rcsb-embedding-model 0.0.6__py3-none-any.whl → 0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of rcsb-embedding-model might be problematic. Click here for more details.

Files changed (26) hide show
  1. rcsb_embedding_model/cli/args_utils.py +0 -2
  2. rcsb_embedding_model/cli/inference.py +164 -42
  3. rcsb_embedding_model/dataset/esm_prot_from_chain.py +102 -0
  4. rcsb_embedding_model/dataset/esm_prot_from_structure.py +63 -0
  5. rcsb_embedding_model/dataset/resdiue_assembly_embedding_from_structure.py +68 -0
  6. rcsb_embedding_model/dataset/residue_assembly_embedding_from_tensor_file.py +94 -0
  7. rcsb_embedding_model/dataset/residue_embedding_from_tensor_file.py +43 -0
  8. rcsb_embedding_model/inference/assembly_inferece.py +53 -0
  9. rcsb_embedding_model/inference/chain_inference.py +12 -8
  10. rcsb_embedding_model/inference/esm_inference.py +18 -8
  11. rcsb_embedding_model/inference/structure_inference.py +61 -0
  12. rcsb_embedding_model/modules/structure_module.py +27 -0
  13. rcsb_embedding_model/rcsb_structure_embedding.py +7 -8
  14. rcsb_embedding_model/types/api_types.py +27 -5
  15. rcsb_embedding_model/utils/data.py +30 -0
  16. rcsb_embedding_model/utils/structure_parser.py +43 -13
  17. rcsb_embedding_model/utils/structure_provider.py +27 -0
  18. rcsb_embedding_model-0.0.8.dist-info/METADATA +129 -0
  19. rcsb_embedding_model-0.0.8.dist-info/RECORD +29 -0
  20. rcsb_embedding_model/dataset/esm_prot_from_csv.py +0 -91
  21. rcsb_embedding_model/dataset/residue_embedding_from_csv.py +0 -32
  22. rcsb_embedding_model-0.0.6.dist-info/METADATA +0 -117
  23. rcsb_embedding_model-0.0.6.dist-info/RECORD +0 -22
  24. {rcsb_embedding_model-0.0.6.dist-info → rcsb_embedding_model-0.0.8.dist-info}/WHEEL +0 -0
  25. {rcsb_embedding_model-0.0.6.dist-info → rcsb_embedding_model-0.0.8.dist-info}/entry_points.txt +0 -0
  26. {rcsb_embedding_model-0.0.6.dist-info → rcsb_embedding_model-0.0.8.dist-info}/licenses/LICENSE.md +0 -0
@@ -1,6 +1,4 @@
1
1
 
2
- from enum import Enum
3
-
4
2
 
5
3
  def arg_devices(devices):
6
4
  if len(devices) == 1:
@@ -1,28 +1,48 @@
1
+ import sys
1
2
  from typing import Annotated, List
2
3
 
3
4
  import typer
4
5
 
5
6
  from rcsb_embedding_model.cli.args_utils import arg_devices
6
- from rcsb_embedding_model.types.api_types import SrcFormat, Accelerator, SrcLocation
7
+ from rcsb_embedding_model.types.api_types import StructureFormat, Accelerator, SrcLocation, SrcProteinFrom, \
8
+ StructureLocation, SrcAssemblyFrom
7
9
 
8
- app = typer.Typer()
10
+ app = typer.Typer(
11
+ add_completion=False
12
+ )
9
13
 
10
14
 
11
- @app.command(name="residue-embedding")
15
+ @app.command(
16
+ name="residue-embedding",
17
+ help="Calculate residue level embeddings of protein structures using ESM3. Predictions are stored as torch tensor files."
18
+ )
12
19
  def residue_embedding(
13
20
  src_file: Annotated[typer.FileText, typer.Option(
14
21
  exists=True,
15
22
  file_okay=True,
16
23
  dir_okay=False,
17
24
  resolve_path=True,
18
- help='CSV file 3 columns: Structure File | Chain Id (asym_i for cif files) | Output file name.'
25
+ help='CSV file 4 (or 3) columns: Structure Name | Structure File Path | Chain Id (asym_i for cif files. This field is required if src-from=chain) | Output Embedding Name.'
19
26
  )],
20
- src_location: Annotated[SrcLocation, typer.Option(
21
- help='Source input location.'
22
- )] = SrcLocation.local,
23
- src_format: Annotated[SrcFormat, typer.Option(
27
+ output_path: Annotated[typer.FileText, typer.Option(
28
+ exists=True,
29
+ file_okay=False,
30
+ dir_okay=True,
31
+ resolve_path=True,
32
+ help='Output path to store predictions. Embeddings are stored as torch tensor files.'
33
+ )],
34
+ src_from: Annotated[SrcProteinFrom, typer.Option(
35
+ help='Use specific chains or all chains in a structure.'
36
+ )] = SrcProteinFrom.chain,
37
+ structure_location: Annotated[StructureLocation, typer.Option(
38
+ help='Structure file location.'
39
+ )] = StructureLocation.local,
40
+ structure_format: Annotated[StructureFormat, typer.Option(
24
41
  help='Structure file format.'
25
- )] = SrcFormat.mmcif,
42
+ )] = StructureFormat.mmcif,
43
+ min_res_n: Annotated[int, typer.Option(
44
+ help='When using all chains in a structure, consider only chains with more than <min_res_n> residues.'
45
+ )] = 0,
26
46
  batch_size: Annotated[int, typer.Option(
27
47
  help='Number of samples processed together in one iteration.'
28
48
  )] = 1,
@@ -37,20 +57,16 @@ def residue_embedding(
37
57
  )] = Accelerator.auto,
38
58
  devices: Annotated[List[str], typer.Option(
39
59
  help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
40
- )] = tuple(['auto']),
41
- output_path: Annotated[typer.FileText, typer.Option(
42
- exists=True,
43
- file_okay=False,
44
- dir_okay=True,
45
- resolve_path=True,
46
- help='Output path to store predictions.'
47
- )] = None
60
+ )] = tuple(['auto'])
48
61
  ):
49
62
  from rcsb_embedding_model.inference.esm_inference import predict
50
63
  predict(
51
- csv_file=src_file,
52
- src_location=src_location,
53
- src_format=src_format,
64
+ src_stream=src_file,
65
+ src_location=SrcLocation.local,
66
+ src_from=src_from,
67
+ structure_location=structure_location,
68
+ structure_format=structure_format,
69
+ min_res_n=min_res_n,
54
70
  batch_size=batch_size,
55
71
  num_workers=num_workers,
56
72
  num_nodes=num_nodes,
@@ -60,21 +76,40 @@ def residue_embedding(
60
76
  )
61
77
 
62
78
 
63
- @app.command(name="structure-embedding")
79
+ @app.command(
80
+ name="structure-embedding",
81
+ help="Calculate single-chain protein embeddings from structural files. Predictions are stored in a single pandas DataFrame file."
82
+ )
64
83
  def structure_embedding(
65
84
  src_file: Annotated[typer.FileText, typer.Option(
66
85
  exists=True,
67
86
  file_okay=True,
68
87
  dir_okay=False,
69
88
  resolve_path=True,
70
- help='CSV file 3 columns: Structure File | Chain Id (asym_i for cif files) | Output file name.'
89
+ help='CSV file 4 (or 3) columns: Structure Name | Structure File Path | Chain Id (asym_i for cif files. This field is required if src-from=chain) | Output Embedding Name.'
90
+ )],
91
+ output_path: Annotated[typer.FileText, typer.Option(
92
+ exists=True,
93
+ file_okay=False,
94
+ dir_okay=True,
95
+ resolve_path=True,
96
+ help='Output path to store predictions. Embeddings are stored as a single DataFrame file (see out-df-name).'
97
+ )],
98
+ out_df_name: Annotated[str, typer.Option(
99
+ help='File name (without extension) for storing embeddings as a pandas DataFrame pickle (.pkl). The DataFrame contains 2 columns: Id | Embedding'
71
100
  )],
72
- src_location: Annotated[SrcLocation, typer.Option(
101
+ src_from: Annotated[SrcProteinFrom, typer.Option(
102
+ help='Use specific chains or all chains in a structure.'
103
+ )] = SrcProteinFrom.chain,
104
+ structure_location: Annotated[StructureLocation, typer.Option(
73
105
  help='Source input location.'
74
- )] = SrcLocation.local,
75
- src_format: Annotated[SrcFormat, typer.Option(
106
+ )] = StructureLocation.local,
107
+ structure_format: Annotated[StructureFormat, typer.Option(
76
108
  help='Structure file format.'
77
- )] = SrcFormat.mmcif,
109
+ )] = StructureFormat.mmcif,
110
+ min_res_n: Annotated[int, typer.Option(
111
+ help='When using all chains in a structure, consider only chains with more than <min_res_n> residues.'
112
+ )] = 0,
78
113
  batch_size: Annotated[int, typer.Option(
79
114
  help='Number of samples processed together in one iteration.'
80
115
  )] = 1,
@@ -89,26 +124,44 @@ def structure_embedding(
89
124
  )] = Accelerator.auto,
90
125
  devices: Annotated[List[str], typer.Option(
91
126
  help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
92
- )] = tuple(['auto']),
93
- output_path: Annotated[typer.FileText, typer.Option(
94
- exists=True,
95
- file_okay=False,
96
- dir_okay=True,
97
- resolve_path=True,
98
- help='Output path to store predictions.'
99
- )] = None
127
+ )] = tuple(['auto'])
100
128
  ):
101
- pass
129
+ from rcsb_embedding_model.inference.structure_inference import predict
130
+ predict(
131
+ src_stream=src_file,
132
+ src_location=SrcLocation.local,
133
+ src_from=src_from,
134
+ structure_location=structure_location,
135
+ structure_format=structure_format,
136
+ min_res_n=min_res_n,
137
+ batch_size=batch_size,
138
+ num_workers=num_workers,
139
+ num_nodes=num_nodes,
140
+ accelerator=accelerator,
141
+ devices=arg_devices(devices),
142
+ out_path=output_path,
143
+ out_df_name=out_df_name
144
+ )
102
145
 
103
146
 
104
- @app.command(name="chain-embedding")
147
+ @app.command(
148
+ name="chain-embedding",
149
+ help="Calculate single-chain protein embeddings from residue level embeddings stored as torch tensor files. Predictions are stored as csv files."
150
+ )
105
151
  def chain_embedding(
106
152
  src_file: Annotated[typer.FileText, typer.Option(
107
153
  exists=True,
108
154
  file_okay=True,
109
155
  dir_okay=False,
110
156
  resolve_path=True,
111
- help='CSV file 2 columns: Residue Embedding Tensor File | Output file name.'
157
+ help='CSV file 2 columns: Residue embedding torch tensor file | Output embedding name.'
158
+ )],
159
+ output_path: Annotated[typer.FileText, typer.Option(
160
+ exists=True,
161
+ file_okay=False,
162
+ dir_okay=True,
163
+ resolve_path=True,
164
+ help='Output path to store predictions. Embeddings are stored as csv files.'
112
165
  )],
113
166
  batch_size: Annotated[int, typer.Option(
114
167
  help='Number of samples processed together in one iteration.'
@@ -124,18 +177,87 @@ def chain_embedding(
124
177
  )] = Accelerator.auto,
125
178
  devices: Annotated[List[str], typer.Option(
126
179
  help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
127
- )] = tuple(['auto']),
180
+ )] = tuple(['auto'])
181
+ ):
182
+ from rcsb_embedding_model.inference.chain_inference import predict
183
+ predict(
184
+ src_stream=src_file,
185
+ src_location=SrcLocation.local,
186
+ batch_size=batch_size,
187
+ num_workers=num_workers,
188
+ num_nodes=num_nodes,
189
+ accelerator=accelerator,
190
+ devices=arg_devices(devices),
191
+ out_path=output_path
192
+ )
193
+
194
+ @app.command(
195
+ name="assembly-embedding",
196
+ help="Calculate assembly embeddings from residue level embeddings stored as torch tensor files. Predictions are stored as csv files."
197
+ )
198
+ def assembly_embedding(
199
+ src_file: Annotated[typer.FileText, typer.Option(
200
+ exists=True,
201
+ file_okay=True,
202
+ dir_okay=False,
203
+ resolve_path=True,
204
+ help='CSV file 4 columns: Structure Name | Structure File Path | Assembly Id | Output embedding name.'
205
+ )],
206
+ res_embedding_location: Annotated[typer.FileText, typer.Option(
207
+ exists=True,
208
+ file_okay=False,
209
+ dir_okay=True,
210
+ resolve_path=True,
211
+ help='Path where residue level embeddings for single chains are located.'
212
+ )],
128
213
  output_path: Annotated[typer.FileText, typer.Option(
129
214
  exists=True,
130
215
  file_okay=False,
131
216
  dir_okay=True,
132
217
  resolve_path=True,
133
- help='Output path to store predictions.'
134
- )] = None
218
+ help='Output path to store predictions. Embeddings are stored as csv files.'
219
+ )],
220
+ src_from: Annotated[SrcAssemblyFrom, typer.Option(
221
+ help='Use specific assembly or all assemblies in a structure.'
222
+ )] = SrcAssemblyFrom.assembly,
223
+ structure_location: Annotated[StructureLocation, typer.Option(
224
+ help='Source input location.'
225
+ )] = StructureLocation.local,
226
+ structure_format: Annotated[StructureFormat, typer.Option(
227
+ help='Structure file format.'
228
+ )] = StructureFormat.mmcif,
229
+ min_res_n: Annotated[int, typer.Option(
230
+ help='Consider only assembly chains with more than <min_res_n> residues.'
231
+ )] = 0,
232
+ max_res_n: Annotated[int, typer.Option(
233
+ help='Stop adding assembly chains when number of residues is greater than <max_res_n> residues.'
234
+ )] = sys.maxsize,
235
+ batch_size: Annotated[int, typer.Option(
236
+ help='Number of samples processed together in one iteration.'
237
+ )] = 1,
238
+ num_workers: Annotated[int, typer.Option(
239
+ help='Number of subprocesses to use for data loading.'
240
+ )] = 0,
241
+ num_nodes: Annotated[int, typer.Option(
242
+ help='Number of nodes to use for inference.'
243
+ )] = 1,
244
+ accelerator: Annotated[Accelerator, typer.Option(
245
+ help='Device used for inference.'
246
+ )] = Accelerator.auto,
247
+ devices: Annotated[List[str], typer.Option(
248
+ help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
249
+ )] = tuple(['auto'])
135
250
  ):
136
- from rcsb_embedding_model.inference.chain_inference import predict
251
+ from rcsb_embedding_model.inference.assembly_inferece import predict
137
252
  predict(
138
- csv_file=src_file,
253
+ src_stream=src_file,
254
+ res_embedding_location=res_embedding_location,
255
+ src_location=SrcLocation.local,
256
+ src_from=src_from,
257
+ structure_location=structure_location,
258
+ structure_format=structure_format,
259
+ min_res_n=min_res_n,
260
+ max_res_n=max_res_n,
139
261
  batch_size=batch_size,
140
262
  num_workers=num_workers,
141
263
  num_nodes=num_nodes,
@@ -0,0 +1,102 @@
1
+ import argparse
2
+
3
+ import torch
4
+ from biotite.structure import chain_iter
5
+ from esm.models.esm3 import ESM3
6
+ from esm.sdk.api import ESMProtein, SamplingConfig
7
+ from esm.utils.constants.models import ESM3_OPEN_SMALL
8
+ from esm.utils.structure.protein_chain import ProteinChain
9
+ from torch.utils.data import Dataset, DataLoader
10
+ import pandas as pd
11
+
12
+ from rcsb_embedding_model.types.api_types import StructureFormat, StructureLocation, SrcLocation
13
+ from rcsb_embedding_model.utils.data import stringio_from_url
14
+ from rcsb_embedding_model.utils.structure_parser import rename_atom_ch
15
+ from rcsb_embedding_model.utils.structure_provider import StructureProvider
16
+
17
+
18
+ class EsmProtFromChain(Dataset):
19
+
20
+ STREAM_NAME_ATTR = 'stream_name'
21
+ STREAM_ATTR = 'stream'
22
+ CH_ATTR = 'chain_id'
23
+ ITEM_NAME_ATTR = 'item_name'
24
+
25
+ COLUMNS = [STREAM_NAME_ATTR, STREAM_ATTR, CH_ATTR, ITEM_NAME_ATTR]
26
+
27
+ def __init__(
28
+ self,
29
+ src_stream,
30
+ src_location=SrcLocation.local,
31
+ structure_location=StructureLocation.local,
32
+ structure_format=StructureFormat.mmcif,
33
+ structure_provider=StructureProvider()
34
+ ):
35
+ super().__init__()
36
+ self.__structure_provider = structure_provider
37
+ self.src_location = src_location
38
+ self.structure_location = structure_location
39
+ self.structure_format = structure_format
40
+ self.data = pd.DataFrame()
41
+ self.__load_stream(src_stream)
42
+
43
+ def __load_stream(self, src_stream):
44
+ self.data = pd.DataFrame(
45
+ src_stream,
46
+ dtype=str,
47
+ columns=EsmProtFromChain.COLUMNS
48
+ ) if self.src_location == SrcLocation.stream else pd.read_csv(
49
+ src_stream,
50
+ header=None,
51
+ index_col=None,
52
+ dtype=str,
53
+ names=EsmProtFromChain.COLUMNS
54
+ )
55
+
56
+ def __len__(self):
57
+ return len(self.data)
58
+
59
+ def __getitem__(self, idx):
60
+ src_name = self.data.loc[idx, EsmProtFromChain.STREAM_NAME_ATTR]
61
+ src_structure = self.data.loc[idx, EsmProtFromChain.STREAM_ATTR]
62
+ chain_id = self.data.loc[idx, EsmProtFromChain.CH_ATTR]
63
+ item_name = self.data.loc[idx, EsmProtFromChain.ITEM_NAME_ATTR]
64
+ structure = self.__structure_provider.get_structure(
65
+ src_name=src_name,
66
+ src_structure=stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure,
67
+ structure_format=self.structure_format,
68
+ chain_id=chain_id
69
+ )
70
+ for atom_ch in chain_iter(structure):
71
+ protein_chain = ProteinChain.from_atomarray(rename_atom_ch(atom_ch))
72
+ return ESMProtein.from_protein_chain(protein_chain), item_name
73
+
74
+
75
+ if __name__ == '__main__':
76
+
77
+ parser = argparse.ArgumentParser()
78
+ parser.add_argument('--file_list', type=argparse.FileType('r'), required=True)
79
+ args = parser.parse_args()
80
+
81
+ dataset = EsmProtFromChain(
82
+ args.file_list
83
+ )
84
+
85
+ esm3 = ESM3.from_pretrained(
86
+ ESM3_OPEN_SMALL,
87
+ torch.device("cpu")
88
+ )
89
+
90
+ dataloader = DataLoader(
91
+ dataset,
92
+ batch_size=2,
93
+ collate_fn=lambda _: _
94
+ )
95
+
96
+ for _batch in dataloader:
97
+ for esm_prot, prot_name in _batch:
98
+ protein_tensor = esm3.encode(esm_prot)
99
+ embeddings = esm3.forward_and_sample(
100
+ protein_tensor, SamplingConfig(return_per_residue_embeddings=True)
101
+ ).per_residue_embedding
102
+ print(prot_name, embeddings.shape)
@@ -0,0 +1,63 @@
1
+
2
+ import pandas as pd
3
+
4
+ from rcsb_embedding_model.dataset.esm_prot_from_chain import EsmProtFromChain
5
+ from rcsb_embedding_model.types.api_types import StructureLocation, StructureFormat, SrcLocation
6
+ from rcsb_embedding_model.utils.data import stringio_from_url
7
+ from rcsb_embedding_model.utils.structure_parser import get_protein_chains
8
+ from rcsb_embedding_model.utils.structure_provider import StructureProvider
9
+
10
+
11
+ class EsmProtFromStructure(EsmProtFromChain):
12
+
13
+ STREAM_NAME_ATTR = 'stream_name'
14
+ STREAM_ATTR = 'stream'
15
+ ITEM_NAME_ATTR = 'item_name'
16
+
17
+ COLUMNS = [STREAM_NAME_ATTR, STREAM_ATTR, ITEM_NAME_ATTR]
18
+
19
+ def __init__(
20
+ self,
21
+ src_stream,
22
+ src_location=SrcLocation.local,
23
+ structure_location=StructureLocation.local,
24
+ structure_format=StructureFormat.mmcif,
25
+ min_res_n=0,
26
+ structure_provider=StructureProvider()
27
+ ):
28
+ self.min_res_n = min_res_n
29
+ self.src_location = src_location
30
+ self.structure_location = structure_location
31
+ self.structure_format = structure_format
32
+ self.__structure_provider = structure_provider
33
+ super().__init__(
34
+ src_stream=self.__get_chains(src_stream),
35
+ src_location=SrcLocation.stream,
36
+ structure_location=StructureLocation.local,
37
+ structure_format=structure_format
38
+ )
39
+
40
+ def __get_chains(self, src_stream):
41
+ chains = []
42
+ for idx, row in (pd.DataFrame(
43
+ src_stream,
44
+ dtype=str,
45
+ columns=self.COLUMNS
46
+ ) if self.src_location == SrcLocation.stream else pd.read_csv(
47
+ src_stream,
48
+ header=None,
49
+ index_col=None,
50
+ dtype=str,
51
+ names=EsmProtFromStructure.COLUMNS
52
+ )).iterrows():
53
+ src_name = row[EsmProtFromStructure.STREAM_NAME_ATTR]
54
+ src_structure = row[EsmProtFromStructure.STREAM_ATTR]
55
+ item_name = row[EsmProtFromStructure.ITEM_NAME_ATTR]
56
+ structure = self.__structure_provider.get_structure(
57
+ src_name=src_name,
58
+ src_structure=stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure,
59
+ structure_format=self.structure_format
60
+ )
61
+ for ch in get_protein_chains(structure, self.min_res_n):
62
+ chains.append((src_name, src_structure, ch, f"{item_name}.{ch}"))
63
+ return tuple(chains)
@@ -0,0 +1,68 @@
1
+ import sys
2
+
3
+ import pandas as pd
4
+
5
+ from rcsb_embedding_model.dataset.residue_assembly_embedding_from_tensor_file import ResidueAssemblyEmbeddingFromTensorFile
6
+ from rcsb_embedding_model.types.api_types import SrcLocation, StructureLocation, StructureFormat
7
+ from rcsb_embedding_model.utils.data import stringio_from_url
8
+ from rcsb_embedding_model.utils.structure_parser import get_assemblies
9
+ from rcsb_embedding_model.utils.structure_provider import StructureProvider
10
+
11
+
12
+ class ResidueAssemblyDatasetFromStructure(ResidueAssemblyEmbeddingFromTensorFile):
13
+
14
+ STREAM_NAME_ATTR = 'stream_name'
15
+ STREAM_ATTR = 'stream'
16
+ ITEM_NAME_ATTR = 'item_name'
17
+
18
+ COLUMNS = [STREAM_NAME_ATTR, STREAM_ATTR, ITEM_NAME_ATTR]
19
+
20
+ def __init__(
21
+ self,
22
+ src_stream,
23
+ res_embedding_location,
24
+ src_location=SrcLocation.local,
25
+ structure_location=StructureLocation.local,
26
+ structure_format=StructureFormat.mmcif,
27
+ min_res_n=0,
28
+ max_res_n=sys.maxsize,
29
+ structure_provider=StructureProvider()
30
+ ):
31
+ self.src_location = src_location
32
+ self.structure_location = structure_location
33
+ self.structure_format = structure_format
34
+ self.min_res_n = min_res_n
35
+ self.max_res_n = max_res_n
36
+ self.__structure_provider = structure_provider
37
+ super().__init__(
38
+ src_stream=self.__get_assemblies(src_stream),
39
+ res_embedding_location=res_embedding_location,
40
+ src_location=src_location,
41
+ structure_location=structure_location,
42
+ structure_format=structure_format,
43
+ min_res_n=min_res_n,
44
+ max_res_n=max_res_n,
45
+ structure_provider=structure_provider
46
+ )
47
+
48
+ def __get_assemblies(self, src_stream):
49
+ assemblies = []
50
+ for idx, row in (pd.DataFrame(
51
+ src_stream,
52
+ dtype=str,
53
+ columns=self.COLUMNS
54
+ ) if self.src_location == SrcLocation.stream else pd.read_csv(
55
+ src_stream,
56
+ header=None,
57
+ index_col=None,
58
+ dtype=str,
59
+ names=ResidueAssemblyDatasetFromStructure.COLUMNS
60
+ )).iterrows():
61
+ src_name = row[ResidueAssemblyDatasetFromStructure.STREAM_NAME_ATTR]
62
+ src_structure = row[ResidueAssemblyDatasetFromStructure.STREAM_ATTR]
63
+ src_structure = stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure
64
+ item_name = row[ResidueAssemblyDatasetFromStructure.ITEM_NAME_ATTR]
65
+ for assembly_id in get_assemblies(src_structure=src_structure, structure_format=self.structure_format):
66
+ assemblies.append((src_name, src_structure, str(assembly_id), f"{item_name}.{assembly_id}"))
67
+
68
+ return tuple(assemblies)
@@ -0,0 +1,94 @@
1
+ import sys
2
+
3
+ import pandas as pd
4
+ from torch.utils.data import Dataset, DataLoader
5
+
6
+ from rcsb_embedding_model.types.api_types import StructureLocation, StructureFormat, SrcLocation
7
+ from rcsb_embedding_model.utils.data import stringio_from_url, concatenate_tensors
8
+ from rcsb_embedding_model.utils.structure_parser import get_protein_chains
9
+ from rcsb_embedding_model.utils.structure_provider import StructureProvider
10
+
11
+
12
+ class ResidueAssemblyEmbeddingFromTensorFile(Dataset):
13
+
14
+ STREAM_NAME_ATTR = 'stream_name'
15
+ STREAM_ATTR = 'stream'
16
+ ASSEMBLY_ATTR = 'assembly_id'
17
+ ITEM_NAME_ATTR = 'item_name'
18
+
19
+ COLUMNS = [STREAM_NAME_ATTR, STREAM_ATTR, ASSEMBLY_ATTR, ITEM_NAME_ATTR]
20
+
21
+ def __init__(
22
+ self,
23
+ src_stream,
24
+ res_embedding_location,
25
+ src_location=SrcLocation.local,
26
+ structure_location=StructureLocation.local,
27
+ structure_format=StructureFormat.mmcif,
28
+ min_res_n=0,
29
+ max_res_n=sys.maxsize,
30
+ structure_provider=StructureProvider()
31
+ ):
32
+ super().__init__()
33
+ self.res_embedding_location = res_embedding_location
34
+ self.src_location = src_location
35
+ self.structure_location = structure_location
36
+ self.structure_format = structure_format
37
+ self.min_res_n = min_res_n
38
+ self.max_res_n = max_res_n
39
+ self.data = pd.DataFrame()
40
+ self.__load_stream(src_stream)
41
+ self.__structure_provider = structure_provider
42
+
43
+ def __load_stream(self, src_stream):
44
+ self.data = pd.DataFrame(
45
+ src_stream,
46
+ dtype=str,
47
+ columns=ResidueAssemblyEmbeddingFromTensorFile.COLUMNS
48
+ ) if self.src_location == SrcLocation.stream else pd.read_csv(
49
+ src_stream,
50
+ header=None,
51
+ index_col=None,
52
+ dtype=str,
53
+ names=ResidueAssemblyEmbeddingFromTensorFile.COLUMNS
54
+ )
55
+
56
+ def __len__(self):
57
+ return len(self.data)
58
+
59
+ def __getitem__(self, idx):
60
+ src_name = self.data.loc[idx, ResidueAssemblyEmbeddingFromTensorFile.STREAM_NAME_ATTR]
61
+ src_structure = self.data.loc[idx, ResidueAssemblyEmbeddingFromTensorFile.STREAM_ATTR]
62
+ assembly_id = self.data.loc[idx, ResidueAssemblyEmbeddingFromTensorFile.ASSEMBLY_ATTR]
63
+ item_name = self.data.loc[idx, ResidueAssemblyEmbeddingFromTensorFile.ITEM_NAME_ATTR]
64
+
65
+ structure = self.__structure_provider.get_structure(
66
+ src_name=src_name,
67
+ src_structure=stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure,
68
+ structure_format=self.structure_format,
69
+ assembly_id=assembly_id
70
+ )
71
+ residue_embedding_files = [
72
+ f"{self.res_embedding_location}/{src_name}.{ch}.pt" for ch in get_protein_chains(structure, self.min_res_n)
73
+ ]
74
+ return concatenate_tensors(residue_embedding_files, self.max_res_n), item_name
75
+
76
+
77
+ if __name__ == "__main__":
78
+
79
+ dataset = ResidueAssemblyEmbeddingFromTensorFile(
80
+ src_stream="/Users/joan/tmp/assembly-test.csv",
81
+ res_embedding_location="/Users/joan/tmp",
82
+ src_location=SrcLocation.local,
83
+ structure_location=StructureLocation.local,
84
+ structure_format=StructureFormat.mmcif
85
+ )
86
+
87
+ dataloader = DataLoader(
88
+ dataset,
89
+ batch_size=1,
90
+ collate_fn=lambda _: _
91
+ )
92
+
93
+ for _batch in dataloader:
94
+ print(_batch)
@@ -0,0 +1,43 @@
1
+ import pandas as pd
2
+ import torch
3
+ from torch.utils.data import Dataset
4
+
5
+ from rcsb_embedding_model.types.api_types import StructureLocation, SrcLocation
6
+
7
+
8
+ class ResidueEmbeddingFromTensorFile(Dataset):
9
+
10
+ FILE_ATTR = 'file'
11
+ ITEM_NAME_ATTR = 'item_name'
12
+
13
+ COLUMNS = [FILE_ATTR, ITEM_NAME_ATTR]
14
+
15
+ def __init__(
16
+ self,
17
+ src_stream,
18
+ src_location=SrcLocation.local
19
+ ):
20
+ super().__init__()
21
+ self.src_location = src_location
22
+ self.data = pd.DataFrame()
23
+ self.__load_stream(src_stream)
24
+
25
+ def __load_stream(self, src_stream):
26
+ self.data = pd.DataFrame(
27
+ src_stream,
28
+ dtype=str,
29
+ columns=self.COLUMNS
30
+ ) if self.src_location == SrcLocation.stream else pd.read_csv(
31
+ src_stream,
32
+ header=None,
33
+ index_col=None,
34
+ names=ResidueEmbeddingFromTensorFile.COLUMNS
35
+ )
36
+
37
+ def __len__(self):
38
+ return len(self.data)
39
+
40
+ def __getitem__(self, idx):
41
+ embedding_src = self.data.loc[idx, ResidueEmbeddingFromTensorFile.FILE_ATTR]
42
+ item_name = self.data.loc[idx, ResidueEmbeddingFromTensorFile.ITEM_NAME_ATTR]
43
+ return torch.load(embedding_src, map_location=torch.device('cpu')), item_name