redisbench-admin 0.11.54__py3-none-any.whl → 0.11.56__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (141) hide show
  1. redisbench_admin/environments/oss_cluster.py +9 -1
  2. redisbench_admin/run/aibench_run_inference_redisai_vision/aibench_run_inference_redisai_vision.py +4 -16
  3. redisbench_admin/run/asm.py +426 -0
  4. redisbench_admin/run/common.py +3 -0
  5. redisbench_admin/run/ftsb/ftsb.py +4 -16
  6. redisbench_admin/run/tsbs_run_queries_redistimeseries/tsbs_run_queries_redistimeseries.py +4 -16
  7. redisbench_admin/run_remote/standalone.py +2 -3
  8. redisbench_admin/utils/benchmark_config.py +11 -13
  9. redisbench_admin/utils/utils.py +0 -21
  10. {redisbench_admin-0.11.54.dist-info → redisbench_admin-0.11.56.dist-info}/METADATA +7 -4
  11. redisbench_admin-0.11.56.dist-info/RECORD +117 -0
  12. {redisbench_admin-0.11.54.dist-info → redisbench_admin-0.11.56.dist-info}/WHEEL +1 -1
  13. redisbench_admin/run/ann/pkg/.dockerignore +0 -2
  14. redisbench_admin/run/ann/pkg/.git +0 -1
  15. redisbench_admin/run/ann/pkg/.github/workflows/benchmarks.yml +0 -100
  16. redisbench_admin/run/ann/pkg/.gitignore +0 -21
  17. redisbench_admin/run/ann/pkg/LICENSE +0 -21
  18. redisbench_admin/run/ann/pkg/README.md +0 -157
  19. redisbench_admin/run/ann/pkg/algos.yaml +0 -1294
  20. redisbench_admin/run/ann/pkg/algosP.yaml +0 -67
  21. redisbench_admin/run/ann/pkg/ann_benchmarks/__init__.py +0 -2
  22. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/__init__.py +0 -0
  23. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/annoy.py +0 -26
  24. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/balltree.py +0 -22
  25. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/base.py +0 -36
  26. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/bruteforce.py +0 -110
  27. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/ckdtree.py +0 -17
  28. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/datasketch.py +0 -29
  29. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/definitions.py +0 -187
  30. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/diskann.py +0 -190
  31. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/dolphinnpy.py +0 -31
  32. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/dummy_algo.py +0 -25
  33. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/elasticsearch.py +0 -107
  34. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/elastiknn.py +0 -124
  35. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/faiss.py +0 -124
  36. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/faiss_gpu.py +0 -61
  37. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/faiss_hnsw.py +0 -39
  38. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/flann.py +0 -27
  39. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/hnswlib.py +0 -36
  40. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/kdtree.py +0 -22
  41. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/kgraph.py +0 -39
  42. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/lshf.py +0 -25
  43. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/milvus.py +0 -99
  44. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/mrpt.py +0 -41
  45. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/n2.py +0 -28
  46. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/nearpy.py +0 -48
  47. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/nmslib.py +0 -74
  48. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/onng_ngt.py +0 -100
  49. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/opensearchknn.py +0 -107
  50. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/panng_ngt.py +0 -79
  51. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/pinecone.py +0 -39
  52. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/puffinn.py +0 -45
  53. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/pynndescent.py +0 -115
  54. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/qg_ngt.py +0 -102
  55. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/redisearch.py +0 -90
  56. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/rpforest.py +0 -20
  57. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/scann.py +0 -34
  58. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/sptag.py +0 -28
  59. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/subprocess.py +0 -246
  60. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/vald.py +0 -149
  61. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/vecsim-hnsw.py +0 -43
  62. redisbench_admin/run/ann/pkg/ann_benchmarks/algorithms/vespa.py +0 -47
  63. redisbench_admin/run/ann/pkg/ann_benchmarks/constants.py +0 -1
  64. redisbench_admin/run/ann/pkg/ann_benchmarks/data.py +0 -48
  65. redisbench_admin/run/ann/pkg/ann_benchmarks/datasets.py +0 -620
  66. redisbench_admin/run/ann/pkg/ann_benchmarks/distance.py +0 -53
  67. redisbench_admin/run/ann/pkg/ann_benchmarks/main.py +0 -325
  68. redisbench_admin/run/ann/pkg/ann_benchmarks/plotting/__init__.py +0 -2
  69. redisbench_admin/run/ann/pkg/ann_benchmarks/plotting/metrics.py +0 -183
  70. redisbench_admin/run/ann/pkg/ann_benchmarks/plotting/plot_variants.py +0 -17
  71. redisbench_admin/run/ann/pkg/ann_benchmarks/plotting/utils.py +0 -165
  72. redisbench_admin/run/ann/pkg/ann_benchmarks/results.py +0 -71
  73. redisbench_admin/run/ann/pkg/ann_benchmarks/runner.py +0 -333
  74. redisbench_admin/run/ann/pkg/create_dataset.py +0 -12
  75. redisbench_admin/run/ann/pkg/create_hybrid_dataset.py +0 -147
  76. redisbench_admin/run/ann/pkg/create_text_to_image_ds.py +0 -117
  77. redisbench_admin/run/ann/pkg/create_website.py +0 -272
  78. redisbench_admin/run/ann/pkg/install/Dockerfile +0 -11
  79. redisbench_admin/run/ann/pkg/install/Dockerfile.annoy +0 -5
  80. redisbench_admin/run/ann/pkg/install/Dockerfile.datasketch +0 -4
  81. redisbench_admin/run/ann/pkg/install/Dockerfile.diskann +0 -29
  82. redisbench_admin/run/ann/pkg/install/Dockerfile.diskann_pq +0 -31
  83. redisbench_admin/run/ann/pkg/install/Dockerfile.dolphinn +0 -5
  84. redisbench_admin/run/ann/pkg/install/Dockerfile.elasticsearch +0 -45
  85. redisbench_admin/run/ann/pkg/install/Dockerfile.elastiknn +0 -61
  86. redisbench_admin/run/ann/pkg/install/Dockerfile.faiss +0 -18
  87. redisbench_admin/run/ann/pkg/install/Dockerfile.flann +0 -10
  88. redisbench_admin/run/ann/pkg/install/Dockerfile.hnswlib +0 -10
  89. redisbench_admin/run/ann/pkg/install/Dockerfile.kgraph +0 -6
  90. redisbench_admin/run/ann/pkg/install/Dockerfile.mih +0 -4
  91. redisbench_admin/run/ann/pkg/install/Dockerfile.milvus +0 -27
  92. redisbench_admin/run/ann/pkg/install/Dockerfile.mrpt +0 -4
  93. redisbench_admin/run/ann/pkg/install/Dockerfile.n2 +0 -5
  94. redisbench_admin/run/ann/pkg/install/Dockerfile.nearpy +0 -5
  95. redisbench_admin/run/ann/pkg/install/Dockerfile.ngt +0 -13
  96. redisbench_admin/run/ann/pkg/install/Dockerfile.nmslib +0 -10
  97. redisbench_admin/run/ann/pkg/install/Dockerfile.opensearchknn +0 -43
  98. redisbench_admin/run/ann/pkg/install/Dockerfile.puffinn +0 -6
  99. redisbench_admin/run/ann/pkg/install/Dockerfile.pynndescent +0 -4
  100. redisbench_admin/run/ann/pkg/install/Dockerfile.redisearch +0 -18
  101. redisbench_admin/run/ann/pkg/install/Dockerfile.rpforest +0 -5
  102. redisbench_admin/run/ann/pkg/install/Dockerfile.scann +0 -5
  103. redisbench_admin/run/ann/pkg/install/Dockerfile.scipy +0 -4
  104. redisbench_admin/run/ann/pkg/install/Dockerfile.sklearn +0 -4
  105. redisbench_admin/run/ann/pkg/install/Dockerfile.sptag +0 -30
  106. redisbench_admin/run/ann/pkg/install/Dockerfile.vald +0 -8
  107. redisbench_admin/run/ann/pkg/install/Dockerfile.vespa +0 -17
  108. redisbench_admin/run/ann/pkg/install.py +0 -70
  109. redisbench_admin/run/ann/pkg/logging.conf +0 -34
  110. redisbench_admin/run/ann/pkg/multirun.py +0 -298
  111. redisbench_admin/run/ann/pkg/plot.py +0 -159
  112. redisbench_admin/run/ann/pkg/protocol/bf-runner +0 -10
  113. redisbench_admin/run/ann/pkg/protocol/bf-runner.py +0 -204
  114. redisbench_admin/run/ann/pkg/protocol/ext-add-query-metric.md +0 -51
  115. redisbench_admin/run/ann/pkg/protocol/ext-batch-queries.md +0 -77
  116. redisbench_admin/run/ann/pkg/protocol/ext-prepared-queries.md +0 -77
  117. redisbench_admin/run/ann/pkg/protocol/ext-query-parameters.md +0 -47
  118. redisbench_admin/run/ann/pkg/protocol/specification.md +0 -194
  119. redisbench_admin/run/ann/pkg/requirements.txt +0 -14
  120. redisbench_admin/run/ann/pkg/requirements_py38.txt +0 -11
  121. redisbench_admin/run/ann/pkg/results/fashion-mnist-784-euclidean.png +0 -0
  122. redisbench_admin/run/ann/pkg/results/gist-960-euclidean.png +0 -0
  123. redisbench_admin/run/ann/pkg/results/glove-100-angular.png +0 -0
  124. redisbench_admin/run/ann/pkg/results/glove-25-angular.png +0 -0
  125. redisbench_admin/run/ann/pkg/results/lastfm-64-dot.png +0 -0
  126. redisbench_admin/run/ann/pkg/results/mnist-784-euclidean.png +0 -0
  127. redisbench_admin/run/ann/pkg/results/nytimes-256-angular.png +0 -0
  128. redisbench_admin/run/ann/pkg/results/sift-128-euclidean.png +0 -0
  129. redisbench_admin/run/ann/pkg/run.py +0 -12
  130. redisbench_admin/run/ann/pkg/run_algorithm.py +0 -3
  131. redisbench_admin/run/ann/pkg/templates/chartjs.template +0 -102
  132. redisbench_admin/run/ann/pkg/templates/detail_page.html +0 -23
  133. redisbench_admin/run/ann/pkg/templates/general.html +0 -58
  134. redisbench_admin/run/ann/pkg/templates/latex.template +0 -30
  135. redisbench_admin/run/ann/pkg/templates/summary.html +0 -60
  136. redisbench_admin/run/ann/pkg/test/__init__.py +0 -0
  137. redisbench_admin/run/ann/pkg/test/test-jaccard.py +0 -19
  138. redisbench_admin/run/ann/pkg/test/test-metrics.py +0 -99
  139. redisbench_admin-0.11.54.dist-info/RECORD +0 -242
  140. {redisbench_admin-0.11.54.dist-info → redisbench_admin-0.11.56.dist-info}/entry_points.txt +0 -0
  141. {redisbench_admin-0.11.54.dist-info → redisbench_admin-0.11.56.dist-info/licenses}/LICENSE +0 -0
@@ -1,1294 +0,0 @@
1
- float:
2
- any:
3
- redisearch-hnsw:
4
- docker-tag: ann-benchmarks-redisearch
5
- module: ann_benchmarks.algorithms.redisearch
6
- constructor: RediSearch
7
- base-args: ["HNSW", "@metric", "@connection"]
8
- run-groups:
9
- M-4:
10
- arg-groups:
11
- - {"M": 4, "efConstruction": 500}
12
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
13
- M-8:
14
- arg-groups:
15
- - {"M": 8, "efConstruction": 500}
16
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
17
- M-12:
18
- arg-groups:
19
- - {"M": 12, "efConstruction": 500}
20
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
21
- M-16:
22
- arg-groups:
23
- - {"M": 16, "efConstruction": 500}
24
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
25
- M-24:
26
- arg-groups:
27
- - {"M": 24, "efConstruction": 500}
28
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
29
- M-36:
30
- arg-groups:
31
- - {"M": 36, "efConstruction": 500}
32
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
33
- M-48:
34
- arg-groups:
35
- - {"M": 48, "efConstruction": 500}
36
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
37
- M-64:
38
- arg-groups:
39
- - {"M": 64, "efConstruction": 500}
40
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
41
- M-96:
42
- arg-groups:
43
- - {"M": 96, "efConstruction": 500}
44
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
45
- redisearch-flat:
46
- docker-tag: ann-benchmarks-redisearch
47
- module: ann_benchmarks.algorithms.redisearch
48
- constructor: RediSearch
49
- base-args: ["FLAT", "@metric", "@connection"]
50
- run-groups:
51
- BS-2^10:
52
- arg-groups:
53
- - {"BLOCK_SIZE": 1024}
54
-
55
- vecsim-hnsw:
56
- docker-tag: ann-benchmarks-vecsim
57
- module: ann_benchmarks.algorithms.vecsim-hnsw
58
- constructor: VecSimHnsw
59
- base-args: ["@metric"]
60
- run-groups:
61
- M-4:
62
- arg-groups:
63
- - {"M": 4, "efConstruction": 500}
64
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
65
- M-8:
66
- arg-groups:
67
- - {"M": 8, "efConstruction": 500}
68
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
69
- M-12:
70
- arg-groups:
71
- - {"M": 12, "efConstruction": 500}
72
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
73
- M-16:
74
- arg-groups:
75
- - {"M": 16, "efConstruction": 500}
76
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
77
- M-24:
78
- arg-groups:
79
- - {"M": 24, "efConstruction": 500}
80
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
81
- M-36:
82
- arg-groups:
83
- - {"M": 36, "efConstruction": 500}
84
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
85
- M-48:
86
- arg-groups:
87
- - {"M": 48, "efConstruction": 500}
88
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
89
- M-64:
90
- arg-groups:
91
- - {"M": 64, "efConstruction": 500}
92
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
93
- M-96:
94
- arg-groups:
95
- - {"M": 96, "efConstruction": 500}
96
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
97
- pinecone:
98
- docker-tag: ann-benchmarks-pinecone
99
- module: ann_benchmarks.algorithms.pinecone
100
- constructor: Pinecone
101
- base-args: ["@metric", "@dimension", "@connection"]
102
- run-groups:
103
- approximated:
104
- args: [['approximated']]
105
- exact:
106
- args: [['exact']]
107
- sptag:
108
- docker-tag: ann-benchmarks-sptag
109
- module: ann_benchmarks.algorithms.sptag
110
- constructor: Sptag
111
- base-args: ["@metric"]
112
- run-groups:
113
- sptag:
114
- args: [['BKT', 'KDT']]
115
- query-args: [[100, 200, 400, 1000, 2000, 4000]]
116
- DolphinnPy:
117
- disabled: true
118
- docker-tag: ann-benchmarks-dolphinn # Docker tag
119
- module: ann_benchmarks.algorithms.dolphinnpy # Python class
120
- constructor: DolphinnPy # Python class name
121
- run-groups:
122
- base:
123
- args: [[10, 50, 100, 200, 1000, 2000]]
124
- faiss-lsh:
125
- disabled: true
126
- docker-tag: ann-benchmarks-faiss
127
- module: ann_benchmarks.algorithms.faiss
128
- constructor: FaissLSH
129
- base-args: ["@metric"]
130
- run-groups:
131
- base:
132
- # When @args is a list, the result is the Cartesian product of all of
133
- # the things it contains; entries that aren't a list will be treated
134
- # as lists of length one.
135
- args: [[32, 64, 128, 256, 512, 1024, 2048, 4096]]
136
- # This run group will produce eight algorithm instances:
137
- # FaissLSH(32), FaissLSH(64), and so on up to FaissLSH(4096).
138
- faiss-ivf:
139
- docker-tag: ann-benchmarks-faiss
140
- module: ann_benchmarks.algorithms.faiss
141
- constructor: FaissIVF
142
- base-args: ["@metric"]
143
- run-groups:
144
- base:
145
- args: [[32,64,128,256,512,1024,2048,4096,8192]]
146
- query-args: [[1, 5, 10, 50, 100, 200]]
147
- faiss-ivfpqfs:
148
- docker-tag: ann-benchmarks-faiss
149
- module: ann_benchmarks.algorithms.faiss
150
- constructor: FaissIVFPQfs
151
- base-args: ["@metric"]
152
- run-groups:
153
- base:
154
- args: [[512, 1204, 2048, 4096]]
155
- query-args: [[1, 5, 10, 50, 100, 200], [0, 10, 100, 1000]]
156
- faiss-gpu:
157
- disabled: true
158
- docker-tag: ann-benchmarks-faiss
159
- module: ann_benchmarks.algorithms.faiss_gpu
160
- constructor: FaissGPU
161
- run-groups:
162
- base:
163
- args: [[400, 1024, 4096, 8192, 16384],
164
- [1, 10, 40, 100, 200]]
165
- vecsim-hnsw-blocks:
166
- docker-tag: ann-benchmarks-hnswlib
167
- module: ann_benchmarks.algorithms.vecsim-hnsw
168
- constructor: VecSimHnsw
169
- base-args: ["@metric"]
170
- run-groups:
171
- M-4:
172
- arg-groups:
173
- - {"M": 4, "efConstruction": 500}
174
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
175
- M-8:
176
- arg-groups:
177
- - {"M": 8, "efConstruction": 500}
178
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
179
- M-12:
180
- arg-groups:
181
- - {"M": 12, "efConstruction": 500}
182
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
183
- M-16:
184
- arg-groups:
185
- - {"M": 16, "efConstruction": 500}
186
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
187
- M-24:
188
- arg-groups:
189
- - {"M": 24, "efConstruction": 500}
190
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
191
- M-36:
192
- arg-groups:
193
- - {"M": 36, "efConstruction": 500}
194
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
195
- M-48:
196
- arg-groups:
197
- - {"M": 48, "efConstruction": 500}
198
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
199
- M-64:
200
- arg-groups:
201
- - {"M": 64, "efConstruction": 500}
202
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
203
- M-96:
204
- arg-groups:
205
- - {"M": 96, "efConstruction": 500}
206
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
207
-
208
- hnsw(faiss):
209
- docker-tag: ann-benchmarks-faiss
210
- module: ann_benchmarks.algorithms.faiss_hnsw
211
- constructor: FaissHNSW
212
- base-args: ["@metric"]
213
- run-groups:
214
- M-4:
215
- arg-groups:
216
- - {"M": 4, "efConstruction": 500}
217
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
218
- M-8:
219
- arg-groups:
220
- - {"M": 8, "efConstruction": 500}
221
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
222
- M-12:
223
- arg-groups:
224
- - {"M": 12, "efConstruction": 500}
225
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
226
- M-16:
227
- arg-groups:
228
- - {"M": 16, "efConstruction": 500}
229
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
230
- M-24:
231
- arg-groups:
232
- - {"M": 24, "efConstruction": 500}
233
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
234
- M-36:
235
- arg-groups:
236
- - {"M": 36, "efConstruction": 500}
237
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
238
- M-48:
239
- arg-groups:
240
- - {"M": 48, "efConstruction": 500}
241
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
242
- M-64:
243
- arg-groups:
244
- - {"M": 64, "efConstruction": 500}
245
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
246
- M-96:
247
- arg-groups:
248
- - {"M": 96, "efConstruction": 500}
249
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
250
-
251
- flann:
252
- docker-tag: ann-benchmarks-flann
253
- module: ann_benchmarks.algorithms.flann
254
- constructor: FLANN
255
- base-args: ["@metric"]
256
- run-groups:
257
- flann:
258
- args: [[0.2, 0.5, 0.7, 0.8, 0.9, 0.95, 0.97]]
259
- annoy:
260
- docker-tag: ann-benchmarks-annoy
261
- module: ann_benchmarks.algorithms.annoy
262
- constructor: Annoy
263
- base-args: ["@metric"]
264
- run-groups:
265
- annoy:
266
- args: [[100, 200, 400]]
267
- query-args: [[100, 200, 400, 1000, 2000, 4000, 10000, 20000, 40000,
268
- 100000, 200000, 400000]]
269
- # This run group produces 3 algorithm instances -- Annoy("angular",
270
- # 100), Annoy("angular", 200), and Annoy("angular", 400) -- each of
271
- # which will be used to run 12 different queries.
272
- milvus-hnsw:
273
- docker-tag: ann-benchmarks-milvus
274
- module: ann_benchmarks.algorithms.milvus
275
- constructor: Milvus
276
- base-args: ["@metric", "@dimension", "@connection", "HNSW"]
277
- run-groups:
278
- M-4:
279
- arg-groups:
280
- - {"M": 4, "efConstruction": 500}
281
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
282
- M-8:
283
- arg-groups:
284
- - {"M": 8, "efConstruction": 500}
285
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
286
- M-12:
287
- arg-groups:
288
- - {"M": 12, "efConstruction": 500}
289
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
290
- M-16:
291
- arg-groups:
292
- - {"M": 16, "efConstruction": 500}
293
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
294
- M-24:
295
- arg-groups:
296
- - {"M": 24, "efConstruction": 500}
297
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
298
- M-36:
299
- arg-groups:
300
- - {"M": 36, "efConstruction": 500}
301
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
302
- M-48:
303
- arg-groups:
304
- - {"M": 48, "efConstruction": 500}
305
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
306
- M-64:
307
- arg-groups:
308
- - {"M": 64, "efConstruction": 500}
309
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
310
- milvus-ivf:
311
- docker-tag: ann-benchmarks-milvus
312
- module: ann_benchmarks.algorithms.milvus
313
- constructor: Milvus
314
- base-args: ["@metric", "@dimension", "@connection"]
315
- run-groups:
316
- milvus:
317
- args: [['IVF_FLAT', 'IVF_SQ8'], [{"nlist": 100}, {"nlist": 300}, {"nlist": 1000}, {"nlist": 3000}, {"nlist": 10000}, {"nlist": 30000}]] # nlist
318
- query-args: [[1, 3, 10, 30, 100, 300]] # nprobe (should be <= nlist)
319
- nearpy:
320
- disabled: true
321
- docker-tag: ann-benchmarks-nearpy
322
- module: ann_benchmarks.algorithms.nearpy
323
- constructor: NearPy
324
- base-args: ["@metric"]
325
- run-groups:
326
- nearpy:
327
- args: [[10, 12, 14, 16], [5, 10, 20, 40]]
328
- extra:
329
- args: [16, [5, 10, 15, 20, 25, 30, 40]]
330
- n2:
331
- docker-tag: ann-benchmarks-n2
332
- module: ann_benchmarks.algorithms.n2
333
- constructor: N2
334
- base-args: ["@metric"]
335
- run-groups:
336
- M-4:
337
- arg-groups:
338
- - {"M": 4, "efConstruction": 500}
339
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
340
- M-8:
341
- arg-groups:
342
- - {"M": 8, "efConstruction": 500}
343
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
344
- M-12:
345
- arg-groups:
346
- - {"M": 12, "efConstruction": 500}
347
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
348
- M-16:
349
- arg-groups:
350
- - {"M": 16, "efConstruction": 500}
351
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
352
- M-24:
353
- arg-groups:
354
- - {"M": 24, "efConstruction": 500}
355
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
356
- M-36:
357
- arg-groups:
358
- - {"M": 36, "efConstruction": 500}
359
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
360
- M-48:
361
- arg-groups:
362
- - {"M": 48, "efConstruction": 500}
363
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
364
- M-64:
365
- arg-groups:
366
- - {"M": 64, "efConstruction": 500}
367
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
368
- M-96:
369
- arg-groups:
370
- - {"M": 96, "efConstruction": 500}
371
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
372
-
373
- bruteforce:
374
- disabled: true
375
- docker-tag: ann-benchmarks-sklearn
376
- module: ann_benchmarks.algorithms.bruteforce
377
- constructor: BruteForce
378
- base-args: ["@metric"]
379
- run-groups:
380
- empty:
381
- args: []
382
- bruteforce-blas:
383
- docker-tag: ann-benchmarks-sklearn
384
- module: ann_benchmarks.algorithms.bruteforce
385
- constructor: BruteForceBLAS
386
- base-args: ["@metric"]
387
- run-groups:
388
- empty:
389
- args: []
390
- dummy-algo-st:
391
- disabled: true
392
- docker-tag: ann-benchmarks-sklearn
393
- module: ann_benchmarks.algorithms.dummy_algo
394
- constructor: DummyAlgoSt
395
- base-args: ["@metric"]
396
- run-groups:
397
- empty:
398
- args: []
399
- dummy-algo-mt:
400
- disabled: true
401
- docker-tag: ann-benchmarks-sklearn
402
- module: ann_benchmarks.algorithms.dummy_algo
403
- constructor: DummyAlgoMt
404
- base-args: ["@metric"]
405
- run-groups:
406
- empty:
407
- args: []
408
- ball:
409
- disabled: true
410
- docker-tag: ann-benchmarks-sklearn
411
- module: ann_benchmarks.algorithms.balltree
412
- constructor: BallTree
413
- base-args: ["@metric"]
414
- run-groups:
415
- ball:
416
- args: &treeargs [[10, 20, 40, 100, 200, 400, 1000]]
417
- kd:
418
- docker-tag: ann-benchmarks-sklearn
419
- module: ann_benchmarks.algorithms.kdtree
420
- constructor: KDTree
421
- base-args: ["@metric"]
422
- run-groups:
423
- ball:
424
- args: *treeargs
425
- ckdtree:
426
- docker-tag: ann-benchmarks-scipy
427
- module: ann_benchmarks.algorithms.ckdtree
428
- constructor: CKDTree
429
- base-args: ["@metric"]
430
- run-groups:
431
- ball:
432
- args: *treeargs
433
- BallTree(nmslib):
434
- docker-tag: ann-benchmarks-nmslib
435
- module: ann_benchmarks.algorithms.nmslib
436
- constructor: NmslibReuseIndex
437
- base-args: ["@metric", "vptree"]
438
- run-groups:
439
- base:
440
- # When @args is a dictionary, algorithm instances will be generated
441
- # by taking the Cartesian product of all of its values.
442
- arg-groups:
443
- - {"tuneK": 10, "desiredRecall": [0.99, 0.97, 0.95, 0.9, 0.85, 0.8,
444
- 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]}
445
- - False
446
- # This run group produces thirteen algorithm instances:
447
- # NmslibNewIndex("angular", "vptree", {"tuneK": 10,
448
- # "desiredRecall": 0.99}), NmslibNewIndex("angular", "vptree",
449
- # {"tuneK": 10, "desiredRecall": 0.97}), and so on up to
450
- # NmslibNewIndex("angular", "vptree", {"tuneK": 10, "desiredRecall":
451
- # 0.1}).
452
- pynndescent:
453
- docker-tag: ann-benchmarks-pynndescent
454
- module: ann_benchmarks.algorithms.pynndescent
455
- constructor: PyNNDescent
456
- base-args: ["@metric"]
457
- run-groups:
458
- NN-10-20:
459
- arg-groups:
460
- - {"n_neighbors": [10, 20], "diversify_prob": [1.0],
461
- "pruning_degree_multiplier":[1.5, 2.0], "leaf_size": 32}
462
- query-args: [[0.0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16]]
463
- NN-40-80:
464
- arg-groups:
465
- - {"n_neighbors": [40, 80], "diversify_prob": [0.0, 1.0],
466
- "pruning_degree_multiplier":[2.0, 2.5], "leaf_size": 64}
467
- query-args: [[0.0, 0.04, 0.08, 0.12, 0.16, 0.20, 0.24, 0.28, 0.32]]
468
- NGT-panng:
469
- docker-tag: ann-benchmarks-ngt
470
- module: ann_benchmarks.algorithms.panng_ngt
471
- constructor : PANNG
472
- base-args : ["@metric", "Float"]
473
- run-groups :
474
- panng:
475
- args : [{'edge': 20, 'pathadj': 40, 'searchedge': 60}]
476
- query-args : [[0.6, 0.8, 0.9, 1.0, 1.02, 1.05, 1.1, 1.2]]
477
- NGT-onng:
478
- docker-tag: ann-benchmarks-ngt
479
- module: ann_benchmarks.algorithms.onng_ngt
480
- constructor : ONNG
481
- base-args : ["@metric", "Float", 0.1]
482
- run-groups :
483
- onng:
484
- args : [{'edge': 100, 'outdegree': 10, 'indegree': 120}]
485
- query-args : [[[0.60, -2], [0.90, -2], [1.00, -2], [1.02, -2], [1.03, -2],
486
- [1.04, -2], [1.05, -2], [1.07, -2], [1.10, -2], [1.20, -2]]]
487
- onng-with-refinement:
488
- args : [{'edge': 100, 'outdegree': 10, 'indegree': 120, 'tree': False, 'refine': True}]
489
- query-args : [[[0.995, 40], [0.998, 40], [1.00, 40], [1.005, 40], [1.010, 40],
490
- [1.015, 40], [1.020, 40]]]
491
- NGT-qg:
492
- docker-tag: ann-benchmarks-ngt
493
- module: ann_benchmarks.algorithms.qg_ngt
494
- constructor : QG
495
- base-args : ["@metric", "Float", 0.1]
496
- run-groups :
497
- me-96:
498
- args : [{'edge': 100, 'outdegree': 64, 'indegree': 120, 'max_edge': 96}]
499
- query-args : [[[1.2, 0.90], [1.2, 0.95], [1.2, 0.98], [1.2, 1.00], [1.2, 1.02],
500
- [1.5, 0.90], [1.5, 0.95], [1.5, 0.98], [1.5, 1.00], [1.5, 1.02],
501
- [2.0, 0.90], [2.0, 0.95], [2.0, 0.98], [2.0, 1.00], [2.0, 1.02],
502
- [3.0, 0.90], [3.0, 0.95], [3.0, 0.98], [3.0, 1.00], [3.0, 1.02],
503
- [ 5, 1.00], [ 10, 1.00], [ 20, 1.00],
504
- [ 2, 1.04], [ 3, 1.04], [ 5, 1.04], [ 8, 1.04]]]
505
- mrpt:
506
- docker-tag: ann-benchmarks-mrpt
507
- module: ann_benchmarks.algorithms.mrpt
508
- constructor: MRPT
509
- base-args: ["@metric"]
510
- run-groups:
511
- mrpt:
512
- args: ["@count"]
513
- query-args: [[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9,
514
- 0.925, 0.95, 0.97, 0.98, 0.99, 0.995]]
515
- elastiknn-exact:
516
- # Disabled because they are < 10 q/s, which will timeout on default settings.
517
- disabled: true
518
- docker-tag: ann-benchmarks-elastiknn
519
- module: ann_benchmarks.algorithms.elastiknn
520
- constructor: Exact
521
- base-args: [ "@metric", "@dimension" ]
522
- run-groups:
523
- exact:
524
- args: []
525
- vald(NGT-panng):
526
- docker-tag: ann-benchmarks-vald
527
- module: ann_benchmarks.algorithms.vald
528
- constructor: Vald
529
- base-args: ["@metric", "Float"]
530
- run-groups:
531
- vald:
532
- args: [{'edge': 20, 'searchedge': 60, 'bulk': 100}]
533
- query-args: [[0.6, 0.8, 0.9, 1.0, 1.02, 1.05, 1.1, 1.2]]
534
-
535
- euclidean:
536
- vamana(diskann):
537
- docker-tag: ann-benchmarks-diskann
538
- module: ann_benchmarks.algorithms.diskann
539
- constructor: Vamana
540
- base-args : ["@metric"]
541
- run-groups :
542
- vamana_100_64_1-2:
543
- args : [{'l_build': 100, 'max_outdegree': 64, 'alpha': 1.2}]
544
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
545
- vamana_100_64_1-1:
546
- args : [{'l_build': 100, 'max_outdegree': 64, 'alpha': 1.1}]
547
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
548
- vamana_100_64_1:
549
- args : [{'l_build': 100, 'max_outdegree': 64, 'alpha': 1}]
550
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
551
- vamana_125_32_1-2:
552
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1.2}]
553
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
554
- vamana_125_32_1-1:
555
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1.1}]
556
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
557
- vamana_125_32_1:
558
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1}]
559
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
560
- vamana-pq(diskann):
561
- docker-tag: ann-benchmarks-diskann_pq
562
- module: ann_benchmarks.algorithms.diskann
563
- constructor: VamanaPQ
564
- base-args : ["@metric"]
565
- run-groups :
566
- vamana_pq_100_64_1-2_32:
567
- args : [{'l_build': 100, 'max_outdegree': 64, 'alpha': 1.2, 'chunks': 32}]
568
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
569
- vamana_pq_100_64_1_32:
570
- args : [{'l_build': 100, 'max_outdegree': 64, 'alpha': 1, 'chunks': 32}]
571
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
572
- vamana_pq_80_64_1-2_96:
573
- args : [{'l_build': 80, 'max_outdegree': 64, 'alpha': 1.2, 'chunks': 96}]
574
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
575
- vamana_pq_80_64_1_96:
576
- args : [{'l_build': 80, 'max_outdegree': 64, 'alpha': 1, 'chunks': 96}]
577
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
578
- vamana_pq_80_64_1-2_112:
579
- args : [{'l_build': 80, 'max_outdegree': 64, 'alpha': 1.2, 'chunks': 112}]
580
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
581
- vamana_pq_80_64_1_112:
582
- args : [{'l_build': 80, 'max_outdegree': 64, 'alpha': 1, 'chunks': 112}]
583
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
584
- vamana_pq_125_32_1-2_32:
585
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1.2, 'chunks': 32}]
586
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
587
- vamana_pq_125_32_1_32:
588
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1, 'chunks': 32}]
589
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
590
- vamana_pq_125_32_1-2_96:
591
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1.2, 'chunks': 96}]
592
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
593
- vamana_pq_125_32_1_96:
594
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1, 'chunks': 96}]
595
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
596
- vamana_pq_125_32_1-2_112:
597
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1.2, 'chunks': 112}]
598
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
599
- vamana_pq_125_32_1_112:
600
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1, 'chunks': 112}]
601
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
602
- scann:
603
- docker-tag: ann-benchmarks-scann
604
- module: ann_benchmarks.algorithms.scann
605
- constructor: Scann
606
- run-groups:
607
- scann1:
608
- args: [[600], [.nan], [2], ["squared_l2"]]
609
- query-args: [[[4, 40], [3, 30], [6, 60], [8, 74], [9, 78], [10, 82], [11, 85], [13, 100], [16, 120], [20, 140], [30, 180], [35, 240], [50, 360]]]
610
- scann2:
611
- args: [[2000], [.nan], [4], ["squared_l2"]]
612
- query-args: [[[10, 100], [15, 140], [25, 160], [35, 190], [40, 200], [45, 220], [50, 240], [60, 250], [70, 300], [80, 400], [100, 500], [120, 600], [150, 800], [200, 900]]]
613
- scann3:
614
- args: [[100], [.nan], [4], ["squared_l2"]]
615
- query-args: [[[2, 20], [3, 20], [3, 30], [4, 30], [5, 40], [8, 80]]]
616
- kgraph:
617
- docker-tag: ann-benchmarks-kgraph
618
- module: ann_benchmarks.algorithms.kgraph
619
- constructor: KGraph
620
- base-args: ["@metric"]
621
- run-groups:
622
- kgraph:
623
- args: [ {'reverse': -1}, True] # XXX: hard-codes save_index as True
624
- query-args: [[1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]]
625
- hnsw(nmslib):
626
- docker-tag: ann-benchmarks-nmslib
627
- module: ann_benchmarks.algorithms.nmslib
628
- constructor: NmslibReuseIndex
629
- base-args: ["@metric", "hnsw"]
630
- run-groups:
631
- M-32:
632
- # If a run group has an array called @arg-groups instead of one
633
- # called @args, then every element in that array will be separately
634
- # expanded before then taking the Cartesian product of all of those
635
- # expansions.
636
- #
637
- # Yes, this is a bit of a hack, but some constructors are weird.
638
- # (This one used to require that dictionaries be encoded as lists
639
- # of environment variable-style strings -- ["M=32", "post=2",
640
- # "efConstruction=400"] -- which didn't work with this at all...)
641
- arg-groups:
642
- - {"M": 32, "post": 2, "efConstruction": 400}
643
- - False
644
- query-args: [[20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 200,
645
- 300, 400]]
646
- M-20:
647
- arg-groups:
648
- - {"M": 20, "post": 2, "efConstruction": 400}
649
- - False
650
- query-args: [[2, 5, 10, 15, 20, 30, 40, 50, 70, 80, 120, 200, 400]]
651
- M-12:
652
- arg-groups:
653
- - {"M": 12, "post": 0, "efConstruction": 400}
654
- - False
655
- query-args: [[1, 2, 5, 10, 15, 20, 30, 40, 50, 70, 80, 120]]
656
- M-4:
657
- arg-groups:
658
- - {"M": 4, "post": 0, "efConstruction": 400}
659
- - False
660
- query-args: [[1, 2, 5, 10, 20, 30, 50, 70, 90, 120]]
661
- M-8:
662
- arg-groups:
663
- - {"M": 8, "post": 0, "efConstruction": 400}
664
- - False
665
- query-args: [[1, 2, 5, 10, 20, 30, 50, 70, 90, 120, 160]]
666
- SW-graph(nmslib):
667
- docker-tag: ann-benchmarks-nmslib
668
- module: ann_benchmarks.algorithms.nmslib
669
- constructor: NmslibReuseIndex
670
- base-args: ["@metric", "sw-graph"]
671
- run-groups:
672
- NN-24:
673
- arg-groups:
674
- - {"NN": 24}
675
- - False
676
- query-args: [[800, 400, 200, 100, 50, 30, 20, 15, 10, 5, 1]]
677
- NN-16:
678
- arg-groups:
679
- - {"NN": 16}
680
- - False
681
- query-args: [[800, 400, 200, 100, 50, 30, 20, 15, 10, 5, 1]]
682
- NN-10:
683
- arg-groups:
684
- - {"NN": 10}
685
- - False
686
- query-args: [[800, 400, 200, 100, 50, 30, 20, 15, 10, 5, 1]]
687
- NN-5:
688
- arg-groups:
689
- - {"NN": 5}
690
- - False
691
- query-args: [[30, 25, 20, 15, 10, 5, 4, 3, 2, 1]]
692
- pynndescent:
693
- docker-tag: ann-benchmarks-pynndescent
694
- module: ann_benchmarks.algorithms.pynndescent
695
- constructor: PyNNDescent
696
- base-args: ["@metric"]
697
- run-groups:
698
- NN-10:
699
- arg-groups:
700
- - {"n_neighbors": 10, "diversify_prob": 1.0,
701
- "pruning_degree_multiplier":[0.5, 1.0], "leaf_size": 24}
702
- query-args: [[0.0, 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.10, 0.12]]
703
- NN-20:
704
- arg-groups:
705
- - {"n_neighbors": 20, "diversify_prob": 1.0,
706
- "pruning_degree_multiplier":[0.75, 1.5], "leaf_size": 24}
707
- query-args: [[0.0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.20]]
708
- NN-40:
709
- arg-groups:
710
- - {"n_neighbors": 40, "diversify_prob": [0.0, 1.0],
711
- "pruning_degree_multiplier":[1.0, 2.0], "leaf_size": 36}
712
- query-args: [[0.0, 0.02, 0.04, 0.08, 0.12, 0.16, 0.20, 0.24, 0.28, 0.32]]
713
- NN-60:
714
- arg-groups:
715
- - {"n_neighbors": 60, "diversify_prob": 0.0,
716
- "pruning_degree_multiplier":[2.0, 3.0], "leaf_size": 48}
717
- query-args: [[0.0, 0.04, 0.08, 0.12, 0.16, 0.20, 0.24, 0.28, 0.32, 0.36]]
718
- elastiknn-l2lsh:
719
- docker-tag: ann-benchmarks-elastiknn
720
- module: ann_benchmarks.algorithms.elastiknn
721
- constructor: L2Lsh
722
- base-args: []
723
- run-groups:
724
- elastiknn-lsh:
725
- args:
726
- - [50, 75, 100]
727
- - [3, 4]
728
- - [1, 3, 7]
729
- query-args:
730
- - [1000, 10000]
731
- - [0, 6]
732
- opensearchknn:
733
- docker-tag: ann-benchmarks-opensearchknn
734
- module: ann_benchmarks.algorithms.opensearchknn
735
- constructor: OpenSearchKNN
736
- base-args: ["@metric", "@dimension"]
737
- run-groups:
738
- M-4:
739
- arg-groups:
740
- - {"M": 4, "efConstruction": 500}
741
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
742
- M-8:
743
- arg-groups:
744
- - {"M": 8, "efConstruction": 500}
745
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
746
- M-12:
747
- arg-groups:
748
- - {"M": 12, "efConstruction": 500}
749
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
750
- M-16:
751
- arg-groups:
752
- - {"M": 16, "efConstruction": 500}
753
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
754
- M-24:
755
- arg-groups:
756
- - {"M": 24, "efConstruction": 500}
757
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
758
- M-36:
759
- arg-groups:
760
- - {"M": 36, "efConstruction": 500}
761
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
762
- M-48:
763
- arg-groups:
764
- - {"M": 48, "efConstruction": 500}
765
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
766
- hnsw(vespa):
767
- docker-tag: ann-benchmarks-vespa
768
- module: ann_benchmarks.algorithms.vespa
769
- constructor: VespaHnsw
770
- base-args: ["@metric", "@dimension"]
771
- run-groups:
772
- M-4:
773
- arg-groups:
774
- - {"M": 4, "efConstruction": 500}
775
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
776
- M-8:
777
- arg-groups:
778
- - {"M": 8, "efConstruction": 500}
779
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
780
- M-12:
781
- arg-groups:
782
- - {"M": 12, "efConstruction": 500}
783
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
784
- M-16:
785
- arg-groups:
786
- - {"M": 16, "efConstruction": 500}
787
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
788
- M-24:
789
- arg-groups:
790
- - {"M": 24, "efConstruction": 500}
791
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
792
- M-36:
793
- arg-groups:
794
- - {"M": 36, "efConstruction": 500}
795
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
796
- M-48:
797
- arg-groups:
798
- - {"M": 48, "efConstruction": 500}
799
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
800
- M-64:
801
- arg-groups:
802
- - {"M": 64, "efConstruction": 500}
803
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
804
- M-96:
805
- arg-groups:
806
- - {"M": 96, "efConstruction": 500}
807
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
808
-
809
- angular:
810
- vamana(diskann):
811
- docker-tag: ann-benchmarks-diskann
812
- module: ann_benchmarks.algorithms.diskann
813
- constructor: Vamana
814
- base-args : ["@metric"]
815
- run-groups :
816
- vamana_125_64_1-2:
817
- args : [{'l_build': 125, 'max_outdegree': 64, 'alpha': 1.2}]
818
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
819
- vamana_125_64_1-1:
820
- args : [{'l_build': 125, 'max_outdegree': 64, 'alpha': 1.1}]
821
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
822
- vamana_125_64_1:
823
- args : [{'l_build': 125, 'max_outdegree': 64, 'alpha': 1}]
824
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
825
- vamana_125_32_1-2:
826
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1.2}]
827
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
828
- vamana_125_32_1-1:
829
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1.1}]
830
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
831
- vamana_125_32_1:
832
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1}]
833
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
834
- vamana-pq(diskann):
835
- docker-tag: ann-benchmarks-diskann_pq
836
- module: ann_benchmarks.algorithms.diskann
837
- constructor: VamanaPQ
838
- base-args : ["@metric"]
839
- run-groups :
840
- vamana_pq_125_64_1-2_14:
841
- args : [{'l_build': 125, 'max_outdegree': 64, 'alpha': 1.2, 'chunks': 14}]
842
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
843
- vamana_pq_125_64_1_14:
844
- args : [{'l_build': 125, 'max_outdegree': 64, 'alpha': 1, 'chunks': 14}]
845
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
846
- vamana_pq_125_64_1-2_28:
847
- args : [{'l_build': 125, 'max_outdegree': 64, 'alpha': 1.2, 'chunks': 28}]
848
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
849
- vamana_pq_125_64_1_28:
850
- args : [{'l_build': 125, 'max_outdegree': 64, 'alpha': 1, 'chunks': 28}]
851
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
852
- vamana_pq_125_64_1-2_42:
853
- args : [{'l_build': 125, 'max_outdegree': 64, 'alpha': 1.2, 'chunks': 42}]
854
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
855
- vamana_pq_125_64_1_42:
856
- args : [{'l_build': 125, 'max_outdegree': 64, 'alpha': 1, 'chunks': 42}]
857
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
858
- vamana_pq_125_32_1-2_14:
859
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1.2, 'chunks': 14}]
860
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
861
- vamana_pq_125_32_1_14:
862
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1, 'chunks': 14}]
863
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
864
- vamana_pq_125_32_1-2_28:
865
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1.2, 'chunks': 28}]
866
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
867
- vamana_pq_125_32_1_28:
868
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1, 'chunks': 28}]
869
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
870
- vamana_pq_125_32_1-2_42:
871
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1.2, 'chunks': 42}]
872
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
873
- vamana_pq_125_32_1_42:
874
- args : [{'l_build': 125, 'max_outdegree': 32, 'alpha': 1, 'chunks': 42}]
875
- query-args : [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]]
876
- puffinn:
877
- docker-tag: ann-benchmarks-puffinn
878
- module: ann_benchmarks.algorithms.puffinn
879
- constructor: Puffinn
880
- base-args: ["@metric"]
881
- run-groups:
882
- base:
883
- args: [
884
- [ 268435456, 536870912, 1073741824, 2147483648, 4294967296],
885
- ['fht_crosspolytope'],
886
- ]
887
- query-args: [[0.1, 0.2, 0.5, 0.7, 0.9, 0.95, 0.99]]
888
- kgraph:
889
- docker-tag: ann-benchmarks-kgraph
890
- module: ann_benchmarks.algorithms.kgraph
891
- constructor: KGraph
892
- base-args: ["@metric"]
893
- run-groups:
894
- kgraph:
895
- args: [{'reverse': -1, "K": 200, "L": 300, "S": 20}, False]
896
- query-args: [[1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]]
897
- hnsw(nmslib):
898
- docker-tag: ann-benchmarks-nmslib
899
- module: ann_benchmarks.algorithms.nmslib
900
- constructor: NmslibReuseIndex
901
- base-args: ["@metric", "hnsw"]
902
- run-groups:
903
- M-48:
904
- arg-groups:
905
- - {"M": 48, "post": 2, "efConstruction": 800}
906
- - False
907
- query-args: [[50, 70, 90, 120, 160, 200, 400, 600, 700, 800, 1000,
908
- 1400, 1600, 2000]]
909
- M-32:
910
- arg-groups:
911
- - {"M": 32, "post": 2, "efConstruction": 800}
912
- - False
913
- query-args: [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160,
914
- 200, 300, 400, 600, 700, 800, 1000, 1200, 1400, 1600, 2000]]
915
- M-20:
916
- arg-groups:
917
- - {"M": 20, "post": 0, "efConstruction": 800}
918
- - False
919
- query-args: [[2, 5, 10, 15, 20, 30, 40, 50, 70, 80]]
920
- M-12:
921
- arg-groups:
922
- - {"M": 12, "post": 0, "efConstruction": 800}
923
- - False
924
- query-args: [[1, 2, 5, 10, 15, 20, 30, 40, 50, 70, 80]]
925
- SW-graph(nmslib):
926
- docker-tag: ann-benchmarks-nmslib
927
- module: ann_benchmarks.algorithms.nmslib
928
- constructor: NmslibReuseIndex
929
- base-args: ["@metric", "sw-graph"]
930
- run-groups:
931
- NN-30:
932
- arg-groups:
933
- - {"NN": 30}
934
- - False
935
- query-args: [[700, 650, 550, 450, 350, 275, 200, 150, 120, 80,
936
- 50, 30]]
937
- NN-15:
938
- arg-groups:
939
- - {"NN": 15}
940
- - False
941
- query-args: [[80, 50, 30, 20]]
942
- NN-3:
943
- arg-groups:
944
- - {"NN": 3}
945
- - False
946
- query-args: [[120, 80, 60, 40, 20, 10, 8, 4, 2]]
947
- rpforest:
948
- docker-tag: ann-benchmarks-rpforest
949
- module: ann_benchmarks.algorithms.rpforest
950
- constructor: RPForest
951
- run-groups:
952
- base:
953
- args: [[3, 10, 40, 100, 400],
954
- [3, 10, 40, 100, 400]]
955
- pynndescent:
956
- docker-tag: ann-benchmarks-pynndescent
957
- module: ann_benchmarks.algorithms.pynndescent
958
- constructor: PyNNDescent
959
- base-args: ["@metric"]
960
- run-groups:
961
- NN-20:
962
- arg-groups:
963
- - {"n_neighbors": [20], "diversify_prob": [1.0],
964
- "pruning_degree_multiplier":[0.5, 1.0], leaf_size: 20}
965
- query-args: [[0.0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12]]
966
- NN-40:
967
- arg-groups:
968
- - {"n_neighbors": [40], "diversify_prob": [0.5, 1.0],
969
- "pruning_degree_multiplier":[1.5], leaf_size: 25}
970
- query-args: [[0.0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16]]
971
- NN-80-fast:
972
- arg-groups:
973
- - {"n_neighbors": 80, diversify_prob: 1.0,
974
- "pruning_degree_multiplier": 2.0, leaf_size: 20}
975
- query-args: [[0.0, 0.02, 0.04, 0.08, 0.12, 0.16, 0.20, 0.24]]
976
- NN-80-accurate:
977
- arg-groups:
978
- - {"n_neighbors": 80, diversify_prob: 0.25,
979
- "pruning_degree_multiplier": 2.0, leaf_size: 30}
980
- query-args: [[0.08, 0.12, 0.16, 0.20, 0.24, 0.28, 0.32, 0.36]]
981
- NN-120-fast:
982
- arg-groups:
983
- - {"n_neighbors": 120, "diversify_prob": 1.0,
984
- "pruning_degree_multiplier":2.5, leaf_size: 20}
985
- query-args: [[0.0, 0.04, 0.08, 0.16, 0.20, 0.24, 0.28, 0.32]]
986
- NN-120-accurate:
987
- arg-groups:
988
- - {"n_neighbors": 120, "diversify_prob": 0.125,
989
- "pruning_degree_multiplier":2.5, leaf_size: 35}
990
- query-args: [[0.16, 0.20, 0.24, 0.28, 0.32, 0.36]]
991
- scann:
992
- docker-tag: ann-benchmarks-scann
993
- module: ann_benchmarks.algorithms.scann
994
- constructor: Scann
995
- run-groups:
996
- scann1:
997
- args: [[2000], [0.2], [2], ["dot_product"]]
998
- query-args: [[[1, 30], [2, 30], [4, 30], [8, 30], [30, 120], [35, 100], [40, 80], [45, 80], [50, 80], [55, 95], [60, 110], [65, 110], [75, 110], [90, 110], [110, 120], [130, 150], [150, 200], [170, 200], [200, 300], [220, 500], [250, 500], [310, 300], [400, 300], [500, 500], [800, 1000]]]
999
- scann2:
1000
- args: [[1500], [0.55], [1], ["dot_product"]]
1001
- query-args: [[[1, 30], [2, 30], [4, 30], [8, 30], [8, 25], [10, 25], [12, 25], [13, 25], [14, 27], [15, 30], [17, 30], [18, 40], [20, 40], [22, 40], [25, 50], [30, 50], [35, 55], [50, 60], [60, 60], [80, 80], [100, 100]]]
1002
- scann3:
1003
- args: [[1000], [.2], [1], ["dot_product"]]
1004
- query-args: [[[1, 30], [2, 30], [4, 30], [8, 30], [9, 25], [11, 35], [12, 35], [13, 35], [14, 40], [15, 40], [16, 40], [17, 45], [20, 45], [20, 55], [25, 55], [25, 70], [30, 70], [40, 90], [50, 100], [60, 120], [70, 140]]]
1005
- scann4:
1006
- args: [[1400], [0.15], [3], ["dot_product"]]
1007
- query-args: [[[1, 30], [4, 30], [9, 30], [16, 32], [25, 50], [36, 72], [49, 98], [70, 150], [90, 200], [120, 210], [180, 270], [210, 330], [260, 400], [320, 500], [400, 600], [500, 700], [800, 900]]]
1008
- elasticsearch:
1009
- docker-tag: ann-benchmarks-elasticsearch
1010
- module: ann_benchmarks.algorithms.elasticsearch
1011
- constructor: ElasticsearchScriptScoreQuery
1012
- base-args: [ "@metric", "@dimension", "@connection" ]
1013
- run-groups:
1014
- M-4:
1015
- arg-groups:
1016
- - {"m": 4, "ef_construction": 500, "type": "hnsw"}
1017
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1018
- M-8:
1019
- arg-groups:
1020
- - {"m": 8, "ef_construction": 500, "type": "hnsw"}
1021
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1022
- M-12:
1023
- arg-groups:
1024
- - {"m": 12, "ef_construction": 500, "type": "hnsw"}
1025
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1026
- M-16:
1027
- arg-groups:
1028
- - {"m": 16, "ef_construction": 500, "type": "hnsw"}
1029
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1030
- M-24:
1031
- arg-groups:
1032
- - {"m": 24, "ef_construction": 500, "type": "hnsw"}
1033
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1034
- M-36:
1035
- arg-groups:
1036
- - {"m": 36, "ef_construction": 500, "type": "hnsw"}
1037
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1038
- M-48:
1039
- arg-groups:
1040
- - {"m": 48, "ef_construction": 500, "type": "hnsw"}
1041
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1042
- M-64:
1043
- arg-groups:
1044
- - {"m": 64, "ef_construction": 500, "type": "hnsw"}
1045
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1046
- M-96:
1047
- arg-groups:
1048
- - {"m": 96, "ef_construction": 500, "type": "hnsw"}
1049
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1050
- opensearchknn:
1051
- docker-tag: ann-benchmarks-opensearchknn
1052
- module: ann_benchmarks.algorithms.opensearchknn
1053
- constructor: OpenSearchKNN
1054
- base-args: ["@metric", "@dimension"]
1055
- run-groups:
1056
- M-4:
1057
- arg-groups:
1058
- - {"M": 4, "efConstruction": 500}
1059
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1060
- M-8:
1061
- arg-groups:
1062
- - {"M": 8, "efConstruction": 500}
1063
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1064
- M-12:
1065
- arg-groups:
1066
- - {"M": 12, "efConstruction": 500}
1067
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1068
- M-16:
1069
- arg-groups:
1070
- - {"M": 16, "efConstruction": 500}
1071
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1072
- M-24:
1073
- arg-groups:
1074
- - {"M": 24, "efConstruction": 500}
1075
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1076
- M-36:
1077
- arg-groups:
1078
- - {"M": 36, "efConstruction": 500}
1079
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1080
- M-48:
1081
- arg-groups:
1082
- - {"M": 48, "efConstruction": 500}
1083
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1084
- hnsw(vespa):
1085
- docker-tag: ann-benchmarks-vespa
1086
- module: ann_benchmarks.algorithms.vespa
1087
- constructor: VespaHnsw
1088
- base-args: ["@metric", "@dimension"]
1089
- run-groups:
1090
- M-4:
1091
- arg-groups:
1092
- - {"M": 4, "efConstruction": 500}
1093
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1094
- M-8:
1095
- arg-groups:
1096
- - {"M": 8, "efConstruction": 500}
1097
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1098
- M-12:
1099
- arg-groups:
1100
- - {"M": 12, "efConstruction": 500}
1101
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1102
- M-16:
1103
- arg-groups:
1104
- - {"M": 16, "efConstruction": 500}
1105
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1106
- M-24:
1107
- arg-groups:
1108
- - {"M": 24, "efConstruction": 500}
1109
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1110
- M-36:
1111
- arg-groups:
1112
- - {"M": 36, "efConstruction": 500}
1113
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1114
- M-48:
1115
- arg-groups:
1116
- - {"M": 48, "efConstruction": 500}
1117
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1118
- M-64:
1119
- arg-groups:
1120
- - {"M": 64, "efConstruction": 500}
1121
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1122
- M-96:
1123
- arg-groups:
1124
- - {"M": 96, "efConstruction": 500}
1125
- query-args: [[10, 20, 40, 80, 120, 200, 400, 600, 800]]
1126
-
1127
- bit:
1128
- hamming:
1129
- mih:
1130
- docker-tag: ann-benchmarks-mih
1131
- module: ann_benchmarks.algorithms.subprocess
1132
- constructor: BitSubprocessPrepared
1133
- base-args: [["mih/bin/mihwrapper"]]
1134
- run-groups:
1135
- base:
1136
- # Note that MIH assumes that 5 <= dimension / chunks <= 37 and segfaults otherwise.
1137
- # This parameter space is explored below using the `chunk-factor`.
1138
- # A factor of 0 means that dimension / chunks = 5 which proceeds linearly to
1139
- # dimension / chunks = 37 for a factor of 1.
1140
- # The r parameter denotes a reordering with n / r steps. If r is 0, no reordering
1141
- # takes places. Otherwise, n / r points from the dataset are used for a
1142
- # re-ording process. MIH requires either r = 0 or r >= 2.
1143
- args: { "d" : "@dimension", "r" : [0, 2, 3],
1144
- "chunk-factor" : [0.2, 0.5, 0.8] }
1145
- kgraph:
1146
- docker-tag: ann-benchmarks-kgraph
1147
- module: ann_benchmarks.algorithms.kgraph
1148
- constructor: KGraph
1149
- base-args: ["euclidean"]
1150
- run-groups:
1151
- kgraph:
1152
- args: [[1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
1153
- {'reverse': -1, "K": 200, "L": 300, "S": 20}, False]
1154
- hnsw(nmslib):
1155
- docker-tag: ann-benchmarks-nmslib
1156
- module: ann_benchmarks.algorithms.nmslib
1157
- constructor: NmslibReuseIndex
1158
- base-args: ["euclidean", "hnsw"]
1159
- run-groups:
1160
- M-48:
1161
- arg-groups:
1162
- - {"M": 48, "post": 2, "efConstruction": 800}
1163
- - False
1164
- query-args: [[50, 70, 90, 120, 160, 200, 400, 600, 700, 800, 1000,
1165
- 1400, 1600, 2000]]
1166
- M-32:
1167
- arg-groups:
1168
- - {"M": 32, "post": 2, "efConstruction": 800}
1169
- - False
1170
- query-args: [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160,
1171
- 200, 300, 400, 600, 700, 800, 1000, 1200, 1400, 1600, 2000]]
1172
- M-20:
1173
- arg-groups:
1174
- - {"M": 20, "post": 0, "efConstruction": 800}
1175
- - False
1176
- query-args: [[2, 5, 10, 15, 20, 30, 40, 50, 70, 80]]
1177
- M-12:
1178
- arg-groups:
1179
- - {"M": 12, "post": 0, "efConstruction": 800}
1180
- - False
1181
- query-args: [[1, 2, 5, 10, 15, 20, 30, 40, 50, 70, 80]]
1182
- pynndescent:
1183
- docker-tag: ann-benchmarks-pynndescent
1184
- module: ann_benchmarks.algorithms.pynndescent
1185
- constructor: PyNNDescent
1186
- base-args: ["@metric"]
1187
- run-groups:
1188
- NN-20:
1189
- arg-groups:
1190
- - {"n_neighbors": [20], "diversify_prob": [0.75, 1.0],
1191
- "pruning_degree_multiplier":[1.0, 1.5], leaf_size: 32}
1192
- query-args: [[0.0, 0.01, 0.02, 0.04, 0.08, 0.12, 0.16]]
1193
- NN-40:
1194
- arg-groups:
1195
- - {"n_neighbors": [40], "diversify_prob": [0.5, 1.0],
1196
- "pruning_degree_multiplier":[1.5, 2.0], leaf_size: 48}
1197
- query-args: [[0.0, 0.04, 0.08, 0.12, 0.16, 0.20, 0.24]]
1198
- NN-80:
1199
- arg-groups:
1200
- - {"n_neighbors": [80], "diversify_prob": [0.25, 1.0],
1201
- "pruning_degree_multiplier":[1.75, 2.25], leaf_size: 64}
1202
- query-args: [[0.0, 0.08, 0.12, 0.16, 0.20, 0.24, 0.28, 0.32]]
1203
- NN-120:
1204
- arg-groups:
1205
- - {"n_neighbors": [120], "diversify_prob": [0.0, 1.0],
1206
- "pruning_degree_multiplier":[2.0, 2.5], leaf_size: 80}
1207
- query-args: [[0.08, 0.16, 0.20, 0.24, 0.28, 0.32, 0.36]]
1208
- annoy:
1209
- docker-tag: ann-benchmarks-annoy
1210
- module: ann_benchmarks.algorithms.annoy
1211
- constructor: Annoy
1212
- base-args: ["@metric"]
1213
- run-groups:
1214
- annoy:
1215
- args: [[100, 200, 400]]
1216
- query-args: [[100, 200, 400, 1000, 2000, 4000, 10000, 20000, 40000,
1217
- 100000, 200000, 400000]]
1218
- # This run group produces 3 algorithm instances -- Annoy("angular",
1219
- # 100), Annoy("angular", 200), and Annoy("angular", 400) -- each of
1220
- # which will be used to run 12 different queries.
1221
- faiss-ivf:
1222
- docker-tag: ann-benchmarks-faiss
1223
- module: ann_benchmarks.algorithms.faiss
1224
- constructor: FaissIVF
1225
- base-args: ["euclidean"]
1226
- run-groups:
1227
- base:
1228
- args: [[32,64,128,256,512,1024,2048,4096,8192]]
1229
- query-args: [[1, 5, 10, 50, 100, 200]]
1230
- jaccard:
1231
- bf:
1232
- docker-tag: ann-benchmarks-sklearn
1233
- module: ann_benchmarks.algorithms.bruteforce
1234
- constructor: BruteForceBLAS
1235
- base-args: ["@metric"]
1236
- run-groups:
1237
- base:
1238
- args: {}
1239
- datasketch:
1240
- docker-tag: ann-benchmarks-datasketch
1241
- module: ann_benchmarks.algorithms.datasketch
1242
- constructor: DataSketch
1243
- base-args: ["@metric"]
1244
- run-groups:
1245
- base:
1246
- args: [[128, 256, 512],[8, 16, 32, 64, 128]]
1247
- puffinn:
1248
- docker-tag: ann-benchmarks-puffinn
1249
- module: ann_benchmarks.algorithms.puffinn
1250
- constructor: Puffinn
1251
- base-args: ["@metric"]
1252
- run-groups:
1253
- base:
1254
- args: [
1255
- [ 16000000, 512000000],
1256
- ['1bit_minhash'],
1257
- ]
1258
- query-args: [[0.1, 0.2, 0.5, 0.7, 0.9, 0.95, 0.99]]
1259
- pynndescent:
1260
- docker-tag: ann-benchmarks-pynndescent
1261
- module: ann_benchmarks.algorithms.pynndescent
1262
- constructor: PyNNDescent
1263
- base-args: ["@metric"]
1264
- run-groups:
1265
- NN-20:
1266
- arg-groups:
1267
- - {"n_neighbors": [20], "diversify_prob": [1.0],
1268
- "pruning_degree_multiplier":[0.5, 1.0], leaf_size: 20}
1269
- query-args: [[0.0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12]]
1270
- NN-40:
1271
- arg-groups:
1272
- - {"n_neighbors": [40], "diversify_prob": [0.5, 1.0],
1273
- "pruning_degree_multiplier":[1.5], leaf_size: 25}
1274
- query-args: [[0.0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16]]
1275
- NN-80-fast:
1276
- arg-groups:
1277
- - {"n_neighbors": 80, diversify_prob: 1.0,
1278
- "pruning_degree_multiplier": 2.0, leaf_size: 20}
1279
- query-args: [[0.0, 0.02, 0.04, 0.08, 0.12, 0.16, 0.20, 0.24]]
1280
- NN-80-accurate:
1281
- arg-groups:
1282
- - {"n_neighbors": 80, diversify_prob: 0.25,
1283
- "pruning_degree_multiplier": 2.0, leaf_size: 30}
1284
- query-args: [[0.08, 0.12, 0.16, 0.20, 0.24, 0.28, 0.32, 0.36]]
1285
- NN-120-fast:
1286
- arg-groups:
1287
- - {"n_neighbors": 120, "diversify_prob": 1.0,
1288
- "pruning_degree_multiplier":2.5, leaf_size: 20}
1289
- query-args: [[0.0, 0.04, 0.08, 0.16, 0.20, 0.24, 0.28, 0.32]]
1290
- NN-120-accurate:
1291
- arg-groups:
1292
- - {"n_neighbors": 120, "diversify_prob": 0.125,
1293
- "pruning_degree_multiplier":2.5, leaf_size: 35}
1294
- query-args: [[0.16, 0.20, 0.24, 0.28, 0.32, 0.36]]