_extent=dataset.scene_extent(),
117
- dataset=dataset,
118
- **configs
119
- )
120
- quantizer = None
121
- return trainer, quantizer
122
-
123
-
124
- def prepare_training(sh_degree: int, source: str, device: str, mode: str, load_ply: str = None, load_camera: str = None, load_depth=False, with_scale_reg=False, quantize: bool = False, load_quantized: str = None, configs={}) -> Tuple[CameraDataset, GaussianModel, AbstractTrainer]:
125
- dataset = prepare_dataset(source=source, device=device, trainable_camera=mode in cameramodes, load_camera=load_camera, load_depth=load_depth)
126
- gaussians = prepare_gaussians(sh_degree=sh_degree, source=source, device=device, trainable_camera=mode in cameramodes, load_ply=load_ply)
17
+ def prepare_training(sh_degree: int, source: str, device: str, mode: str, trainable_camera: bool = False, load_ply: str = None, load_camera: str = None, load_depth=False, with_scale_reg=False, quantize: bool = False, load_quantized: str = None, configs={}):
18
+ dataset = prepare_dataset(source=source, device=device, trainable_camera=trainable_camera, load_camera=load_camera, load_depth=load_depth)
19
+ gaussians = prepare_gaussians(sh_degree=sh_degree, source=source, device=device, trainable_camera=trainable_camera, load_ply=load_ply)
127
20
  trainer, quantizer = prepare_trainer(gaussians=gaussians, dataset=dataset, mode=mode, with_scale_reg=with_scale_reg, quantize=quantize, load_quantized=load_quantized, configs=configs)
128
21
  return dataset, gaussians, trainer, quantizer
129
22
 
@@ -166,7 +59,7 @@ def training(dataset: CameraDataset, gaussians: GaussianModel, trainer: Abstract
166
59
 
167
60
 
168
61
  if __name__ == "__main__":
169
- from argparse import ArgumentParser, Namespace
62
+ from argparse import ArgumentParser
170
63
  parser = ArgumentParser()
171
64
  parser.add_argument("--sh_degree", default=3, type=int)
172
65
  parser.add_argument("-s", "--source", required=True, type=str)
@@ -178,7 +71,7 @@ if __name__ == "__main__":
178
71
  parser.add_argument("--no_depth_data", action='store_true')
179
72
  parser.add_argument("--with_scale_reg", action="store_true")
180
73
  parser.add_argument("--load_quantized", default=None, type=str)
181
- parser.add_argument("--mode", choices=list(basemodes.keys()) + list(cameramodes.keys()), default="densify-prune-shculling")
74
+ parser.add_argument("--mode", choices=list(modes), default="densify-prune-shculling")
182
75
  parser.add_argument("--save_iterations", nargs="+", type=int, default=[7000, 30000])
183
76
  parser.add_argument("--device", default="cuda", type=str)
184
77
  parser.add_argument("--empty_cache_every_step", action='store_true')
@@ -189,7 +82,7 @@ if __name__ == "__main__":
189
82
 
190
83
  configs = {o.split("=", 1)[0]: eval(o.split("=", 1)[1]) for o in args.option}
191
84
  dataset, gaussians, trainer, quantizer = prepare_training(
192
- sh_degree=args.sh_degree, source=args.source, device=args.device, mode=args.mode,
85
+ sh_degree=args.sh_degree, source=args.source, device=args.device, mode=args.mode, trainable_camera="camera" in args.mode,
193
86
  load_ply=args.load_ply, load_camera=args.load_camera, load_depth=not args.no_depth_data, with_scale_reg=args.with_scale_reg,
194
87
  quantize=args.quantize, load_quantized=args.load_quantized, configs=configs)
195
88
  dataset.save_cameras(os.path.join(args.destination, "cameras.json"))
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: reduced_3dgs
3
- Version: 1.10.1
3
+ Version: 1.10.2
4
4
  Summary: Refactored code for the paper "Reducing the Memory Footprint of 3D Gaussian Splatting"
5
5
  Home-page: https://github.com/yindaheng98/reduced-3dgs
6
6
  Author: yindaheng98
@@ -1,13 +1,14 @@
1
1
  reduced_3dgs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
2
  reduced_3dgs/combinations.py,sha256=k4ErxpAscCqJMtVXZ29KGQjw2VoZMV0W3V4u3nj0e-Y,9401
3
+ reduced_3dgs/prepare.py,sha256=MFUUckRHKfgcva4ZOBxfPFyE95N-OlCQLplpmEPuzOk,4440
3
4
  reduced_3dgs/quantize.py,sha256=Y44qHyFdOIqke7NoeqXmyKloS43j-al74ZiNsuZZHbM,2527
4
- reduced_3dgs/train.py,sha256=kXgUZqSGc09NNmGNCoSe3Dv-VMBuQ6XjVNJhjmm0g3E,10082
5
- reduced_3dgs/diff_gaussian_rasterization/_C.cp310-win_amd64.pyd,sha256=NHH7Fvsfeb-7Eq4m4WCpxe7KN486EjZgUmu6WxRfUm4,1618432
5
+ reduced_3dgs/train.py,sha256=yRQPQv-hTOBQN-tqGHYs2aIZ0AbWq158CXpthYN2cfw,5666
6
+ reduced_3dgs/diff_gaussian_rasterization/_C.cp310-win_amd64.pyd,sha256=wAlbFguZB4uGC_SMGq29CbETkFF-6LlvxqeD6mi6aLE,1618432
6
7
  reduced_3dgs/diff_gaussian_rasterization/__init__.py,sha256=oV6JjTc-50MscX4XHeIWSgLr3l8Y25knBIs-0gRbJr4,7932
7
8
  reduced_3dgs/importance/__init__.py,sha256=neJsbY5cLikEGBQGdR4MjwCQ5VWVikT1357DwL0EtWU,289
8
9
  reduced_3dgs/importance/combinations.py,sha256=eAdykeTdvRGCHxskjILQnZVaqQVvwC-0wMxdgYMeeDs,2922
9
10
  reduced_3dgs/importance/trainer.py,sha256=Sj4ORvoYtFT7z3hifzFZDfhFyqumHraXyk3vMVtk0AU,12661
10
- reduced_3dgs/importance/diff_gaussian_rasterization/_C.cp310-win_amd64.pyd,sha256=tCcV__2CtjDScgquLU_ez1NKs8tj9RWQ7Fk3QfhoJc0,1308160
11
+ reduced_3dgs/importance/diff_gaussian_rasterization/_C.cp310-win_amd64.pyd,sha256=RfWiwxiF1VpbASSEueMifsA0DW_a6JAII7Yf5iLQqwk,1308160
11
12
  reduced_3dgs/importance/diff_gaussian_rasterization/__init__.py,sha256=Tix8auyXBb_QFQtXrV3sLE9kdnl5zgHH0BbqcFzDp84,12850
12
13
  reduced_3dgs/pruning/__init__.py,sha256=E_YxJ9cDV_B6EJbYUBEcuRYMIht_C72rI1VJUXFCLpM,201
13
14
  reduced_3dgs/pruning/combinations.py,sha256=QhXt2C7pTXhwzp9hPL9dVdiQzz0cUQpm5qljqytPEsM,2345
@@ -20,9 +21,9 @@ reduced_3dgs/quantization/wrapper.py,sha256=cyXqfJgo9b3fS7DYXxOk5LmQudvrEhweOebF
20
21
  reduced_3dgs/shculling/__init__.py,sha256=nP2BejDCUdCmJNRbg0hfhHREO6jyZXwIcRiw6ttVgqo,149
21
22
  reduced_3dgs/shculling/gaussian_model.py,sha256=f8QWaL09vaV9Tcf6Dngjg_Fmk1wTQPAjWhuhI_N02Y8,2877
22
23
  reduced_3dgs/shculling/trainer.py,sha256=9hwR77djhZpyf-URhwKHjnLbe0ZAOS-DIw58RzkcHXQ,6369
23
- reduced_3dgs/simple_knn/_C.cp310-win_amd64.pyd,sha256=p3Hj9yyfLZFLIG2aIyOM-2FTOwSD0WyunbvWCdknSBE,1255424
24
- reduced_3dgs-1.10.1.dist-info/licenses/LICENSE.md,sha256=LQ4_LAqlncGkg_mQy5ykMAFtQDSPB0eKmIEtBut0yjw,4916
25
- reduced_3dgs-1.10.1.dist-info/METADATA,sha256=6cxgTTpPqokRIa7VNyuXEJ2wN5iyClcSwbY451onMrA,13015
26
- reduced_3dgs-1.10.1.dist-info/WHEEL,sha256=KUuBC6lxAbHCKilKua8R9W_TM71_-9Sg5uEP3uDWcoU,101
27
- reduced_3dgs-1.10.1.dist-info/top_level.txt,sha256=PpU5aT3-baSCdqCtTaZknoB32H93UeKCkYDkRCCZMEI,13
28
- reduced_3dgs-1.10.1.dist-info/RECORD,,
24
+ reduced_3dgs/simple_knn/_C.cp310-win_amd64.pyd,sha256=YNClW-T5nG3LhuA50tc9RXkOOiPfO_HZ84oyvSsa0Y0,1255424
25
+ reduced_3dgs-1.10.2.dist-info/licenses/LICENSE.md,sha256=LQ4_LAqlncGkg_mQy5ykMAFtQDSPB0eKmIEtBut0yjw,4916
26
+ reduced_3dgs-1.10.2.dist-info/METADATA,sha256=5YuWENChjx4yhAaCJ5pokMNsyE0c_o2vIcgiE0SBXuY,13015
27
+ reduced_3dgs-1.10.2.dist-info/WHEEL,sha256=KUuBC6lxAbHCKilKua8R9W_TM71_-9Sg5uEP3uDWcoU,101
28
+ reduced_3dgs-1.10.2.dist-info/top_level.txt,sha256=PpU5aT3-baSCdqCtTaZknoB32H93UeKCkYDkRCCZMEI,13
29
+ reduced_3dgs-1.10.2.dist-info/RECORD,,