real-ladybug 0.13.0__cp311-cp311-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,131 @@
1
+ from __future__ import annotations
2
+
3
+ import multiprocessing
4
+ from dataclasses import dataclass
5
+ from typing import TYPE_CHECKING, Any
6
+
7
+ import numpy as np
8
+ import torch
9
+ from torch_geometric.data.graph_store import EdgeAttr, EdgeLayout, GraphStore
10
+
11
+ from .connection import Connection
12
+
13
+ if TYPE_CHECKING:
14
+ import sys
15
+
16
+ from torch_geometric.typing import EdgeTensorType
17
+
18
+ from .database import Database
19
+
20
+ if sys.version_info >= (3, 10):
21
+ from typing import TypeAlias
22
+ else:
23
+ from typing_extensions import TypeAlias
24
+
25
+ StoreKeyType: TypeAlias = tuple[tuple[str], Any, bool]
26
+
27
+ REL_BATCH_SIZE = 1000000
28
+
29
+
30
+ @dataclass
31
+ class Rel: # noqa: D101
32
+ edge_type: tuple[str, ...]
33
+ layout: str
34
+ is_sorted: bool
35
+ size: tuple[int, ...]
36
+ materialized: bool = False
37
+ edge_index: EdgeTensorType | None = None
38
+
39
+
40
+ class LbugGraphStore(GraphStore): # type: ignore[misc]
41
+ """Graph store compatible with `torch_geometric`."""
42
+
43
+ def __init__(self, db: Database, num_threads: int | None = None):
44
+ super().__init__()
45
+ self.db = db
46
+ self.connection: Connection | None = None
47
+ self.store: dict[StoreKeyType, Rel] = {}
48
+ if num_threads is None:
49
+ num_threads = multiprocessing.cpu_count()
50
+ self.num_threads = num_threads
51
+ self.__populate_edge_attrs()
52
+
53
+ @staticmethod
54
+ def key(attr: EdgeAttr) -> tuple[tuple[str], Any, bool]: # noqa: D102
55
+ return attr.edge_type, attr.layout.value, attr.is_sorted
56
+
57
+ def _put_edge_index(self, edge_index: EdgeTensorType, edge_attr: EdgeAttr) -> None:
58
+ key = self.key(edge_attr)
59
+ if key in self.store:
60
+ self.store[key].edge_index = edge_index
61
+ self.store[key].materialized = True
62
+ self.store[key].size = edge_attr.size
63
+ else:
64
+ self.store[key] = Rel(key[0], key[1], key[2], edge_attr.size, True, edge_index)
65
+
66
+ def _get_edge_index(self, edge_attr: EdgeAttr) -> EdgeTensorType | None:
67
+ if edge_attr.layout.value == EdgeLayout.COO.value: # noqa: SIM102
68
+ # We always return a sorted COO edge index, if the request is
69
+ # for an unsorted COO edge index, we change the is_sorted flag
70
+ # to True and return the sorted COO edge index.
71
+ if edge_attr.is_sorted is False:
72
+ edge_attr.is_sorted = True
73
+
74
+ key = self.key(edge_attr)
75
+ if key in self.store:
76
+ rel = self.store[self.key(edge_attr)]
77
+ if not rel.materialized and rel.layout != EdgeLayout.COO.value:
78
+ msg = "Only COO layout is supported"
79
+ raise ValueError(msg)
80
+
81
+ if rel.layout == EdgeLayout.COO.value:
82
+ self.__get_edge_coo_from_database(self.key(edge_attr))
83
+ return rel.edge_index
84
+ else:
85
+ return None
86
+
87
+ def _remove_edge_index(self, edge_attr: EdgeAttr) -> None:
88
+ key = self.key(edge_attr)
89
+ if key in self.store:
90
+ del self.store[key]
91
+
92
+ def get_all_edge_attrs(self) -> list[EdgeAttr]:
93
+ """Return all EdgeAttr from the store values."""
94
+ return [EdgeAttr(rel.edge_type, rel.layout, rel.is_sorted, rel.size) for rel in self.store.values()]
95
+
96
+ def __get_edge_coo_from_database(self, key: StoreKeyType) -> None:
97
+ if not self.connection:
98
+ self.connection = Connection(self.db, self.num_threads)
99
+
100
+ rel = self.store[key]
101
+ if rel.layout != EdgeLayout.COO.value:
102
+ msg = "Only COO layout is supported"
103
+ raise ValueError(msg)
104
+ if rel.materialized:
105
+ return
106
+
107
+ edge_type = rel.edge_type
108
+ num_edges = self.connection._connection.get_num_rels(edge_type[1])
109
+ result = np.empty(2 * num_edges, dtype=np.int64)
110
+ self.connection._connection.get_all_edges_for_torch_geometric(
111
+ result, edge_type[0], edge_type[1], edge_type[2], REL_BATCH_SIZE
112
+ )
113
+ edge_list = torch.from_numpy(result)
114
+ edge_list = edge_list.reshape((2, edge_list.shape[0] // 2))
115
+ rel.edge_index = edge_list
116
+ rel.materialized = True
117
+
118
+ def __populate_edge_attrs(self) -> None:
119
+ if not self.connection:
120
+ self.connection = Connection(self.db, self.num_threads)
121
+ rel_tables = self.connection._get_rel_table_names()
122
+ for rel_table in rel_tables:
123
+ edge_type = (rel_table["src"], rel_table["name"], rel_table["dst"])
124
+ size = self.__get_size(edge_type)
125
+ rel = Rel(edge_type, EdgeLayout.COO.value, True, size, False, None)
126
+ self.store[self.key(EdgeAttr(edge_type, EdgeLayout.COO, True))] = rel
127
+
128
+ def __get_size(self, edge_type: tuple[str, ...]) -> tuple[int, int]:
129
+ num_nodes = self.connection._connection.get_num_nodes # type: ignore[union-attr]
130
+ src_count, dst_count = num_nodes(edge_type[0]), num_nodes(edge_type[-1])
131
+ return (src_count, dst_count)
@@ -0,0 +1,282 @@
1
+ from __future__ import annotations
2
+
3
+ import warnings
4
+ from typing import TYPE_CHECKING, Any
5
+
6
+ from .types import Type
7
+
8
+ if TYPE_CHECKING:
9
+ import torch_geometric.data as geo
10
+
11
+ from .query_result import QueryResult
12
+
13
+ from .constants import ID, LABEL, SRC, DST
14
+
15
+
16
+ class TorchGeometricResultConverter:
17
+ """Convert graph results to `torch_geometric`."""
18
+
19
+ def __init__(self, query_result: QueryResult):
20
+ self.query_result = query_result
21
+ self.nodes_dict: dict[str, Any] = {}
22
+ self.edges_dict: dict[str, Any] = {}
23
+ self.edges_properties: dict[str | tuple[str, str], dict[str, Any]] = {}
24
+ self.rels: dict[tuple[Any, ...], dict[str, Any]] = {}
25
+ self.nodes_property_names_dict: dict[str, Any] = {}
26
+ self.table_to_label_dict: dict[int, str] = {}
27
+ self.internal_id_to_pos_dict: dict[tuple[int, int], int | None] = {}
28
+ self.pos_to_primary_key_dict: dict[str, Any] = {}
29
+ self.warning_messages: set[str] = set()
30
+ self.unconverted_properties: dict[str, Any] = {}
31
+ self.properties_to_extract = self.query_result._get_properties_to_extract()
32
+
33
+ def __get_node_property_names(self, table_name: str) -> dict[str, Any]:
34
+ if table_name in self.nodes_property_names_dict:
35
+ return self.nodes_property_names_dict[table_name]
36
+ results = self.query_result.connection._get_node_property_names(table_name)
37
+ self.nodes_property_names_dict[table_name] = results
38
+ return results
39
+
40
+ def __populate_nodes_dict_and_deduplicte_edges(self) -> None:
41
+ self.query_result.reset_iterator()
42
+ while self.query_result.has_next():
43
+ row = self.query_result.get_next()
44
+ for i in self.properties_to_extract:
45
+ column_type, _ = self.properties_to_extract[i]
46
+ if column_type == Type.NODE.value:
47
+ node = row[i]
48
+ label = node[LABEL]
49
+ nid = node[ID]
50
+ self.table_to_label_dict[nid["table"]] = label
51
+
52
+ if (nid["table"], nid["offset"]) in self.internal_id_to_pos_dict:
53
+ continue
54
+
55
+ node_property_names = self.__get_node_property_names(label)
56
+
57
+ pos, primary_key = self.__extract_properties_from_node(node, label, node_property_names)
58
+
59
+ self.internal_id_to_pos_dict[nid["table"], nid["offset"]] = pos
60
+ if label not in self.pos_to_primary_key_dict:
61
+ self.pos_to_primary_key_dict[label] = {}
62
+ self.pos_to_primary_key_dict[label][pos] = primary_key
63
+
64
+ elif column_type == Type.REL.value:
65
+ src = row[i][SRC]
66
+ dst = row[i][DST]
67
+ self.rels[src["table"], src["offset"], dst["table"], dst["offset"]] = row[i]
68
+
69
+ def __extract_properties_from_node(
70
+ self,
71
+ node: dict[str, Any],
72
+ label: str,
73
+ node_property_names: dict[str, Any],
74
+ ) -> tuple[int | None, Any]:
75
+ pos = None
76
+ import torch
77
+
78
+ for prop_name in node_property_names:
79
+ # Read primary key
80
+ if node_property_names[prop_name]["is_primary_key"]:
81
+ primary_key = node[prop_name]
82
+
83
+ # If property is already marked as unconverted, then add it directly without further checks
84
+ if label in self.unconverted_properties and prop_name in self.unconverted_properties[label]:
85
+ pos = self.__add_unconverted_property(node, label, prop_name)
86
+ continue
87
+
88
+ # Mark properties that are not supported by torch_geometric as unconverted
89
+ if node_property_names[prop_name]["type"] not in [Type.INT64.value, Type.DOUBLE.value, Type.BOOL.value]:
90
+ self.warning_messages.add(
91
+ "Property {}.{} of type {} is not supported by torch_geometric. The property is marked as unconverted.".format(
92
+ label, prop_name, node_property_names[prop_name]["type"]
93
+ )
94
+ )
95
+ self.__mark_property_unconverted(label, prop_name)
96
+ pos = self.__add_unconverted_property(node, label, prop_name)
97
+ continue
98
+ if node[prop_name] is None:
99
+ self.warning_messages.add(
100
+ f"Property {label}.{prop_name} has a null value. torch_geometric does not support null values. The property is marked as unconverted."
101
+ )
102
+ self.__mark_property_unconverted(label, prop_name)
103
+ pos = self.__add_unconverted_property(node, label, prop_name)
104
+ continue
105
+
106
+ if node_property_names[prop_name]["dimension"] == 0:
107
+ curr_value = node[prop_name]
108
+ else:
109
+ try:
110
+ if node_property_names[prop_name]["type"] == Type.INT64.value:
111
+ curr_value = torch.LongTensor(node[prop_name])
112
+ elif node_property_names[prop_name]["type"] == Type.DOUBLE.value:
113
+ curr_value = torch.FloatTensor(node[prop_name])
114
+ elif node_property_names[prop_name]["type"] == Type.BOOL.value:
115
+ curr_value = torch.BoolTensor(node[prop_name])
116
+ except ValueError:
117
+ self.warning_messages.add(
118
+ f"Property {label}.{prop_name} cannot be converted to Tensor (likely due to nested list of variable length). The property is marked as unconverted."
119
+ )
120
+ self.__mark_property_unconverted(label, prop_name)
121
+ pos = self.__add_unconverted_property(node, label, prop_name)
122
+ continue
123
+
124
+ # Check if the shape of the property is consistent
125
+ if label in self.nodes_dict and prop_name in self.nodes_dict[label]: # noqa: SIM102
126
+ # If the shape is inconsistent, then mark the property as unconverted
127
+ if curr_value.shape != self.nodes_dict[label][prop_name][0].shape:
128
+ self.warning_messages.add(
129
+ f"Property {label}.{prop_name} has an inconsistent shape. The property is marked as unconverted."
130
+ )
131
+ self.__mark_property_unconverted(label, prop_name)
132
+ pos = self.__add_unconverted_property(node, label, prop_name)
133
+ continue
134
+
135
+ # Create the dictionary for the label if it does not exist
136
+ if label not in self.nodes_dict:
137
+ self.nodes_dict[label] = {}
138
+ if prop_name not in self.nodes_dict[label]:
139
+ self.nodes_dict[label][prop_name] = []
140
+
141
+ # Add the property to the dictionary
142
+ self.nodes_dict[label][prop_name].append(curr_value)
143
+
144
+ # The pos will be overwritten for each property, but
145
+ # it should be the same for all properties
146
+ pos = len(self.nodes_dict[label][prop_name]) - 1
147
+ return pos, primary_key
148
+
149
+ def __add_unconverted_property(self, node: dict[str, Any], label: str, prop_name: str) -> int:
150
+ self.unconverted_properties[label][prop_name].append(node[prop_name])
151
+ return len(self.unconverted_properties[label][prop_name]) - 1
152
+
153
+ def __mark_property_unconverted(self, label: str, prop_name: str) -> None:
154
+ import torch
155
+
156
+ if label not in self.unconverted_properties:
157
+ self.unconverted_properties[label] = {}
158
+ if prop_name not in self.unconverted_properties[label]:
159
+ if label in self.nodes_dict and prop_name in self.nodes_dict[label]:
160
+ self.unconverted_properties[label][prop_name] = self.nodes_dict[label][prop_name]
161
+ del self.nodes_dict[label][prop_name]
162
+ if len(self.nodes_dict[label]) == 0:
163
+ del self.nodes_dict[label]
164
+ for i in range(len(self.unconverted_properties[label][prop_name])):
165
+ # If the property is a tensor, convert it back to list (consistent with the original type)
166
+ if torch.is_tensor(self.unconverted_properties[label][prop_name][i]): # type: ignore[no-untyped-call]
167
+ self.unconverted_properties[label][prop_name][i] = self.unconverted_properties[label][
168
+ prop_name
169
+ ][i].tolist()
170
+ else:
171
+ self.unconverted_properties[label][prop_name] = []
172
+
173
+ def __populate_edges_dict(self) -> None:
174
+ # Post-process edges, map internal ids to positions
175
+ for r in self.rels:
176
+ src_pos = self.internal_id_to_pos_dict[r[0], r[1]]
177
+ dst_pos = self.internal_id_to_pos_dict[r[2], r[3]]
178
+ src_label = self.table_to_label_dict[r[0]]
179
+ dst_label = self.table_to_label_dict[r[2]]
180
+ if src_label not in self.edges_dict:
181
+ self.edges_dict[src_label] = {}
182
+ if dst_label not in self.edges_dict[src_label]:
183
+ self.edges_dict[src_label][dst_label] = []
184
+ self.edges_dict[src_label][dst_label].append((src_pos, dst_pos))
185
+ curr_edge_properties = self.rels[r]
186
+ if (src_label, dst_label) not in self.edges_properties:
187
+ self.edges_properties[src_label, dst_label] = {}
188
+ for prop_name in curr_edge_properties:
189
+ if prop_name in [SRC, DST, ID]:
190
+ continue
191
+ if prop_name not in self.edges_properties[src_label, dst_label]:
192
+ self.edges_properties[src_label, dst_label][prop_name] = []
193
+ self.edges_properties[src_label, dst_label][prop_name].append(curr_edge_properties[prop_name])
194
+
195
+ def __print_warnings(self) -> None:
196
+ for message in self.warning_messages:
197
+ warnings.warn(message, stacklevel=2)
198
+
199
+ def __convert_to_torch_geometric(
200
+ self,
201
+ ) -> tuple[
202
+ geo.Data | geo.HeteroData,
203
+ dict[str, Any],
204
+ dict[str, Any],
205
+ dict[str | tuple[str, str], dict[str, Any]],
206
+ ]:
207
+ import torch
208
+ import torch_geometric
209
+
210
+ if len(self.nodes_dict) == 0:
211
+ self.warning_messages.add("No nodes found or all node properties are not converted.")
212
+
213
+ # If there is only one node type, then convert to torch_geometric.data.Data
214
+ # Otherwise, convert to torch_geometric.data.HeteroData
215
+ if len(self.nodes_dict) == 1:
216
+ data = torch_geometric.data.Data()
217
+ is_hetero = False
218
+ else:
219
+ data = torch_geometric.data.HeteroData()
220
+ is_hetero = True
221
+
222
+ # Convert nodes to tensors
223
+ converted: torch.Tensor
224
+ for label in self.nodes_dict:
225
+ for prop_name in self.nodes_dict[label]:
226
+ prop_type = self.nodes_property_names_dict[label][prop_name]["type"]
227
+ prop_dimension = self.nodes_property_names_dict[label][prop_name]["dimension"]
228
+ if prop_dimension == 0:
229
+ if prop_type == Type.INT64.value:
230
+ converted = torch.LongTensor(self.nodes_dict[label][prop_name])
231
+ elif prop_type == Type.BOOL.value:
232
+ converted = torch.BoolTensor(self.nodes_dict[label][prop_name])
233
+ elif prop_type == Type.DOUBLE.value:
234
+ converted = torch.FloatTensor(self.nodes_dict[label][prop_name])
235
+ else:
236
+ converted = torch.stack(self.nodes_dict[label][prop_name], dim=0)
237
+ if is_hetero:
238
+ data[label][prop_name] = converted
239
+ else:
240
+ data[prop_name] = converted
241
+
242
+ # Convert edges to tensors
243
+ for src_label in self.edges_dict:
244
+ for dst_label in self.edges_dict[src_label]:
245
+ edge_idx = torch.tensor(self.edges_dict[src_label][dst_label], dtype=torch.long).t().contiguous()
246
+ if is_hetero:
247
+ data[src_label, dst_label].edge_index = edge_idx
248
+ else:
249
+ data.edge_index = edge_idx
250
+
251
+ pos_to_primary_key_dict: dict[str, Any] = (
252
+ self.pos_to_primary_key_dict[label] if not is_hetero else self.pos_to_primary_key_dict
253
+ )
254
+
255
+ if is_hetero:
256
+ unconverted_properties = self.unconverted_properties
257
+ edge_properties = self.edges_properties
258
+ else:
259
+ if len(self.unconverted_properties) == 0:
260
+ unconverted_properties = {}
261
+ else:
262
+ unconverted_properties = self.unconverted_properties[next(iter(self.unconverted_properties))]
263
+ if len(self.edges_properties) == 0:
264
+ edge_properties = {}
265
+ else:
266
+ edge_properties = self.edges_properties[next(iter(self.edges_properties))] # type: ignore[assignment]
267
+ return data, pos_to_primary_key_dict, unconverted_properties, edge_properties
268
+
269
+ def get_as_torch_geometric(
270
+ self,
271
+ ) -> tuple[
272
+ geo.Data | geo.HeteroData,
273
+ dict[str, Any],
274
+ dict[str, Any],
275
+ dict[str | tuple[str, str], dict[str, Any]],
276
+ ]:
277
+ """Convert graph data to `torch_geometric`."""
278
+ self.__populate_nodes_dict_and_deduplicte_edges()
279
+ self.__populate_edges_dict()
280
+ result = self.__convert_to_torch_geometric()
281
+ self.__print_warnings()
282
+ return result
real_ladybug/types.py ADDED
@@ -0,0 +1,39 @@
1
+ from enum import Enum
2
+
3
+
4
+ class Type(Enum):
5
+ """The type of a value in the database."""
6
+
7
+ ANY = "ANY"
8
+ NODE = "NODE"
9
+ REL = "REL"
10
+ RECURSIVE_REL = "RECURSIVE_REL"
11
+ SERIAL = "SERIAL"
12
+ BOOL = "BOOL"
13
+ INT64 = "INT64"
14
+ INT32 = "INT32"
15
+ INT16 = "INT16"
16
+ INT8 = "INT8"
17
+ UINT64 = "UINT64"
18
+ UINT32 = "UINT32"
19
+ UINT16 = "UINT16"
20
+ UINT8 = "UINT8"
21
+ INT128 = "INT128"
22
+ DOUBLE = "DOUBLE"
23
+ FLOAT = "FLOAT"
24
+ DATE = "DATE"
25
+ TIMESTAMP = "TIMESTAMP"
26
+ TIMSTAMP_TZ = "TIMESTAMP_TZ"
27
+ TIMESTAMP_NS = "TIMESTAMP_NS"
28
+ TIMESTAMP_MS = "TIMESTAMP_MS"
29
+ TIMESTAMP_SEC = "TIMESTAMP_SEC"
30
+ INTERVAL = "INTERVAL"
31
+ INTERNAL_ID = "INTERNAL_ID"
32
+ STRING = "STRING"
33
+ BLOB = "BLOB"
34
+ UUID = "UUID"
35
+ LIST = "LIST"
36
+ ARRAY = "ARRAY"
37
+ STRUCT = "STRUCT"
38
+ MAP = "MAP"
39
+ UNION = "UNION"
@@ -0,0 +1,98 @@
1
+ Metadata-Version: 2.4
2
+ Name: real_ladybug
3
+ Version: 0.13.0
4
+ Summary: Highly scalable, extremely fast, easy-to-use embeddable graph database
5
+ Home-page: https://github.com/lbugdb/lbug
6
+ License: MIT
7
+ Project-URL: Homepage, https://ladybugdb.com/
8
+ Project-URL: Documentation, https://docs.ladybugdb.com/
9
+ Project-URL: Repository, https://github.com/lbugdb/lbug
10
+ Project-URL: Changelog, https://github.com/LadybugDB/ladybug/releases
11
+ Keywords: graph,database
12
+ Description-Content-Type: text/markdown
13
+ License-File: LICENSE
14
+ Provides-Extra: dev
15
+ Requires-Dist: networkx~=3.0; extra == "dev"
16
+ Requires-Dist: numpy~=2.0; extra == "dev"
17
+ Requires-Dist: pandas~=2.2; extra == "dev"
18
+ Requires-Dist: polars~=1.30; extra == "dev"
19
+ Requires-Dist: pyarrow~=20.0; extra == "dev"
20
+ Requires-Dist: pybind11~=2.13; extra == "dev"
21
+ Requires-Dist: pytest; extra == "dev"
22
+ Requires-Dist: pytest-asyncio~=1.0; extra == "dev"
23
+ Requires-Dist: setuptools~=80.9; extra == "dev"
24
+ Requires-Dist: ruff==0.11.12; extra == "dev"
25
+ Requires-Dist: mypy==1.16.0; extra == "dev"
26
+ Requires-Dist: torch>=2.5.0; extra == "dev"
27
+ Requires-Dist: torch-geometric>=2.5.0; extra == "dev"
28
+ Dynamic: license-file
29
+
30
+ <div align="center">
31
+ <picture>
32
+ <!-- <source srcset="https://ladybugdb.com/img/lbug-logo-dark.png" media="(prefers-color-scheme: dark)"> -->
33
+ <img src="https://ladybugdb.com/logo.png" height="100" alt="Ladybug Logo">
34
+ </picture>
35
+ </div>
36
+
37
+ <br>
38
+
39
+ <p align="center">
40
+ <a href="https://github.com/LadybugDB/ladybug/actions">
41
+ <img src="https://github.com/LadybugDB/ladybug/actions/workflows/ci-workflow.yml/badge.svg?branch=master" alt="Github Actions Badge"></a>
42
+ <a href="https://discord.com/invite/hXyHmvW3Vy">
43
+ <img src="https://img.shields.io/discord/1162999022819225631?logo=discord" alt="discord" /></a>
44
+ <a href="https://twitter.com/lbugdb">
45
+ <img src="https://img.shields.io/badge/follow-@lbugdb-1DA1F2?logo=twitter" alt="twitter"></a>
46
+ </p>
47
+
48
+ # Ladybug
49
+ Ladybug is an embedded graph database built for query speed and scalability. Ladybug is optimized for handling complex analytical workloads
50
+ on very large databases and provides a set of retrieval features, such as a full text search and vector indices. Our core feature set includes:
51
+
52
+ - Flexible Property Graph Data Model and Cypher query language
53
+ - Embeddable, serverless integration into applications
54
+ - Native full text search and vector index
55
+ - Columnar disk-based storage
56
+ - Columnar sparse row-based (CSR) adjacency list/join indices
57
+ - Vectorized and factorized query processor
58
+ - Novel and very fast join algorithms
59
+ - Multi-core query parallelism
60
+ - Serializable ACID transactions
61
+ - Wasm (WebAssembly) bindings for fast, secure execution in the browser
62
+
63
+ Ladybug is being developed by [LadybugDB Developers](https://github.com/LadybugDB) and
64
+ is available under a permissible license. So try it out and help us make it better! We welcome your feedback and feature requests.
65
+
66
+ The database was formerly known as [Kuzu](https://github.com/kuzudb/kuzu).
67
+
68
+ ## Installation
69
+
70
+ | Language | Installation |
71
+ | -------- |------------------------------------------------------------------------|
72
+ | Python | `pip install real_ladybug` |
73
+ | NodeJS | `npm install lbug` |
74
+ | Rust | `cargo add lbug` |
75
+ | Go | `go get github.com/lbugdb/go-ladybug` |
76
+ | Swift | [lbug-swift](https://github.com/lbugdb/swift-ladybug) |
77
+ | Java | [Maven Central](https://central.sonatype.com/artifact/com.ladybugdb/lbug) |
78
+ | C/C++ | [precompiled binaries](https://github.com/LadybugDB/ladybug/releases/latest) |
79
+ | CLI | [precompiled binaries](https://github.com/LadybugDB/ladybug/releases/latest) |
80
+
81
+ To learn more about installation, see our [Installation](https://docs.ladybugdb.com/installation) page.
82
+
83
+ ## Getting Started
84
+
85
+ Refer to our [Getting Started](https://docs.ladybugdb.com/get-started/) page for your first example.
86
+
87
+ ## Build from Source
88
+
89
+ You can build from source using the instructions provided in the [developer guide](https://docs.ladybugdb.com/developer-guide/).
90
+
91
+ ## Contributing
92
+ We welcome contributions to Ladybug. If you are interested in contributing to Ladybug, please read our [Contributing Guide](CONTRIBUTING.md).
93
+
94
+ ## License
95
+ By contributing to Ladybug, you agree that your contributions will be licensed under the [MIT License](LICENSE).
96
+
97
+ ## Contact
98
+ You can contact us at [social@ladybugdb.com](mailto:social@ladybugdb.com) or [join our Discord community](https://discord.com/invite/hXyHmvW3Vy).
@@ -0,0 +1,19 @@
1
+ real_ladybug-0.13.0.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
2
+ real_ladybug-0.13.0.dist-info/RECORD,,
3
+ real_ladybug-0.13.0.dist-info/WHEEL,sha256=sunMa2yiYbrNLGeMVDqEA0ayyJbHlex7SCn1TZrEq60,136
4
+ real_ladybug-0.13.0.dist-info/top_level.txt,sha256=AlSi90zu5eTgGxwOy3ic5x5oA7jwlEKo3daBaOw2c7g,13
5
+ real_ladybug-0.13.0.dist-info/METADATA,sha256=2pyMGNDa6VbwcpQJOouKJNegCWq6Pq2p43OOohm7F7s,4694
6
+ real_ladybug-0.13.0.dist-info/licenses/LICENSE,sha256=x6ySSxUOwYqdnHE2qM1TO8-jMQnqe0t3EuqVKiRRhrA,1072
7
+ real_ladybug/query_result.py,sha256=VCe4JVT5vvnFoqZSJ-qsRk8aylH7Nd1lYuJXiJ_Ql_A,16690
8
+ real_ladybug/async_connection.py,sha256=_64aLqmE9MkMAOy7qh99WY5urYbSDZcsLesqlVFiyUs,7465
9
+ real_ladybug/database.py,sha256=cuNAR3kyiS4HRUtElh-MdceWmpsF7Kuj2McOLWjen4c,11156
10
+ real_ladybug/constants.py,sha256=IzrMthj1ekgloHGqaI_F-hGLLUK8vHbUvH59Cl7YxJE,133
11
+ real_ladybug/__init__.py,sha256=lcW8k4wxuQisQ7in7YRy8B60JoevKfThSBwAlp3kT-8,2244
12
+ real_ladybug/types.py,sha256=T5i3eO5Gj4vRo0g2U3FJD1mSZXLoV37gXHQGaCxMEmU,839
13
+ real_ladybug/connection.py,sha256=IrPjgz1odgsS4dlFZign9ccU6AQHT96bwDoZqxYJW_I,10379
14
+ real_ladybug/torch_geometric_feature_store.py,sha256=ek_R6bLi8u8vM8lL-qn-qS5cDak_2AhxwtYLFnUzjjM,7586
15
+ real_ladybug/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
16
+ real_ladybug/prepared_statement.py,sha256=5m_ZZ5Sdqpo-SxnG6RZEsxIu3hfXxl-ave06OSGXz7E,1397
17
+ real_ladybug/torch_geometric_result_converter.py,sha256=L1KG9DnfgrMVpRIvU80Jzry1FahP6cCBMlxZroBk2CA,13476
18
+ real_ladybug/_lbug.cpython-311-darwin.so,sha256=3ZInLG9_eOOgGWv5Q5O6MDSXaB_pvq0W6yiO7Ix-atY,11510968
19
+ real_ladybug/torch_geometric_graph_store.py,sha256=8IdZy_D3Pc9le_rJo1cn_hBqqmRZNHeWc8fV1mMcwQs,4893
@@ -0,0 +1,6 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.9.0)
3
+ Root-Is-Purelib: false
4
+ Tag: cp311-cp311-macosx_11_0_arm64
5
+ Generator: delocate 0.13.0
6
+
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2022-2025 Kùzu Inc.
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1 @@
1
+ real_ladybug
@@ -0,0 +1 @@
1
+