rcsb-embedding-model 0.0.7__py3-none-any.whl → 0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of rcsb-embedding-model might be problematic. Click here for more details.
- rcsb_embedding_model/cli/inference.py +125 -29
- rcsb_embedding_model/dataset/esm_prot_from_chain.py +102 -0
- rcsb_embedding_model/dataset/esm_prot_from_structure.py +63 -0
- rcsb_embedding_model/dataset/resdiue_assembly_embedding_from_structure.py +68 -0
- rcsb_embedding_model/dataset/residue_assembly_embedding_from_tensor_file.py +94 -0
- rcsb_embedding_model/dataset/residue_embedding_from_tensor_file.py +43 -0
- rcsb_embedding_model/inference/assembly_inferece.py +53 -0
- rcsb_embedding_model/inference/chain_inference.py +12 -8
- rcsb_embedding_model/inference/esm_inference.py +18 -8
- rcsb_embedding_model/inference/structure_inference.py +22 -12
- rcsb_embedding_model/rcsb_structure_embedding.py +5 -5
- rcsb_embedding_model/types/api_types.py +27 -5
- rcsb_embedding_model/utils/data.py +30 -0
- rcsb_embedding_model/utils/structure_parser.py +39 -9
- rcsb_embedding_model/utils/structure_provider.py +27 -0
- {rcsb_embedding_model-0.0.7.dist-info → rcsb_embedding_model-0.0.8.dist-info}/METADATA +13 -10
- rcsb_embedding_model-0.0.8.dist-info/RECORD +29 -0
- rcsb_embedding_model/dataset/esm_prot_from_csv.py +0 -90
- rcsb_embedding_model/dataset/residue_embedding_from_csv.py +0 -32
- rcsb_embedding_model-0.0.7.dist-info/RECORD +0 -24
- {rcsb_embedding_model-0.0.7.dist-info → rcsb_embedding_model-0.0.8.dist-info}/WHEEL +0 -0
- {rcsb_embedding_model-0.0.7.dist-info → rcsb_embedding_model-0.0.8.dist-info}/entry_points.txt +0 -0
- {rcsb_embedding_model-0.0.7.dist-info → rcsb_embedding_model-0.0.8.dist-info}/licenses/LICENSE.md +0 -0
|
@@ -1,9 +1,11 @@
|
|
|
1
|
+
import sys
|
|
1
2
|
from typing import Annotated, List
|
|
2
3
|
|
|
3
4
|
import typer
|
|
4
5
|
|
|
5
6
|
from rcsb_embedding_model.cli.args_utils import arg_devices
|
|
6
|
-
from rcsb_embedding_model.types.api_types import
|
|
7
|
+
from rcsb_embedding_model.types.api_types import StructureFormat, Accelerator, SrcLocation, SrcProteinFrom, \
|
|
8
|
+
StructureLocation, SrcAssemblyFrom
|
|
7
9
|
|
|
8
10
|
app = typer.Typer(
|
|
9
11
|
add_completion=False
|
|
@@ -12,7 +14,7 @@ app = typer.Typer(
|
|
|
12
14
|
|
|
13
15
|
@app.command(
|
|
14
16
|
name="residue-embedding",
|
|
15
|
-
help="Calculate residue level embeddings of protein structures using ESM3."
|
|
17
|
+
help="Calculate residue level embeddings of protein structures using ESM3. Predictions are stored as torch tensor files."
|
|
16
18
|
)
|
|
17
19
|
def residue_embedding(
|
|
18
20
|
src_file: Annotated[typer.FileText, typer.Option(
|
|
@@ -20,21 +22,27 @@ def residue_embedding(
|
|
|
20
22
|
file_okay=True,
|
|
21
23
|
dir_okay=False,
|
|
22
24
|
resolve_path=True,
|
|
23
|
-
help='CSV file 3 columns: Structure File Path | Chain Id (asym_i for cif files) | Output
|
|
25
|
+
help='CSV file 4 (or 3) columns: Structure Name | Structure File Path | Chain Id (asym_i for cif files. This field is required if src-from=chain) | Output Embedding Name.'
|
|
24
26
|
)],
|
|
25
27
|
output_path: Annotated[typer.FileText, typer.Option(
|
|
26
28
|
exists=True,
|
|
27
29
|
file_okay=False,
|
|
28
30
|
dir_okay=True,
|
|
29
31
|
resolve_path=True,
|
|
30
|
-
help='Output path to store predictions.'
|
|
32
|
+
help='Output path to store predictions. Embeddings are stored as torch tensor files.'
|
|
31
33
|
)],
|
|
32
|
-
|
|
33
|
-
help='
|
|
34
|
-
)] =
|
|
35
|
-
|
|
34
|
+
src_from: Annotated[SrcProteinFrom, typer.Option(
|
|
35
|
+
help='Use specific chains or all chains in a structure.'
|
|
36
|
+
)] = SrcProteinFrom.chain,
|
|
37
|
+
structure_location: Annotated[StructureLocation, typer.Option(
|
|
38
|
+
help='Structure file location.'
|
|
39
|
+
)] = StructureLocation.local,
|
|
40
|
+
structure_format: Annotated[StructureFormat, typer.Option(
|
|
36
41
|
help='Structure file format.'
|
|
37
|
-
)] =
|
|
42
|
+
)] = StructureFormat.mmcif,
|
|
43
|
+
min_res_n: Annotated[int, typer.Option(
|
|
44
|
+
help='When using all chains in a structure, consider only chains with more than <min_res_n> residues.'
|
|
45
|
+
)] = 0,
|
|
38
46
|
batch_size: Annotated[int, typer.Option(
|
|
39
47
|
help='Number of samples processed together in one iteration.'
|
|
40
48
|
)] = 1,
|
|
@@ -53,9 +61,12 @@ def residue_embedding(
|
|
|
53
61
|
):
|
|
54
62
|
from rcsb_embedding_model.inference.esm_inference import predict
|
|
55
63
|
predict(
|
|
56
|
-
|
|
57
|
-
src_location=
|
|
58
|
-
|
|
64
|
+
src_stream=src_file,
|
|
65
|
+
src_location=SrcLocation.local,
|
|
66
|
+
src_from=src_from,
|
|
67
|
+
structure_location=structure_location,
|
|
68
|
+
structure_format=structure_format,
|
|
69
|
+
min_res_n=min_res_n,
|
|
59
70
|
batch_size=batch_size,
|
|
60
71
|
num_workers=num_workers,
|
|
61
72
|
num_nodes=num_nodes,
|
|
@@ -67,7 +78,7 @@ def residue_embedding(
|
|
|
67
78
|
|
|
68
79
|
@app.command(
|
|
69
80
|
name="structure-embedding",
|
|
70
|
-
help="Calculate single-chain protein embeddings from structural files. Predictions are stored in a single pandas
|
|
81
|
+
help="Calculate single-chain protein embeddings from structural files. Predictions are stored in a single pandas DataFrame file."
|
|
71
82
|
)
|
|
72
83
|
def structure_embedding(
|
|
73
84
|
src_file: Annotated[typer.FileText, typer.Option(
|
|
@@ -75,24 +86,30 @@ def structure_embedding(
|
|
|
75
86
|
file_okay=True,
|
|
76
87
|
dir_okay=False,
|
|
77
88
|
resolve_path=True,
|
|
78
|
-
help='CSV file 3 columns: Structure File Path | Chain Id (asym_i for cif files) | Output
|
|
89
|
+
help='CSV file 4 (or 3) columns: Structure Name | Structure File Path | Chain Id (asym_i for cif files. This field is required if src-from=chain) | Output Embedding Name.'
|
|
79
90
|
)],
|
|
80
91
|
output_path: Annotated[typer.FileText, typer.Option(
|
|
81
92
|
exists=True,
|
|
82
93
|
file_okay=False,
|
|
83
94
|
dir_okay=True,
|
|
84
95
|
resolve_path=True,
|
|
85
|
-
help='Output path to store predictions.'
|
|
96
|
+
help='Output path to store predictions. Embeddings are stored as a single DataFrame file (see out-df-name).'
|
|
86
97
|
)],
|
|
87
|
-
|
|
88
|
-
help='File name
|
|
98
|
+
out_df_name: Annotated[str, typer.Option(
|
|
99
|
+
help='File name (without extension) for storing embeddings as a pandas DataFrame pickle (.pkl). The DataFrame contains 2 columns: Id | Embedding'
|
|
89
100
|
)],
|
|
90
|
-
|
|
101
|
+
src_from: Annotated[SrcProteinFrom, typer.Option(
|
|
102
|
+
help='Use specific chains or all chains in a structure.'
|
|
103
|
+
)] = SrcProteinFrom.chain,
|
|
104
|
+
structure_location: Annotated[StructureLocation, typer.Option(
|
|
91
105
|
help='Source input location.'
|
|
92
|
-
)] =
|
|
93
|
-
|
|
106
|
+
)] = StructureLocation.local,
|
|
107
|
+
structure_format: Annotated[StructureFormat, typer.Option(
|
|
94
108
|
help='Structure file format.'
|
|
95
|
-
)] =
|
|
109
|
+
)] = StructureFormat.mmcif,
|
|
110
|
+
min_res_n: Annotated[int, typer.Option(
|
|
111
|
+
help='When using all chains in a structure, consider only chains with more than <min_res_n> residues.'
|
|
112
|
+
)] = 0,
|
|
96
113
|
batch_size: Annotated[int, typer.Option(
|
|
97
114
|
help='Number of samples processed together in one iteration.'
|
|
98
115
|
)] = 1,
|
|
@@ -111,22 +128,25 @@ def structure_embedding(
|
|
|
111
128
|
):
|
|
112
129
|
from rcsb_embedding_model.inference.structure_inference import predict
|
|
113
130
|
predict(
|
|
114
|
-
|
|
115
|
-
src_location=
|
|
116
|
-
|
|
131
|
+
src_stream=src_file,
|
|
132
|
+
src_location=SrcLocation.local,
|
|
133
|
+
src_from=src_from,
|
|
134
|
+
structure_location=structure_location,
|
|
135
|
+
structure_format=structure_format,
|
|
136
|
+
min_res_n=min_res_n,
|
|
117
137
|
batch_size=batch_size,
|
|
118
138
|
num_workers=num_workers,
|
|
119
139
|
num_nodes=num_nodes,
|
|
120
140
|
accelerator=accelerator,
|
|
121
141
|
devices=arg_devices(devices),
|
|
122
142
|
out_path=output_path,
|
|
123
|
-
|
|
143
|
+
out_df_name=out_df_name
|
|
124
144
|
)
|
|
125
145
|
|
|
126
146
|
|
|
127
147
|
@app.command(
|
|
128
148
|
name="chain-embedding",
|
|
129
|
-
help="Calculate single-chain protein embeddings from residue level embeddings stored as torch tensor files."
|
|
149
|
+
help="Calculate single-chain protein embeddings from residue level embeddings stored as torch tensor files. Predictions are stored as csv files."
|
|
130
150
|
)
|
|
131
151
|
def chain_embedding(
|
|
132
152
|
src_file: Annotated[typer.FileText, typer.Option(
|
|
@@ -134,14 +154,14 @@ def chain_embedding(
|
|
|
134
154
|
file_okay=True,
|
|
135
155
|
dir_okay=False,
|
|
136
156
|
resolve_path=True,
|
|
137
|
-
help='CSV file 2 columns: Residue
|
|
157
|
+
help='CSV file 2 columns: Residue embedding torch tensor file | Output embedding name.'
|
|
138
158
|
)],
|
|
139
159
|
output_path: Annotated[typer.FileText, typer.Option(
|
|
140
160
|
exists=True,
|
|
141
161
|
file_okay=False,
|
|
142
162
|
dir_okay=True,
|
|
143
163
|
resolve_path=True,
|
|
144
|
-
help='Output path to store predictions.'
|
|
164
|
+
help='Output path to store predictions. Embeddings are stored as csv files.'
|
|
145
165
|
)],
|
|
146
166
|
batch_size: Annotated[int, typer.Option(
|
|
147
167
|
help='Number of samples processed together in one iteration.'
|
|
@@ -161,7 +181,83 @@ def chain_embedding(
|
|
|
161
181
|
):
|
|
162
182
|
from rcsb_embedding_model.inference.chain_inference import predict
|
|
163
183
|
predict(
|
|
164
|
-
|
|
184
|
+
src_stream=src_file,
|
|
185
|
+
src_location=SrcLocation.local,
|
|
186
|
+
batch_size=batch_size,
|
|
187
|
+
num_workers=num_workers,
|
|
188
|
+
num_nodes=num_nodes,
|
|
189
|
+
accelerator=accelerator,
|
|
190
|
+
devices=arg_devices(devices),
|
|
191
|
+
out_path=output_path
|
|
192
|
+
)
|
|
193
|
+
|
|
194
|
+
@app.command(
|
|
195
|
+
name="assembly-embedding",
|
|
196
|
+
help="Calculate assembly embeddings from residue level embeddings stored as torch tensor files. Predictions are stored as csv files."
|
|
197
|
+
)
|
|
198
|
+
def assembly_embedding(
|
|
199
|
+
src_file: Annotated[typer.FileText, typer.Option(
|
|
200
|
+
exists=True,
|
|
201
|
+
file_okay=True,
|
|
202
|
+
dir_okay=False,
|
|
203
|
+
resolve_path=True,
|
|
204
|
+
help='CSV file 4 columns: Structure Name | Structure File Path | Assembly Id | Output embedding name.'
|
|
205
|
+
)],
|
|
206
|
+
res_embedding_location: Annotated[typer.FileText, typer.Option(
|
|
207
|
+
exists=True,
|
|
208
|
+
file_okay=False,
|
|
209
|
+
dir_okay=True,
|
|
210
|
+
resolve_path=True,
|
|
211
|
+
help='Path where residue level embeddings for single chains are located.'
|
|
212
|
+
)],
|
|
213
|
+
output_path: Annotated[typer.FileText, typer.Option(
|
|
214
|
+
exists=True,
|
|
215
|
+
file_okay=False,
|
|
216
|
+
dir_okay=True,
|
|
217
|
+
resolve_path=True,
|
|
218
|
+
help='Output path to store predictions. Embeddings are stored as csv files.'
|
|
219
|
+
)],
|
|
220
|
+
src_from: Annotated[SrcAssemblyFrom, typer.Option(
|
|
221
|
+
help='Use specific assembly or all assemblies in a structure.'
|
|
222
|
+
)] = SrcAssemblyFrom.assembly,
|
|
223
|
+
structure_location: Annotated[StructureLocation, typer.Option(
|
|
224
|
+
help='Source input location.'
|
|
225
|
+
)] = StructureLocation.local,
|
|
226
|
+
structure_format: Annotated[StructureFormat, typer.Option(
|
|
227
|
+
help='Structure file format.'
|
|
228
|
+
)] = StructureFormat.mmcif,
|
|
229
|
+
min_res_n: Annotated[int, typer.Option(
|
|
230
|
+
help='Consider only assembly chains with more than <min_res_n> residues.'
|
|
231
|
+
)] = 0,
|
|
232
|
+
max_res_n: Annotated[int, typer.Option(
|
|
233
|
+
help='Stop adding assembly chains when number of residues is greater than <max_res_n> residues.'
|
|
234
|
+
)] = sys.maxsize,
|
|
235
|
+
batch_size: Annotated[int, typer.Option(
|
|
236
|
+
help='Number of samples processed together in one iteration.'
|
|
237
|
+
)] = 1,
|
|
238
|
+
num_workers: Annotated[int, typer.Option(
|
|
239
|
+
help='Number of subprocesses to use for data loading.'
|
|
240
|
+
)] = 0,
|
|
241
|
+
num_nodes: Annotated[int, typer.Option(
|
|
242
|
+
help='Number of nodes to use for inference.'
|
|
243
|
+
)] = 1,
|
|
244
|
+
accelerator: Annotated[Accelerator, typer.Option(
|
|
245
|
+
help='Device used for inference.'
|
|
246
|
+
)] = Accelerator.auto,
|
|
247
|
+
devices: Annotated[List[str], typer.Option(
|
|
248
|
+
help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
|
|
249
|
+
)] = tuple(['auto'])
|
|
250
|
+
):
|
|
251
|
+
from rcsb_embedding_model.inference.assembly_inferece import predict
|
|
252
|
+
predict(
|
|
253
|
+
src_stream=src_file,
|
|
254
|
+
res_embedding_location=res_embedding_location,
|
|
255
|
+
src_location=SrcLocation.local,
|
|
256
|
+
src_from=src_from,
|
|
257
|
+
structure_location=structure_location,
|
|
258
|
+
structure_format=structure_format,
|
|
259
|
+
min_res_n=min_res_n,
|
|
260
|
+
max_res_n=max_res_n,
|
|
165
261
|
batch_size=batch_size,
|
|
166
262
|
num_workers=num_workers,
|
|
167
263
|
num_nodes=num_nodes,
|
|
@@ -0,0 +1,102 @@
|
|
|
1
|
+
import argparse
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from biotite.structure import chain_iter
|
|
5
|
+
from esm.models.esm3 import ESM3
|
|
6
|
+
from esm.sdk.api import ESMProtein, SamplingConfig
|
|
7
|
+
from esm.utils.constants.models import ESM3_OPEN_SMALL
|
|
8
|
+
from esm.utils.structure.protein_chain import ProteinChain
|
|
9
|
+
from torch.utils.data import Dataset, DataLoader
|
|
10
|
+
import pandas as pd
|
|
11
|
+
|
|
12
|
+
from rcsb_embedding_model.types.api_types import StructureFormat, StructureLocation, SrcLocation
|
|
13
|
+
from rcsb_embedding_model.utils.data import stringio_from_url
|
|
14
|
+
from rcsb_embedding_model.utils.structure_parser import rename_atom_ch
|
|
15
|
+
from rcsb_embedding_model.utils.structure_provider import StructureProvider
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class EsmProtFromChain(Dataset):
|
|
19
|
+
|
|
20
|
+
STREAM_NAME_ATTR = 'stream_name'
|
|
21
|
+
STREAM_ATTR = 'stream'
|
|
22
|
+
CH_ATTR = 'chain_id'
|
|
23
|
+
ITEM_NAME_ATTR = 'item_name'
|
|
24
|
+
|
|
25
|
+
COLUMNS = [STREAM_NAME_ATTR, STREAM_ATTR, CH_ATTR, ITEM_NAME_ATTR]
|
|
26
|
+
|
|
27
|
+
def __init__(
|
|
28
|
+
self,
|
|
29
|
+
src_stream,
|
|
30
|
+
src_location=SrcLocation.local,
|
|
31
|
+
structure_location=StructureLocation.local,
|
|
32
|
+
structure_format=StructureFormat.mmcif,
|
|
33
|
+
structure_provider=StructureProvider()
|
|
34
|
+
):
|
|
35
|
+
super().__init__()
|
|
36
|
+
self.__structure_provider = structure_provider
|
|
37
|
+
self.src_location = src_location
|
|
38
|
+
self.structure_location = structure_location
|
|
39
|
+
self.structure_format = structure_format
|
|
40
|
+
self.data = pd.DataFrame()
|
|
41
|
+
self.__load_stream(src_stream)
|
|
42
|
+
|
|
43
|
+
def __load_stream(self, src_stream):
|
|
44
|
+
self.data = pd.DataFrame(
|
|
45
|
+
src_stream,
|
|
46
|
+
dtype=str,
|
|
47
|
+
columns=EsmProtFromChain.COLUMNS
|
|
48
|
+
) if self.src_location == SrcLocation.stream else pd.read_csv(
|
|
49
|
+
src_stream,
|
|
50
|
+
header=None,
|
|
51
|
+
index_col=None,
|
|
52
|
+
dtype=str,
|
|
53
|
+
names=EsmProtFromChain.COLUMNS
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
def __len__(self):
|
|
57
|
+
return len(self.data)
|
|
58
|
+
|
|
59
|
+
def __getitem__(self, idx):
|
|
60
|
+
src_name = self.data.loc[idx, EsmProtFromChain.STREAM_NAME_ATTR]
|
|
61
|
+
src_structure = self.data.loc[idx, EsmProtFromChain.STREAM_ATTR]
|
|
62
|
+
chain_id = self.data.loc[idx, EsmProtFromChain.CH_ATTR]
|
|
63
|
+
item_name = self.data.loc[idx, EsmProtFromChain.ITEM_NAME_ATTR]
|
|
64
|
+
structure = self.__structure_provider.get_structure(
|
|
65
|
+
src_name=src_name,
|
|
66
|
+
src_structure=stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure,
|
|
67
|
+
structure_format=self.structure_format,
|
|
68
|
+
chain_id=chain_id
|
|
69
|
+
)
|
|
70
|
+
for atom_ch in chain_iter(structure):
|
|
71
|
+
protein_chain = ProteinChain.from_atomarray(rename_atom_ch(atom_ch))
|
|
72
|
+
return ESMProtein.from_protein_chain(protein_chain), item_name
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
if __name__ == '__main__':
|
|
76
|
+
|
|
77
|
+
parser = argparse.ArgumentParser()
|
|
78
|
+
parser.add_argument('--file_list', type=argparse.FileType('r'), required=True)
|
|
79
|
+
args = parser.parse_args()
|
|
80
|
+
|
|
81
|
+
dataset = EsmProtFromChain(
|
|
82
|
+
args.file_list
|
|
83
|
+
)
|
|
84
|
+
|
|
85
|
+
esm3 = ESM3.from_pretrained(
|
|
86
|
+
ESM3_OPEN_SMALL,
|
|
87
|
+
torch.device("cpu")
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
dataloader = DataLoader(
|
|
91
|
+
dataset,
|
|
92
|
+
batch_size=2,
|
|
93
|
+
collate_fn=lambda _: _
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
for _batch in dataloader:
|
|
97
|
+
for esm_prot, prot_name in _batch:
|
|
98
|
+
protein_tensor = esm3.encode(esm_prot)
|
|
99
|
+
embeddings = esm3.forward_and_sample(
|
|
100
|
+
protein_tensor, SamplingConfig(return_per_residue_embeddings=True)
|
|
101
|
+
).per_residue_embedding
|
|
102
|
+
print(prot_name, embeddings.shape)
|
|
@@ -0,0 +1,63 @@
|
|
|
1
|
+
|
|
2
|
+
import pandas as pd
|
|
3
|
+
|
|
4
|
+
from rcsb_embedding_model.dataset.esm_prot_from_chain import EsmProtFromChain
|
|
5
|
+
from rcsb_embedding_model.types.api_types import StructureLocation, StructureFormat, SrcLocation
|
|
6
|
+
from rcsb_embedding_model.utils.data import stringio_from_url
|
|
7
|
+
from rcsb_embedding_model.utils.structure_parser import get_protein_chains
|
|
8
|
+
from rcsb_embedding_model.utils.structure_provider import StructureProvider
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class EsmProtFromStructure(EsmProtFromChain):
|
|
12
|
+
|
|
13
|
+
STREAM_NAME_ATTR = 'stream_name'
|
|
14
|
+
STREAM_ATTR = 'stream'
|
|
15
|
+
ITEM_NAME_ATTR = 'item_name'
|
|
16
|
+
|
|
17
|
+
COLUMNS = [STREAM_NAME_ATTR, STREAM_ATTR, ITEM_NAME_ATTR]
|
|
18
|
+
|
|
19
|
+
def __init__(
|
|
20
|
+
self,
|
|
21
|
+
src_stream,
|
|
22
|
+
src_location=SrcLocation.local,
|
|
23
|
+
structure_location=StructureLocation.local,
|
|
24
|
+
structure_format=StructureFormat.mmcif,
|
|
25
|
+
min_res_n=0,
|
|
26
|
+
structure_provider=StructureProvider()
|
|
27
|
+
):
|
|
28
|
+
self.min_res_n = min_res_n
|
|
29
|
+
self.src_location = src_location
|
|
30
|
+
self.structure_location = structure_location
|
|
31
|
+
self.structure_format = structure_format
|
|
32
|
+
self.__structure_provider = structure_provider
|
|
33
|
+
super().__init__(
|
|
34
|
+
src_stream=self.__get_chains(src_stream),
|
|
35
|
+
src_location=SrcLocation.stream,
|
|
36
|
+
structure_location=StructureLocation.local,
|
|
37
|
+
structure_format=structure_format
|
|
38
|
+
)
|
|
39
|
+
|
|
40
|
+
def __get_chains(self, src_stream):
|
|
41
|
+
chains = []
|
|
42
|
+
for idx, row in (pd.DataFrame(
|
|
43
|
+
src_stream,
|
|
44
|
+
dtype=str,
|
|
45
|
+
columns=self.COLUMNS
|
|
46
|
+
) if self.src_location == SrcLocation.stream else pd.read_csv(
|
|
47
|
+
src_stream,
|
|
48
|
+
header=None,
|
|
49
|
+
index_col=None,
|
|
50
|
+
dtype=str,
|
|
51
|
+
names=EsmProtFromStructure.COLUMNS
|
|
52
|
+
)).iterrows():
|
|
53
|
+
src_name = row[EsmProtFromStructure.STREAM_NAME_ATTR]
|
|
54
|
+
src_structure = row[EsmProtFromStructure.STREAM_ATTR]
|
|
55
|
+
item_name = row[EsmProtFromStructure.ITEM_NAME_ATTR]
|
|
56
|
+
structure = self.__structure_provider.get_structure(
|
|
57
|
+
src_name=src_name,
|
|
58
|
+
src_structure=stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure,
|
|
59
|
+
structure_format=self.structure_format
|
|
60
|
+
)
|
|
61
|
+
for ch in get_protein_chains(structure, self.min_res_n):
|
|
62
|
+
chains.append((src_name, src_structure, ch, f"{item_name}.{ch}"))
|
|
63
|
+
return tuple(chains)
|
|
@@ -0,0 +1,68 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
|
|
3
|
+
import pandas as pd
|
|
4
|
+
|
|
5
|
+
from rcsb_embedding_model.dataset.residue_assembly_embedding_from_tensor_file import ResidueAssemblyEmbeddingFromTensorFile
|
|
6
|
+
from rcsb_embedding_model.types.api_types import SrcLocation, StructureLocation, StructureFormat
|
|
7
|
+
from rcsb_embedding_model.utils.data import stringio_from_url
|
|
8
|
+
from rcsb_embedding_model.utils.structure_parser import get_assemblies
|
|
9
|
+
from rcsb_embedding_model.utils.structure_provider import StructureProvider
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class ResidueAssemblyDatasetFromStructure(ResidueAssemblyEmbeddingFromTensorFile):
|
|
13
|
+
|
|
14
|
+
STREAM_NAME_ATTR = 'stream_name'
|
|
15
|
+
STREAM_ATTR = 'stream'
|
|
16
|
+
ITEM_NAME_ATTR = 'item_name'
|
|
17
|
+
|
|
18
|
+
COLUMNS = [STREAM_NAME_ATTR, STREAM_ATTR, ITEM_NAME_ATTR]
|
|
19
|
+
|
|
20
|
+
def __init__(
|
|
21
|
+
self,
|
|
22
|
+
src_stream,
|
|
23
|
+
res_embedding_location,
|
|
24
|
+
src_location=SrcLocation.local,
|
|
25
|
+
structure_location=StructureLocation.local,
|
|
26
|
+
structure_format=StructureFormat.mmcif,
|
|
27
|
+
min_res_n=0,
|
|
28
|
+
max_res_n=sys.maxsize,
|
|
29
|
+
structure_provider=StructureProvider()
|
|
30
|
+
):
|
|
31
|
+
self.src_location = src_location
|
|
32
|
+
self.structure_location = structure_location
|
|
33
|
+
self.structure_format = structure_format
|
|
34
|
+
self.min_res_n = min_res_n
|
|
35
|
+
self.max_res_n = max_res_n
|
|
36
|
+
self.__structure_provider = structure_provider
|
|
37
|
+
super().__init__(
|
|
38
|
+
src_stream=self.__get_assemblies(src_stream),
|
|
39
|
+
res_embedding_location=res_embedding_location,
|
|
40
|
+
src_location=src_location,
|
|
41
|
+
structure_location=structure_location,
|
|
42
|
+
structure_format=structure_format,
|
|
43
|
+
min_res_n=min_res_n,
|
|
44
|
+
max_res_n=max_res_n,
|
|
45
|
+
structure_provider=structure_provider
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
def __get_assemblies(self, src_stream):
|
|
49
|
+
assemblies = []
|
|
50
|
+
for idx, row in (pd.DataFrame(
|
|
51
|
+
src_stream,
|
|
52
|
+
dtype=str,
|
|
53
|
+
columns=self.COLUMNS
|
|
54
|
+
) if self.src_location == SrcLocation.stream else pd.read_csv(
|
|
55
|
+
src_stream,
|
|
56
|
+
header=None,
|
|
57
|
+
index_col=None,
|
|
58
|
+
dtype=str,
|
|
59
|
+
names=ResidueAssemblyDatasetFromStructure.COLUMNS
|
|
60
|
+
)).iterrows():
|
|
61
|
+
src_name = row[ResidueAssemblyDatasetFromStructure.STREAM_NAME_ATTR]
|
|
62
|
+
src_structure = row[ResidueAssemblyDatasetFromStructure.STREAM_ATTR]
|
|
63
|
+
src_structure = stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure
|
|
64
|
+
item_name = row[ResidueAssemblyDatasetFromStructure.ITEM_NAME_ATTR]
|
|
65
|
+
for assembly_id in get_assemblies(src_structure=src_structure, structure_format=self.structure_format):
|
|
66
|
+
assemblies.append((src_name, src_structure, str(assembly_id), f"{item_name}.{assembly_id}"))
|
|
67
|
+
|
|
68
|
+
return tuple(assemblies)
|
|
@@ -0,0 +1,94 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
|
|
3
|
+
import pandas as pd
|
|
4
|
+
from torch.utils.data import Dataset, DataLoader
|
|
5
|
+
|
|
6
|
+
from rcsb_embedding_model.types.api_types import StructureLocation, StructureFormat, SrcLocation
|
|
7
|
+
from rcsb_embedding_model.utils.data import stringio_from_url, concatenate_tensors
|
|
8
|
+
from rcsb_embedding_model.utils.structure_parser import get_protein_chains
|
|
9
|
+
from rcsb_embedding_model.utils.structure_provider import StructureProvider
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class ResidueAssemblyEmbeddingFromTensorFile(Dataset):
|
|
13
|
+
|
|
14
|
+
STREAM_NAME_ATTR = 'stream_name'
|
|
15
|
+
STREAM_ATTR = 'stream'
|
|
16
|
+
ASSEMBLY_ATTR = 'assembly_id'
|
|
17
|
+
ITEM_NAME_ATTR = 'item_name'
|
|
18
|
+
|
|
19
|
+
COLUMNS = [STREAM_NAME_ATTR, STREAM_ATTR, ASSEMBLY_ATTR, ITEM_NAME_ATTR]
|
|
20
|
+
|
|
21
|
+
def __init__(
|
|
22
|
+
self,
|
|
23
|
+
src_stream,
|
|
24
|
+
res_embedding_location,
|
|
25
|
+
src_location=SrcLocation.local,
|
|
26
|
+
structure_location=StructureLocation.local,
|
|
27
|
+
structure_format=StructureFormat.mmcif,
|
|
28
|
+
min_res_n=0,
|
|
29
|
+
max_res_n=sys.maxsize,
|
|
30
|
+
structure_provider=StructureProvider()
|
|
31
|
+
):
|
|
32
|
+
super().__init__()
|
|
33
|
+
self.res_embedding_location = res_embedding_location
|
|
34
|
+
self.src_location = src_location
|
|
35
|
+
self.structure_location = structure_location
|
|
36
|
+
self.structure_format = structure_format
|
|
37
|
+
self.min_res_n = min_res_n
|
|
38
|
+
self.max_res_n = max_res_n
|
|
39
|
+
self.data = pd.DataFrame()
|
|
40
|
+
self.__load_stream(src_stream)
|
|
41
|
+
self.__structure_provider = structure_provider
|
|
42
|
+
|
|
43
|
+
def __load_stream(self, src_stream):
|
|
44
|
+
self.data = pd.DataFrame(
|
|
45
|
+
src_stream,
|
|
46
|
+
dtype=str,
|
|
47
|
+
columns=ResidueAssemblyEmbeddingFromTensorFile.COLUMNS
|
|
48
|
+
) if self.src_location == SrcLocation.stream else pd.read_csv(
|
|
49
|
+
src_stream,
|
|
50
|
+
header=None,
|
|
51
|
+
index_col=None,
|
|
52
|
+
dtype=str,
|
|
53
|
+
names=ResidueAssemblyEmbeddingFromTensorFile.COLUMNS
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
def __len__(self):
|
|
57
|
+
return len(self.data)
|
|
58
|
+
|
|
59
|
+
def __getitem__(self, idx):
|
|
60
|
+
src_name = self.data.loc[idx, ResidueAssemblyEmbeddingFromTensorFile.STREAM_NAME_ATTR]
|
|
61
|
+
src_structure = self.data.loc[idx, ResidueAssemblyEmbeddingFromTensorFile.STREAM_ATTR]
|
|
62
|
+
assembly_id = self.data.loc[idx, ResidueAssemblyEmbeddingFromTensorFile.ASSEMBLY_ATTR]
|
|
63
|
+
item_name = self.data.loc[idx, ResidueAssemblyEmbeddingFromTensorFile.ITEM_NAME_ATTR]
|
|
64
|
+
|
|
65
|
+
structure = self.__structure_provider.get_structure(
|
|
66
|
+
src_name=src_name,
|
|
67
|
+
src_structure=stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure,
|
|
68
|
+
structure_format=self.structure_format,
|
|
69
|
+
assembly_id=assembly_id
|
|
70
|
+
)
|
|
71
|
+
residue_embedding_files = [
|
|
72
|
+
f"{self.res_embedding_location}/{src_name}.{ch}.pt" for ch in get_protein_chains(structure, self.min_res_n)
|
|
73
|
+
]
|
|
74
|
+
return concatenate_tensors(residue_embedding_files, self.max_res_n), item_name
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
if __name__ == "__main__":
|
|
78
|
+
|
|
79
|
+
dataset = ResidueAssemblyEmbeddingFromTensorFile(
|
|
80
|
+
src_stream="/Users/joan/tmp/assembly-test.csv",
|
|
81
|
+
res_embedding_location="/Users/joan/tmp",
|
|
82
|
+
src_location=SrcLocation.local,
|
|
83
|
+
structure_location=StructureLocation.local,
|
|
84
|
+
structure_format=StructureFormat.mmcif
|
|
85
|
+
)
|
|
86
|
+
|
|
87
|
+
dataloader = DataLoader(
|
|
88
|
+
dataset,
|
|
89
|
+
batch_size=1,
|
|
90
|
+
collate_fn=lambda _: _
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
for _batch in dataloader:
|
|
94
|
+
print(_batch)
|
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
import torch
|
|
3
|
+
from torch.utils.data import Dataset
|
|
4
|
+
|
|
5
|
+
from rcsb_embedding_model.types.api_types import StructureLocation, SrcLocation
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class ResidueEmbeddingFromTensorFile(Dataset):
|
|
9
|
+
|
|
10
|
+
FILE_ATTR = 'file'
|
|
11
|
+
ITEM_NAME_ATTR = 'item_name'
|
|
12
|
+
|
|
13
|
+
COLUMNS = [FILE_ATTR, ITEM_NAME_ATTR]
|
|
14
|
+
|
|
15
|
+
def __init__(
|
|
16
|
+
self,
|
|
17
|
+
src_stream,
|
|
18
|
+
src_location=SrcLocation.local
|
|
19
|
+
):
|
|
20
|
+
super().__init__()
|
|
21
|
+
self.src_location = src_location
|
|
22
|
+
self.data = pd.DataFrame()
|
|
23
|
+
self.__load_stream(src_stream)
|
|
24
|
+
|
|
25
|
+
def __load_stream(self, src_stream):
|
|
26
|
+
self.data = pd.DataFrame(
|
|
27
|
+
src_stream,
|
|
28
|
+
dtype=str,
|
|
29
|
+
columns=self.COLUMNS
|
|
30
|
+
) if self.src_location == SrcLocation.stream else pd.read_csv(
|
|
31
|
+
src_stream,
|
|
32
|
+
header=None,
|
|
33
|
+
index_col=None,
|
|
34
|
+
names=ResidueEmbeddingFromTensorFile.COLUMNS
|
|
35
|
+
)
|
|
36
|
+
|
|
37
|
+
def __len__(self):
|
|
38
|
+
return len(self.data)
|
|
39
|
+
|
|
40
|
+
def __getitem__(self, idx):
|
|
41
|
+
embedding_src = self.data.loc[idx, ResidueEmbeddingFromTensorFile.FILE_ATTR]
|
|
42
|
+
item_name = self.data.loc[idx, ResidueEmbeddingFromTensorFile.ITEM_NAME_ATTR]
|
|
43
|
+
return torch.load(embedding_src, map_location=torch.device('cpu')), item_name
|
|
@@ -0,0 +1,53 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
|
|
3
|
+
from rcsb_embedding_model.dataset.resdiue_assembly_embedding_from_structure import ResidueAssemblyDatasetFromStructure
|
|
4
|
+
from rcsb_embedding_model.dataset.residue_assembly_embedding_from_tensor_file import ResidueAssemblyEmbeddingFromTensorFile
|
|
5
|
+
from rcsb_embedding_model.types.api_types import FileOrStreamTuple, SrcLocation, Accelerator, Devices, OptionalPath, EmbeddingPath, StructureLocation, StructureFormat, SrcAssemblyFrom
|
|
6
|
+
from rcsb_embedding_model.inference.chain_inference import predict as chain_predict
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def predict(
|
|
10
|
+
src_stream: FileOrStreamTuple,
|
|
11
|
+
res_embedding_location: EmbeddingPath,
|
|
12
|
+
src_location: SrcLocation = SrcLocation.local,
|
|
13
|
+
src_from: SrcAssemblyFrom = SrcAssemblyFrom.assembly,
|
|
14
|
+
structure_location: StructureLocation = StructureLocation.local,
|
|
15
|
+
structure_format: StructureFormat = StructureFormat.mmcif,
|
|
16
|
+
min_res_n: int = 0,
|
|
17
|
+
max_res_n: int = sys.maxsize,
|
|
18
|
+
batch_size: int = 1,
|
|
19
|
+
num_workers: int = 0,
|
|
20
|
+
num_nodes: int = 1,
|
|
21
|
+
accelerator: Accelerator = Accelerator.auto,
|
|
22
|
+
devices: Devices = 'auto',
|
|
23
|
+
out_path: OptionalPath = None
|
|
24
|
+
):
|
|
25
|
+
inference_set = ResidueAssemblyEmbeddingFromTensorFile(
|
|
26
|
+
src_stream=src_stream,
|
|
27
|
+
res_embedding_location=res_embedding_location,
|
|
28
|
+
src_location=src_location,
|
|
29
|
+
structure_location=structure_location,
|
|
30
|
+
structure_format=structure_format,
|
|
31
|
+
min_res_n=min_res_n,
|
|
32
|
+
max_res_n=max_res_n
|
|
33
|
+
) if src_from == SrcAssemblyFrom.assembly else ResidueAssemblyDatasetFromStructure(
|
|
34
|
+
src_stream=src_stream,
|
|
35
|
+
res_embedding_location=res_embedding_location,
|
|
36
|
+
src_location=src_location,
|
|
37
|
+
structure_location=structure_location,
|
|
38
|
+
structure_format=structure_format,
|
|
39
|
+
min_res_n=min_res_n,
|
|
40
|
+
max_res_n=max_res_n
|
|
41
|
+
)
|
|
42
|
+
|
|
43
|
+
return chain_predict(
|
|
44
|
+
src_stream=src_stream,
|
|
45
|
+
src_location=src_location,
|
|
46
|
+
batch_size=batch_size,
|
|
47
|
+
num_workers=num_workers,
|
|
48
|
+
num_nodes=num_nodes,
|
|
49
|
+
accelerator=accelerator,
|
|
50
|
+
devices=devices,
|
|
51
|
+
out_path=out_path,
|
|
52
|
+
inference_set=inference_set
|
|
53
|
+
)
|
|
@@ -1,26 +1,30 @@
|
|
|
1
1
|
from torch.utils.data import DataLoader
|
|
2
2
|
from lightning import Trainer
|
|
3
|
-
from typer import FileText
|
|
4
3
|
|
|
5
|
-
from rcsb_embedding_model.dataset.
|
|
4
|
+
from rcsb_embedding_model.dataset.residue_embedding_from_tensor_file import ResidueEmbeddingFromTensorFile
|
|
6
5
|
from rcsb_embedding_model.modules.chain_module import ChainModule
|
|
7
|
-
from rcsb_embedding_model.types.api_types import Accelerator, Devices, OptionalPath
|
|
6
|
+
from rcsb_embedding_model.types.api_types import Accelerator, Devices, OptionalPath, FileOrStreamTuple, SrcLocation
|
|
8
7
|
from rcsb_embedding_model.utils.data import collate_seq_embeddings
|
|
9
8
|
from rcsb_embedding_model.writer.batch_writer import CsvBatchWriter
|
|
10
9
|
|
|
11
10
|
|
|
12
11
|
def predict(
|
|
13
|
-
|
|
12
|
+
src_stream: FileOrStreamTuple,
|
|
13
|
+
src_location: SrcLocation = SrcLocation.local,
|
|
14
14
|
batch_size: int = 1,
|
|
15
15
|
num_workers: int = 0,
|
|
16
16
|
num_nodes: int = 1,
|
|
17
17
|
accelerator: Accelerator = Accelerator.auto,
|
|
18
18
|
devices: Devices = 'auto',
|
|
19
|
-
out_path: OptionalPath = None
|
|
19
|
+
out_path: OptionalPath = None,
|
|
20
|
+
inference_set=None
|
|
20
21
|
):
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
22
|
+
|
|
23
|
+
if inference_set is None:
|
|
24
|
+
inference_set = ResidueEmbeddingFromTensorFile(
|
|
25
|
+
src_stream=src_stream,
|
|
26
|
+
src_location=src_location
|
|
27
|
+
)
|
|
24
28
|
|
|
25
29
|
inference_dataloader = DataLoader(
|
|
26
30
|
dataset=inference_set,
|
|
@@ -1,17 +1,20 @@
|
|
|
1
1
|
from torch.utils.data import DataLoader
|
|
2
2
|
from lightning import Trainer
|
|
3
|
-
from typer import FileText
|
|
4
3
|
|
|
5
|
-
from rcsb_embedding_model.dataset.
|
|
4
|
+
from rcsb_embedding_model.dataset.esm_prot_from_structure import EsmProtFromStructure
|
|
5
|
+
from rcsb_embedding_model.dataset.esm_prot_from_chain import EsmProtFromChain
|
|
6
6
|
from rcsb_embedding_model.modules.esm_module import EsmModule
|
|
7
|
-
from rcsb_embedding_model.types.api_types import
|
|
7
|
+
from rcsb_embedding_model.types.api_types import StructureFormat, Accelerator, Devices, OptionalPath, StructureLocation, SrcProteinFrom, FileOrStreamTuple, SrcLocation
|
|
8
8
|
from rcsb_embedding_model.writer.batch_writer import TensorBatchWriter
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
def predict(
|
|
12
|
-
|
|
12
|
+
src_stream: FileOrStreamTuple,
|
|
13
13
|
src_location: SrcLocation = SrcLocation.local,
|
|
14
|
-
|
|
14
|
+
src_from: SrcProteinFrom = SrcProteinFrom.chain,
|
|
15
|
+
structure_location: StructureLocation = StructureLocation.local,
|
|
16
|
+
structure_format: StructureFormat = StructureFormat.mmcif,
|
|
17
|
+
min_res_n: int = 0,
|
|
15
18
|
batch_size: int = 1,
|
|
16
19
|
num_workers: int = 0,
|
|
17
20
|
num_nodes: int = 1,
|
|
@@ -20,10 +23,17 @@ def predict(
|
|
|
20
23
|
out_path: OptionalPath = None
|
|
21
24
|
):
|
|
22
25
|
|
|
23
|
-
inference_set =
|
|
24
|
-
|
|
26
|
+
inference_set = EsmProtFromChain(
|
|
27
|
+
src_stream=src_stream,
|
|
25
28
|
src_location=src_location,
|
|
26
|
-
|
|
29
|
+
structure_location=structure_location,
|
|
30
|
+
structure_format=structure_format
|
|
31
|
+
) if src_from == SrcProteinFrom.chain else EsmProtFromStructure(
|
|
32
|
+
src_stream=src_stream,
|
|
33
|
+
src_location=src_location,
|
|
34
|
+
structure_location=structure_location,
|
|
35
|
+
structure_format=structure_format,
|
|
36
|
+
min_res_n=min_res_n
|
|
27
37
|
)
|
|
28
38
|
|
|
29
39
|
inference_dataloader = DataLoader(
|
|
@@ -1,30 +1,40 @@
|
|
|
1
1
|
from torch.utils.data import DataLoader
|
|
2
2
|
from lightning import Trainer
|
|
3
|
-
from typer import FileText
|
|
4
3
|
|
|
5
|
-
from rcsb_embedding_model.dataset.
|
|
6
|
-
from rcsb_embedding_model.
|
|
7
|
-
from rcsb_embedding_model.
|
|
4
|
+
from rcsb_embedding_model.dataset.esm_prot_from_structure import EsmProtFromStructure
|
|
5
|
+
from rcsb_embedding_model.dataset.esm_prot_from_chain import EsmProtFromChain
|
|
6
|
+
from rcsb_embedding_model.modules.structure_module import StructureModule
|
|
7
|
+
from rcsb_embedding_model.types.api_types import StructureFormat, Accelerator, Devices, OptionalPath, StructureLocation, SrcProteinFrom, FileOrStreamTuple, SrcLocation
|
|
8
8
|
from rcsb_embedding_model.writer.batch_writer import DataFrameStorage
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
def predict(
|
|
12
|
-
|
|
12
|
+
src_stream: FileOrStreamTuple,
|
|
13
13
|
src_location: SrcLocation = SrcLocation.local,
|
|
14
|
-
|
|
14
|
+
src_from: SrcProteinFrom = SrcProteinFrom.chain,
|
|
15
|
+
structure_location: StructureLocation = StructureLocation.local,
|
|
16
|
+
structure_format: StructureFormat = StructureFormat.mmcif,
|
|
17
|
+
min_res_n: int = 0,
|
|
15
18
|
batch_size: int = 1,
|
|
16
19
|
num_workers: int = 0,
|
|
17
20
|
num_nodes: int = 1,
|
|
18
21
|
accelerator: Accelerator = Accelerator.auto,
|
|
19
22
|
devices: Devices = 'auto',
|
|
20
23
|
out_path: OptionalPath = None,
|
|
21
|
-
|
|
24
|
+
out_df_name: str = None
|
|
22
25
|
):
|
|
23
26
|
|
|
24
|
-
inference_set =
|
|
25
|
-
|
|
27
|
+
inference_set = EsmProtFromChain(
|
|
28
|
+
src_stream=src_stream,
|
|
26
29
|
src_location=src_location,
|
|
27
|
-
|
|
30
|
+
structure_location=structure_location,
|
|
31
|
+
structure_format=structure_format
|
|
32
|
+
) if src_from == SrcProteinFrom.chain else EsmProtFromStructure(
|
|
33
|
+
src_stream=src_stream,
|
|
34
|
+
src_location=src_location,
|
|
35
|
+
structure_location=structure_location,
|
|
36
|
+
structure_format=structure_format,
|
|
37
|
+
min_res_n=min_res_n
|
|
28
38
|
)
|
|
29
39
|
|
|
30
40
|
inference_dataloader = DataLoader(
|
|
@@ -34,8 +44,8 @@ def predict(
|
|
|
34
44
|
collate_fn=lambda _: _
|
|
35
45
|
)
|
|
36
46
|
|
|
37
|
-
module =
|
|
38
|
-
inference_writer = DataFrameStorage(out_path,
|
|
47
|
+
module = StructureModule()
|
|
48
|
+
inference_writer = DataFrameStorage(out_path, out_df_name) if out_path is not None and out_df_name is not None else None
|
|
39
49
|
trainer = Trainer(
|
|
40
50
|
callbacks=[inference_writer] if inference_writer is not None else None,
|
|
41
51
|
num_nodes=num_nodes,
|
|
@@ -3,7 +3,7 @@ from biotite.structure import get_residues, chain_iter, filter_amino_acids
|
|
|
3
3
|
from esm.sdk.api import ESMProtein, SamplingConfig
|
|
4
4
|
from esm.utils.structure.protein_chain import ProteinChain
|
|
5
5
|
|
|
6
|
-
from rcsb_embedding_model.types.api_types import StreamSrc,
|
|
6
|
+
from rcsb_embedding_model.types.api_types import StreamSrc, StructureFormat
|
|
7
7
|
from rcsb_embedding_model.utils.model import get_aggregator_model, get_residue_model
|
|
8
8
|
from rcsb_embedding_model.utils.structure_parser import get_structure_from_src
|
|
9
9
|
|
|
@@ -42,22 +42,22 @@ class RcsbStructureEmbedding:
|
|
|
42
42
|
def structure_embedding(
|
|
43
43
|
self,
|
|
44
44
|
src_structure: StreamSrc,
|
|
45
|
-
|
|
45
|
+
structure_format: StructureFormat = StructureFormat.mmcif,
|
|
46
46
|
chain_id: str = None,
|
|
47
47
|
assembly_id: str = None
|
|
48
48
|
):
|
|
49
|
-
res_embedding = self.residue_embedding(src_structure,
|
|
49
|
+
res_embedding = self.residue_embedding(src_structure, structure_format, chain_id, assembly_id)
|
|
50
50
|
return self.aggregator_embedding(res_embedding)
|
|
51
51
|
|
|
52
52
|
def residue_embedding(
|
|
53
53
|
self,
|
|
54
54
|
src_structure: StreamSrc,
|
|
55
|
-
|
|
55
|
+
structure_format: StructureFormat = StructureFormat.mmcif,
|
|
56
56
|
chain_id: str = None,
|
|
57
57
|
assembly_id: str = None
|
|
58
58
|
):
|
|
59
59
|
self.__check_residue_embedding()
|
|
60
|
-
structure = get_structure_from_src(src_structure,
|
|
60
|
+
structure = get_structure_from_src(src_structure, structure_format, chain_id, assembly_id)
|
|
61
61
|
embedding_ch = []
|
|
62
62
|
for atom_ch in chain_iter(structure):
|
|
63
63
|
atom_res = atom_ch[filter_amino_acids(atom_ch)]
|
|
@@ -1,16 +1,23 @@
|
|
|
1
1
|
from enum import Enum
|
|
2
|
-
from os import PathLike
|
|
3
2
|
from typing import NewType, Union, IO, Tuple, List, Optional
|
|
4
3
|
|
|
5
|
-
|
|
6
|
-
|
|
4
|
+
from typer import FileText
|
|
5
|
+
|
|
6
|
+
StreamSrc = NewType('StreamSrc', Union[FileText, IO])
|
|
7
|
+
StreamTuple = NewType('StreamTuple', Union[
|
|
8
|
+
Tuple[str, StreamSrc, str, str],
|
|
9
|
+
Tuple[str, StreamSrc, str],
|
|
10
|
+
Tuple[str, str]
|
|
11
|
+
])
|
|
12
|
+
FileOrStreamTuple = NewType('FileOrStreamTuple', Union[FileText, StreamTuple])
|
|
7
13
|
|
|
8
14
|
Devices = NewType('Devices', Union[int, List[int], "auto"])
|
|
9
15
|
|
|
10
|
-
|
|
16
|
+
EmbeddingPath = Union[str, FileText]
|
|
17
|
+
OptionalPath = NewType('OptionalPath', Optional[FileText])
|
|
11
18
|
|
|
12
19
|
|
|
13
|
-
class
|
|
20
|
+
class StructureFormat(str, Enum):
|
|
14
21
|
pdb = "pdb"
|
|
15
22
|
mmcif = "mmcif"
|
|
16
23
|
bciff = "binarycif"
|
|
@@ -25,5 +32,20 @@ class Accelerator(str, Enum):
|
|
|
25
32
|
|
|
26
33
|
|
|
27
34
|
class SrcLocation(str, Enum):
|
|
35
|
+
local = "local"
|
|
36
|
+
stream = "stream"
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class StructureLocation(str, Enum):
|
|
28
40
|
local = "local"
|
|
29
41
|
remote = "remote"
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
class SrcProteinFrom(str, Enum):
|
|
45
|
+
chain = "chain"
|
|
46
|
+
structure = "structure"
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
class SrcAssemblyFrom(str, Enum):
|
|
50
|
+
assembly = "assembly"
|
|
51
|
+
structure = "structure"
|
|
@@ -44,4 +44,34 @@ def stringio_from_url(url):
|
|
|
44
44
|
print(f"Error fetching URL: {e}")
|
|
45
45
|
return None
|
|
46
46
|
|
|
47
|
+
def concatenate_tensors(file_list, max_residues, dim=0):
|
|
48
|
+
"""
|
|
49
|
+
Concatenates a list of tensors stored in individual files along a specified dimension.
|
|
50
|
+
|
|
51
|
+
Args:
|
|
52
|
+
file_list (list of str): List of file paths to tensor files.
|
|
53
|
+
max_residues (int): Maximum number of residues allowed in the assembly
|
|
54
|
+
dim (int): The dimension along which to concatenate the tensors. Default is 0.
|
|
47
55
|
|
|
56
|
+
Returns:
|
|
57
|
+
torch.Tensor: The concatenated tensor.
|
|
58
|
+
"""
|
|
59
|
+
tensors = []
|
|
60
|
+
total_residues = 0
|
|
61
|
+
for file in file_list:
|
|
62
|
+
try:
|
|
63
|
+
tensor = torch.load(
|
|
64
|
+
file,
|
|
65
|
+
map_location=torch.device('cpu')
|
|
66
|
+
)
|
|
67
|
+
total_residues += tensor.shape[0]
|
|
68
|
+
tensors.append(tensor)
|
|
69
|
+
except Exception as e:
|
|
70
|
+
continue
|
|
71
|
+
if total_residues > max_residues:
|
|
72
|
+
break
|
|
73
|
+
if tensors and len(tensors) > 0:
|
|
74
|
+
tensor_cat = torch.cat(tensors, dim=dim)
|
|
75
|
+
return tensor_cat
|
|
76
|
+
else:
|
|
77
|
+
raise ValueError("No valid tensors were loaded to concatenate.")
|
|
@@ -1,32 +1,62 @@
|
|
|
1
|
-
|
|
2
|
-
from biotite.structure.io.pdb import PDBFile, get_structure as get_pdb_structure, get_assembly as get_pdb_assembly
|
|
3
|
-
from biotite.structure.io.pdbx import CIFFile, get_structure, get_assembly, BinaryCIFFile
|
|
1
|
+
from biotite.structure import filter_amino_acids, chain_iter, get_chains, get_residues, AtomArray
|
|
2
|
+
from biotite.structure.io.pdb import PDBFile, get_structure as get_pdb_structure, get_assembly as get_pdb_assembly, list_assemblies as list_pdb_assemblies
|
|
3
|
+
from biotite.structure.io.pdbx import CIFFile, get_structure, get_assembly, BinaryCIFFile, list_assemblies
|
|
4
4
|
|
|
5
5
|
|
|
6
6
|
def get_structure_from_src(
|
|
7
7
|
src_structure,
|
|
8
|
-
|
|
8
|
+
structure_format="mmcif",
|
|
9
9
|
chain_id=None,
|
|
10
10
|
assembly_id=None
|
|
11
11
|
):
|
|
12
|
-
if
|
|
12
|
+
if structure_format == "pdb":
|
|
13
13
|
pdb_file = PDBFile.read(src_structure)
|
|
14
14
|
structure = __get_pdb_structure(pdb_file, assembly_id)
|
|
15
|
-
elif
|
|
15
|
+
elif structure_format == "mmcif":
|
|
16
16
|
cif_file = CIFFile.read(src_structure)
|
|
17
17
|
structure = __get_structure(cif_file, assembly_id)
|
|
18
|
-
elif
|
|
18
|
+
elif structure_format == "binarycif":
|
|
19
19
|
cif_file = BinaryCIFFile.read(src_structure)
|
|
20
20
|
structure = __get_structure(cif_file, assembly_id)
|
|
21
21
|
else:
|
|
22
|
-
raise RuntimeError(f"Unknown file format {
|
|
22
|
+
raise RuntimeError(f"Unknown file format {structure_format}")
|
|
23
23
|
|
|
24
24
|
if chain_id is not None:
|
|
25
|
-
|
|
25
|
+
return structure[structure.chain_id == chain_id]
|
|
26
26
|
|
|
27
27
|
return structure
|
|
28
28
|
|
|
29
29
|
|
|
30
|
+
def get_protein_chains(structure, min_res_n=0):
|
|
31
|
+
chain_ids = []
|
|
32
|
+
for atom_ch in chain_iter(structure):
|
|
33
|
+
atom_res = atom_ch[filter_amino_acids(atom_ch)]
|
|
34
|
+
if len(atom_res) > 0 and len(get_residues(atom_res)) > min_res_n:
|
|
35
|
+
chain_ids.append(str(get_chains(atom_res)[0]))
|
|
36
|
+
return tuple(chain_ids)
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def get_assemblies(src_structure, structure_format="mmcif"):
|
|
40
|
+
if structure_format == "pdb":
|
|
41
|
+
return tuple(list_pdb_assemblies(PDBFile.read(src_structure)))
|
|
42
|
+
elif structure_format == "mmcif":
|
|
43
|
+
return tuple(list_assemblies(CIFFile.read(src_structure)).keys())
|
|
44
|
+
elif structure_format == "binarycif":
|
|
45
|
+
return tuple(list_assemblies(BinaryCIFFile.read(src_structure)))
|
|
46
|
+
else:
|
|
47
|
+
raise RuntimeError(f"Unknown file format {structure_format}")
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def rename_atom_ch(atom_ch, ch="A"):
|
|
51
|
+
renamed_atom_ch = AtomArray(len(atom_ch))
|
|
52
|
+
n = 0
|
|
53
|
+
for atom in atom_ch:
|
|
54
|
+
atom.chain_id = ch
|
|
55
|
+
renamed_atom_ch[n] = atom
|
|
56
|
+
n += 1
|
|
57
|
+
return renamed_atom_ch
|
|
58
|
+
|
|
59
|
+
|
|
30
60
|
def __get_pdb_structure(pdb_file, assembly_id=None):
|
|
31
61
|
return get_pdb_structure(
|
|
32
62
|
pdb_file,
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
from rcsb_embedding_model.utils.structure_parser import get_structure_from_src
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
class StructureProvider:
|
|
5
|
+
|
|
6
|
+
def __init__(self):
|
|
7
|
+
self.__src_name = None
|
|
8
|
+
self.__structure = None
|
|
9
|
+
|
|
10
|
+
def get_structure(
|
|
11
|
+
self,
|
|
12
|
+
src_name,
|
|
13
|
+
src_structure,
|
|
14
|
+
structure_format="mmcif",
|
|
15
|
+
chain_id=None,
|
|
16
|
+
assembly_id=None
|
|
17
|
+
):
|
|
18
|
+
if src_name != self.__src_name:
|
|
19
|
+
self.__src_name = src_name
|
|
20
|
+
self.__structure = get_structure_from_src(
|
|
21
|
+
src_structure=src_structure,
|
|
22
|
+
structure_format=structure_format,
|
|
23
|
+
assembly_id=assembly_id
|
|
24
|
+
)
|
|
25
|
+
if chain_id is not None:
|
|
26
|
+
return self.__structure[self.__structure.chain_id == chain_id]
|
|
27
|
+
return self.__structure
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: rcsb-embedding-model
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.8
|
|
4
4
|
Summary: Protein Embedding Model for Structure Search
|
|
5
5
|
Project-URL: Homepage, https://github.com/rcsb/rcsb-embedding-model
|
|
6
6
|
Project-URL: Issues, https://github.com/rcsb/rcsb-embedding-model/issues
|
|
@@ -18,7 +18,7 @@ Description-Content-Type: text/markdown
|
|
|
18
18
|
|
|
19
19
|
# RCSB Embedding Model
|
|
20
20
|
|
|
21
|
-
**Version** 0.0.
|
|
21
|
+
**Version** 0.0.8
|
|
22
22
|
|
|
23
23
|
|
|
24
24
|
## Overview
|
|
@@ -60,14 +60,17 @@ If you are interested in training the model with a new dataset, visit the [rcsb-
|
|
|
60
60
|
|
|
61
61
|
### CLI
|
|
62
62
|
|
|
63
|
-
# 1. Compute residue embeddings: Calculate residue level embeddings of protein structures using ESM3.
|
|
64
|
-
inference residue-embedding --src-file data/structures.csv --output-path results/residue_embeddings --
|
|
63
|
+
# 1. Compute residue embeddings: Calculate residue level embeddings of protein structures using ESM3. Predictions are stored as torch tensor files.
|
|
64
|
+
inference residue-embedding --src-file data/structures.csv --output-path results/residue_embeddings --structure-format mmcif --batch-size 8 --devices auto
|
|
65
65
|
|
|
66
|
-
# 2. Compute structure embeddings: Calculate single-chain protein embeddings from structural files. Predictions are stored in a single pandas
|
|
67
|
-
inference structure-embedding --src-file
|
|
66
|
+
# 2. Compute structure embeddings: Calculate single-chain protein embeddings from structural files. Predictions are stored in a single pandas DataFrame file.
|
|
67
|
+
inference structure-embedding --src-file data/structures.csv --output-path results/residue_embeddings --out-df-name df-res-embeddings --batch-size 4 --devices 0 --devives 1
|
|
68
68
|
|
|
69
|
-
# 3. Compute chain embeddings: Calculate single-chain protein embeddings from residue level embeddings stored as torch tensor files.
|
|
70
|
-
inference chain-embedding --src-file
|
|
69
|
+
# 3. Compute chain embeddings: Calculate single-chain protein embeddings from residue level embeddings stored as torch tensor files. Predictions a re stored as csv files.
|
|
70
|
+
inference chain-embedding --src-file data/structures.csv --output-path results/chain_embeddings --batch-size 4
|
|
71
|
+
|
|
72
|
+
# 4. Compute assembly embeddings: Calculate assembly embeddings from residue level embeddings stored as torch tensor files. Predictions are stored as csv files.
|
|
73
|
+
inference assembly-embedding --src-file data/structures.csv --res-embedding-location results/residue_embeddings --output-path results/assembly_embeddings
|
|
71
74
|
|
|
72
75
|
### Python API
|
|
73
76
|
|
|
@@ -85,7 +88,7 @@ If you are interested in training the model with a new dataset, visit the [rcsb-
|
|
|
85
88
|
# Aggregate to structure-level embedding
|
|
86
89
|
struct_emb = model.aggregator_embedding(res_emb)
|
|
87
90
|
|
|
88
|
-
See the examples
|
|
91
|
+
See the examples and tests directories for more use cases.
|
|
89
92
|
|
|
90
93
|
---
|
|
91
94
|
|
|
@@ -117,7 +120,7 @@ The aggregation component consists of six transformer encoder layers, each with
|
|
|
117
120
|
|
|
118
121
|
## Citation
|
|
119
122
|
|
|
120
|
-
Segura, J., Bittrich, S., et al. (2024). *Multi-scale structural similarity embedding search across entire proteomes*. bioRxiv. (Preprint: https://www.biorxiv.org/content/10.1101/
|
|
123
|
+
Segura, J., Bittrich, S., et al. (2024). *Multi-scale structural similarity embedding search across entire proteomes*. bioRxiv. (Preprint: https://www.biorxiv.org/content/10.1101/2025.02.28.640875v1)
|
|
121
124
|
|
|
122
125
|
---
|
|
123
126
|
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
rcsb_embedding_model/__init__.py,sha256=r3gLdeBIXkQEQA_K6QcRPO-TtYuAQSutk6pXRUE_nas,120
|
|
2
|
+
rcsb_embedding_model/rcsb_structure_embedding.py,sha256=dKp9hXQO0JAnO4SEfjJ_mG_jHu3UxAPguv6jkOjp-BI,4487
|
|
3
|
+
rcsb_embedding_model/cli/args_utils.py,sha256=7nP2q8pL5dWK_U7opxtWmoFcYVwasky6elHk-dASFaI,165
|
|
4
|
+
rcsb_embedding_model/cli/inference.py,sha256=KPZLqznbxZE_CBCGigUGg7yOfGsi8ID4aWMTExniRj4,11464
|
|
5
|
+
rcsb_embedding_model/dataset/esm_prot_from_chain.py,sha256=dBD2N0Y-GoN6p3z2yLnOvv6JGn-skAxwgbOYhXKDngc,3487
|
|
6
|
+
rcsb_embedding_model/dataset/esm_prot_from_structure.py,sha256=kOqgHfHjiym5InaAgpgMmHBgCAPEqW88PCoHHQy0ROI,2490
|
|
7
|
+
rcsb_embedding_model/dataset/resdiue_assembly_embedding_from_structure.py,sha256=d8C7HRJBZWuOKhPQpihv1koT4aIvyt5QN2yndC2ABuE,2842
|
|
8
|
+
rcsb_embedding_model/dataset/residue_assembly_embedding_from_tensor_file.py,sha256=KXiohnPjjfZEFbPZQ46HGE8eEYWrVX8bfbTz4zPlo7o,3451
|
|
9
|
+
rcsb_embedding_model/dataset/residue_embedding_from_tensor_file.py,sha256=cOxT--Spkel10JJCeGlqgLXN5vNCZzPdfSxDgUSrdPI,1268
|
|
10
|
+
rcsb_embedding_model/inference/assembly_inferece.py,sha256=MPssN5bsOqOU-LGwa6AKX99cv5LD43Mnbaqhuuww1Tw,2165
|
|
11
|
+
rcsb_embedding_model/inference/chain_inference.py,sha256=R9gi0MZ_HaM3v9c433W_5w4suse4nJmy4SgUTHJVZLg,1713
|
|
12
|
+
rcsb_embedding_model/inference/esm_inference.py,sha256=oVN4r9_6V8TS0pYoNn7GR92Xo0Zn7eBsnt_OfDSaH6g,2126
|
|
13
|
+
rcsb_embedding_model/inference/structure_inference.py,sha256=QIUEo8eEc-kTSYKGdlX2rxT74huw4ZAw6U8Px9kYajE,2216
|
|
14
|
+
rcsb_embedding_model/model/layers.py,sha256=lhKaWC4gTS_T5lHOP0mgnnP8nKTPEOm4MrjhESA4hE8,743
|
|
15
|
+
rcsb_embedding_model/model/residue_embedding_aggregator.py,sha256=k3UW63Ax8DtjCMdD3O5xNxtyAu28l2n3-Ab6nS0atm0,1967
|
|
16
|
+
rcsb_embedding_model/modules/chain_module.py,sha256=sDSPXJmWuU2C3lt1NorlbUVWZvRSLzumPdFQk01h3VI,403
|
|
17
|
+
rcsb_embedding_model/modules/esm_module.py,sha256=CTHGOATXiarqZsBsZ8oxGJBj20A73186Slpr0EzMJsE,770
|
|
18
|
+
rcsb_embedding_model/modules/structure_module.py,sha256=dEtDNdWo1j2sSDa0JiOHQfEfQzIWqSLEKpvOX0GrXZ4,1048
|
|
19
|
+
rcsb_embedding_model/types/api_types.py,sha256=3sPh33yb3Ya9r3O5vuiTfhb1WyFuhQWCQmewSbqEyG0,1076
|
|
20
|
+
rcsb_embedding_model/utils/data.py,sha256=x6ca_bVdBXEAp9ugCi1rVEQ-G5nGTFKpzDKqZKpkFBE,2933
|
|
21
|
+
rcsb_embedding_model/utils/model.py,sha256=rpZa-gfm3cEtbBd7UXMHrZv3x6f0AC8TJT3gtrSxr5I,852
|
|
22
|
+
rcsb_embedding_model/utils/structure_parser.py,sha256=jat4SCtPHYMZ6JJR-T7lPQoMbT_E8CwYSGDNSZjG86U,2697
|
|
23
|
+
rcsb_embedding_model/utils/structure_provider.py,sha256=eWtxjkPpmRfmil_DKR1J6miaXR3lQ28DF5O0qrqSgGA,786
|
|
24
|
+
rcsb_embedding_model/writer/batch_writer.py,sha256=ekgzFZyoKpcnZ3IDP9hfOWBpuHxUQ31P35ViDAi-Edw,2843
|
|
25
|
+
rcsb_embedding_model-0.0.8.dist-info/METADATA,sha256=XvNb99X9GWdMEdz-A_o-ngTxlfiWrr8KMvjKh_rk3x0,5366
|
|
26
|
+
rcsb_embedding_model-0.0.8.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
27
|
+
rcsb_embedding_model-0.0.8.dist-info/entry_points.txt,sha256=MK11jTIEmaV-x4CkPX5IymDaVs7Ky_f2xxU8BJVZ_9Q,69
|
|
28
|
+
rcsb_embedding_model-0.0.8.dist-info/licenses/LICENSE.md,sha256=oUaHiKgfBkChth_Sm67WemEvatO1U0Go8LHjaskXY0w,1522
|
|
29
|
+
rcsb_embedding_model-0.0.8.dist-info/RECORD,,
|
|
@@ -1,90 +0,0 @@
|
|
|
1
|
-
import argparse
|
|
2
|
-
|
|
3
|
-
import torch
|
|
4
|
-
from biotite.structure import chain_iter
|
|
5
|
-
from esm.models.esm3 import ESM3
|
|
6
|
-
from esm.sdk.api import ESMProtein, SamplingConfig
|
|
7
|
-
from esm.utils.constants.models import ESM3_OPEN_SMALL
|
|
8
|
-
from esm.utils.structure.protein_chain import ProteinChain
|
|
9
|
-
from torch.utils.data import Dataset, DataLoader
|
|
10
|
-
import pandas as pd
|
|
11
|
-
|
|
12
|
-
from rcsb_embedding_model.types.api_types import SrcFormat, SrcLocation
|
|
13
|
-
from rcsb_embedding_model.utils.data import stringio_from_url
|
|
14
|
-
from rcsb_embedding_model.utils.structure_parser import get_structure_from_src
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class EsmProtFromCsv(Dataset):
|
|
18
|
-
|
|
19
|
-
MIN_RES = 10
|
|
20
|
-
STREAM_ATTR = 'stream'
|
|
21
|
-
CH_ATTR = 'chain_id'
|
|
22
|
-
NAME_ATTR = 'name'
|
|
23
|
-
|
|
24
|
-
COLUMNS = [STREAM_ATTR, CH_ATTR, NAME_ATTR]
|
|
25
|
-
|
|
26
|
-
def __init__(
|
|
27
|
-
self,
|
|
28
|
-
csv_file,
|
|
29
|
-
src_location=SrcLocation.local,
|
|
30
|
-
src_format=SrcFormat.mmcif,
|
|
31
|
-
):
|
|
32
|
-
super().__init__()
|
|
33
|
-
self.src_location = src_location
|
|
34
|
-
self.src_format = src_format
|
|
35
|
-
self.data = pd.DataFrame()
|
|
36
|
-
self.__load_stream(csv_file)
|
|
37
|
-
|
|
38
|
-
def __load_stream(self, stream_list):
|
|
39
|
-
self.data = pd.read_csv(
|
|
40
|
-
stream_list,
|
|
41
|
-
header=None,
|
|
42
|
-
index_col=None,
|
|
43
|
-
names=EsmProtFromCsv.COLUMNS
|
|
44
|
-
)
|
|
45
|
-
|
|
46
|
-
def __len__(self):
|
|
47
|
-
return len(self.data)
|
|
48
|
-
|
|
49
|
-
def __getitem__(self, idx):
|
|
50
|
-
src_structure = self.data.loc[idx, EsmProtFromCsv.STREAM_ATTR]
|
|
51
|
-
chain_id = self.data.loc[idx, EsmProtFromCsv.CH_ATTR]
|
|
52
|
-
name = self.data.loc[idx, EsmProtFromCsv.NAME_ATTR]
|
|
53
|
-
structure = get_structure_from_src(
|
|
54
|
-
src_structure=src_structure if self.src_location == SrcLocation.local else stringio_from_url(src_structure),
|
|
55
|
-
src_format=self.src_format,
|
|
56
|
-
chain_id=chain_id
|
|
57
|
-
)
|
|
58
|
-
for atom_ch in chain_iter(structure):
|
|
59
|
-
protein_chain = ProteinChain.from_atomarray(atom_ch)
|
|
60
|
-
return ESMProtein.from_protein_chain(protein_chain), name
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
if __name__ == '__main__':
|
|
64
|
-
|
|
65
|
-
parser = argparse.ArgumentParser()
|
|
66
|
-
parser.add_argument('--file_list', type=argparse.FileType('r'), required=True)
|
|
67
|
-
args = parser.parse_args()
|
|
68
|
-
|
|
69
|
-
dataset = EsmProtFromCsv(
|
|
70
|
-
args.file_list
|
|
71
|
-
)
|
|
72
|
-
|
|
73
|
-
esm3 = ESM3.from_pretrained(
|
|
74
|
-
ESM3_OPEN_SMALL,
|
|
75
|
-
torch.device("cpu")
|
|
76
|
-
)
|
|
77
|
-
|
|
78
|
-
dataloader = DataLoader(
|
|
79
|
-
dataset,
|
|
80
|
-
batch_size=2,
|
|
81
|
-
collate_fn=lambda _: _
|
|
82
|
-
)
|
|
83
|
-
|
|
84
|
-
for _batch in dataloader:
|
|
85
|
-
for esm_prot, name in _batch:
|
|
86
|
-
protein_tensor = esm3.encode(esm_prot)
|
|
87
|
-
embeddings = esm3.forward_and_sample(
|
|
88
|
-
protein_tensor, SamplingConfig(return_per_residue_embeddings=True)
|
|
89
|
-
).per_residue_embedding
|
|
90
|
-
print(name, embeddings.shape)
|
|
@@ -1,32 +0,0 @@
|
|
|
1
|
-
import pandas as pd
|
|
2
|
-
import torch
|
|
3
|
-
from torch.utils.data import Dataset
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
class ResidueEmbeddingFromCSV(Dataset):
|
|
7
|
-
|
|
8
|
-
STREAM_ATTR = 'stream'
|
|
9
|
-
NAME_ATTR = 'name'
|
|
10
|
-
|
|
11
|
-
COLUMNS = [STREAM_ATTR, NAME_ATTR]
|
|
12
|
-
|
|
13
|
-
def __init__(self, csv_file):
|
|
14
|
-
super().__init__()
|
|
15
|
-
self.data = pd.DataFrame()
|
|
16
|
-
self.__load_stream(csv_file)
|
|
17
|
-
|
|
18
|
-
def __load_stream(self, csv_file):
|
|
19
|
-
self.data = pd.read_csv(
|
|
20
|
-
csv_file,
|
|
21
|
-
header=None,
|
|
22
|
-
index_col=None,
|
|
23
|
-
names=ResidueEmbeddingFromCSV.COLUMNS
|
|
24
|
-
)
|
|
25
|
-
|
|
26
|
-
def __len__(self):
|
|
27
|
-
return len(self.data)
|
|
28
|
-
|
|
29
|
-
def __getitem__(self, idx):
|
|
30
|
-
embedding_src = self.data.loc[idx, ResidueEmbeddingFromCSV.STREAM_ATTR]
|
|
31
|
-
name = self.data.loc[idx, ResidueEmbeddingFromCSV.NAME_ATTR]
|
|
32
|
-
return torch.load(embedding_src, map_location=torch.device('cpu')), name
|
|
@@ -1,24 +0,0 @@
|
|
|
1
|
-
rcsb_embedding_model/__init__.py,sha256=r3gLdeBIXkQEQA_K6QcRPO-TtYuAQSutk6pXRUE_nas,120
|
|
2
|
-
rcsb_embedding_model/rcsb_structure_embedding.py,sha256=qGUEdRPjYbsFWThsQa_ZVaSJ7nURnfRBLBqJlLbcY0I,4433
|
|
3
|
-
rcsb_embedding_model/cli/args_utils.py,sha256=7nP2q8pL5dWK_U7opxtWmoFcYVwasky6elHk-dASFaI,165
|
|
4
|
-
rcsb_embedding_model/cli/inference.py,sha256=sx8cGiq_japc0mKFarK1aVkGfK-FhTeZdn_Ng0ijezE,6590
|
|
5
|
-
rcsb_embedding_model/dataset/esm_prot_from_csv.py,sha256=1XMiYyJXfodXZGSrU07uyoYbdKR9-KvNfb1xNqab_W8,2722
|
|
6
|
-
rcsb_embedding_model/dataset/residue_embedding_from_csv.py,sha256=0-5L64tyER-RpT166pC71qxOpUdVZbcuBQONPcAIuno,862
|
|
7
|
-
rcsb_embedding_model/inference/chain_inference.py,sha256=SgXDa-TkDcvlkQxqEwDt81RdE7NmgiaJD8uaROgMbl8,1506
|
|
8
|
-
rcsb_embedding_model/inference/esm_inference.py,sha256=pX-_RhzAIvL0Zdg9wjScLBP6Y1sq4RLNio4-vdR5MLU,1498
|
|
9
|
-
rcsb_embedding_model/inference/structure_inference.py,sha256=qPzAGWyzFWqeKV9yoPSw4LrEB9XgKTJnRQysSBhfg14,1564
|
|
10
|
-
rcsb_embedding_model/model/layers.py,sha256=lhKaWC4gTS_T5lHOP0mgnnP8nKTPEOm4MrjhESA4hE8,743
|
|
11
|
-
rcsb_embedding_model/model/residue_embedding_aggregator.py,sha256=k3UW63Ax8DtjCMdD3O5xNxtyAu28l2n3-Ab6nS0atm0,1967
|
|
12
|
-
rcsb_embedding_model/modules/chain_module.py,sha256=sDSPXJmWuU2C3lt1NorlbUVWZvRSLzumPdFQk01h3VI,403
|
|
13
|
-
rcsb_embedding_model/modules/esm_module.py,sha256=CTHGOATXiarqZsBsZ8oxGJBj20A73186Slpr0EzMJsE,770
|
|
14
|
-
rcsb_embedding_model/modules/structure_module.py,sha256=dEtDNdWo1j2sSDa0JiOHQfEfQzIWqSLEKpvOX0GrXZ4,1048
|
|
15
|
-
rcsb_embedding_model/types/api_types.py,sha256=x7274MyjkRXn8B-W-PY5PK9g0CP1pT_clZbrAuFuHPA,626
|
|
16
|
-
rcsb_embedding_model/utils/data.py,sha256=LGw3wvq_LCcqSovHZacOqxEczn12SZk2i51WK9xkk0k,1877
|
|
17
|
-
rcsb_embedding_model/utils/model.py,sha256=rpZa-gfm3cEtbBd7UXMHrZv3x6f0AC8TJT3gtrSxr5I,852
|
|
18
|
-
rcsb_embedding_model/utils/structure_parser.py,sha256=0lcjCuQMCh0lb3OMj76rqf7kACzJgOwdk3EZ7-ZOQfI,1492
|
|
19
|
-
rcsb_embedding_model/writer/batch_writer.py,sha256=ekgzFZyoKpcnZ3IDP9hfOWBpuHxUQ31P35ViDAi-Edw,2843
|
|
20
|
-
rcsb_embedding_model-0.0.7.dist-info/METADATA,sha256=mfl1YYB48Um5FdZZkHOwzzMPRvsw_HlFHeqXsCGWs0Q,4959
|
|
21
|
-
rcsb_embedding_model-0.0.7.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
22
|
-
rcsb_embedding_model-0.0.7.dist-info/entry_points.txt,sha256=MK11jTIEmaV-x4CkPX5IymDaVs7Ky_f2xxU8BJVZ_9Q,69
|
|
23
|
-
rcsb_embedding_model-0.0.7.dist-info/licenses/LICENSE.md,sha256=oUaHiKgfBkChth_Sm67WemEvatO1U0Go8LHjaskXY0w,1522
|
|
24
|
-
rcsb_embedding_model-0.0.7.dist-info/RECORD,,
|
|
File without changes
|
{rcsb_embedding_model-0.0.7.dist-info → rcsb_embedding_model-0.0.8.dist-info}/entry_points.txt
RENAMED
|
File without changes
|
{rcsb_embedding_model-0.0.7.dist-info → rcsb_embedding_model-0.0.8.dist-info}/licenses/LICENSE.md
RENAMED
|
File without changes
|