rc-foundry 0.1.5__py3-none-any.whl → 0.1.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (152) hide show
  1. foundry/inference_engines/checkpoint_registry.py +58 -11
  2. foundry/utils/alignment.py +10 -2
  3. foundry/version.py +2 -2
  4. foundry_cli/download_checkpoints.py +66 -66
  5. {rc_foundry-0.1.5.dist-info → rc_foundry-0.1.7.dist-info}/METADATA +25 -20
  6. rc_foundry-0.1.7.dist-info/RECORD +311 -0
  7. rf3/configs/callbacks/default.yaml +5 -0
  8. rf3/configs/callbacks/dump_validation_structures.yaml +6 -0
  9. rf3/configs/callbacks/metrics_logging.yaml +10 -0
  10. rf3/configs/callbacks/train_logging.yaml +16 -0
  11. rf3/configs/dataloader/default.yaml +15 -0
  12. rf3/configs/datasets/base.yaml +31 -0
  13. rf3/configs/datasets/pdb_and_distillation.yaml +58 -0
  14. rf3/configs/datasets/pdb_only.yaml +17 -0
  15. rf3/configs/datasets/train/disorder_distillation.yaml +48 -0
  16. rf3/configs/datasets/train/domain_distillation.yaml +50 -0
  17. rf3/configs/datasets/train/monomer_distillation.yaml +49 -0
  18. rf3/configs/datasets/train/na_complex_distillation.yaml +50 -0
  19. rf3/configs/datasets/train/pdb/af3_weighted_sampling.yaml +8 -0
  20. rf3/configs/datasets/train/pdb/base.yaml +32 -0
  21. rf3/configs/datasets/train/pdb/plinder.yaml +54 -0
  22. rf3/configs/datasets/train/pdb/train_interface.yaml +51 -0
  23. rf3/configs/datasets/train/pdb/train_pn_unit.yaml +46 -0
  24. rf3/configs/datasets/train/rna_monomer_distillation.yaml +56 -0
  25. rf3/configs/datasets/val/af3_ab_set.yaml +11 -0
  26. rf3/configs/datasets/val/af3_validation.yaml +11 -0
  27. rf3/configs/datasets/val/base.yaml +32 -0
  28. rf3/configs/datasets/val/runs_and_poses.yaml +12 -0
  29. rf3/configs/debug/default.yaml +66 -0
  30. rf3/configs/debug/train_specific_examples.yaml +21 -0
  31. rf3/configs/experiment/pretrained/rf3.yaml +50 -0
  32. rf3/configs/experiment/pretrained/rf3_with_confidence.yaml +13 -0
  33. rf3/configs/experiment/quick-rf3-with-confidence.yaml +15 -0
  34. rf3/configs/experiment/quick-rf3.yaml +61 -0
  35. rf3/configs/hydra/default.yaml +18 -0
  36. rf3/configs/hydra/no_logging.yaml +7 -0
  37. rf3/configs/inference.yaml +7 -0
  38. rf3/configs/inference_engine/base.yaml +23 -0
  39. rf3/configs/inference_engine/rf3.yaml +33 -0
  40. rf3/configs/logger/csv.yaml +6 -0
  41. rf3/configs/logger/default.yaml +3 -0
  42. rf3/configs/logger/wandb.yaml +15 -0
  43. rf3/configs/model/components/ema.yaml +1 -0
  44. rf3/configs/model/components/rf3_net.yaml +177 -0
  45. rf3/configs/model/components/rf3_net_with_confidence_head.yaml +45 -0
  46. rf3/configs/model/optimizers/adam.yaml +5 -0
  47. rf3/configs/model/rf3.yaml +43 -0
  48. rf3/configs/model/rf3_with_confidence.yaml +7 -0
  49. rf3/configs/model/schedulers/af3.yaml +6 -0
  50. rf3/configs/paths/data/default.yaml +43 -0
  51. rf3/configs/paths/default.yaml +21 -0
  52. rf3/configs/train.yaml +42 -0
  53. rf3/configs/trainer/cpu.yaml +6 -0
  54. rf3/configs/trainer/ddp.yaml +5 -0
  55. rf3/configs/trainer/loss/losses/confidence_loss.yaml +29 -0
  56. rf3/configs/trainer/loss/losses/diffusion_loss.yaml +9 -0
  57. rf3/configs/trainer/loss/losses/distogram_loss.yaml +2 -0
  58. rf3/configs/trainer/loss/structure_prediction.yaml +4 -0
  59. rf3/configs/trainer/loss/structure_prediction_with_confidence.yaml +2 -0
  60. rf3/configs/trainer/metrics/structure_prediction.yaml +14 -0
  61. rf3/configs/trainer/rf3.yaml +20 -0
  62. rf3/configs/trainer/rf3_with_confidence.yaml +13 -0
  63. rf3/configs/validate.yaml +45 -0
  64. rfd3/cli.py +10 -4
  65. rfd3/configs/__init__.py +0 -0
  66. rfd3/configs/callbacks/design_callbacks.yaml +10 -0
  67. rfd3/configs/callbacks/metrics_logging.yaml +20 -0
  68. rfd3/configs/callbacks/train_logging.yaml +24 -0
  69. rfd3/configs/dataloader/default.yaml +15 -0
  70. rfd3/configs/dataloader/fast.yaml +11 -0
  71. rfd3/configs/datasets/conditions/dna_condition.yaml +3 -0
  72. rfd3/configs/datasets/conditions/island.yaml +28 -0
  73. rfd3/configs/datasets/conditions/ppi.yaml +2 -0
  74. rfd3/configs/datasets/conditions/sequence_design.yaml +17 -0
  75. rfd3/configs/datasets/conditions/tipatom.yaml +28 -0
  76. rfd3/configs/datasets/conditions/unconditional.yaml +21 -0
  77. rfd3/configs/datasets/design_base.yaml +97 -0
  78. rfd3/configs/datasets/train/pdb/af3_train_interface.yaml +46 -0
  79. rfd3/configs/datasets/train/pdb/af3_train_pn_unit.yaml +42 -0
  80. rfd3/configs/datasets/train/pdb/base.yaml +14 -0
  81. rfd3/configs/datasets/train/pdb/base_no_weights.yaml +19 -0
  82. rfd3/configs/datasets/train/pdb/base_transform_args.yaml +59 -0
  83. rfd3/configs/datasets/train/pdb/na_complex_distillation.yaml +20 -0
  84. rfd3/configs/datasets/train/pdb/pdb_base.yaml +11 -0
  85. rfd3/configs/datasets/train/pdb/rfd3_train_interface.yaml +22 -0
  86. rfd3/configs/datasets/train/pdb/rfd3_train_pn_unit.yaml +23 -0
  87. rfd3/configs/datasets/train/rfd3_monomer_distillation.yaml +38 -0
  88. rfd3/configs/datasets/val/bcov_ppi_easy_medium.yaml +9 -0
  89. rfd3/configs/datasets/val/design_validation_base.yaml +40 -0
  90. rfd3/configs/datasets/val/dna_binder_design5.yaml +9 -0
  91. rfd3/configs/datasets/val/dna_binder_long.yaml +13 -0
  92. rfd3/configs/datasets/val/dna_binder_short.yaml +13 -0
  93. rfd3/configs/datasets/val/indexed.yaml +9 -0
  94. rfd3/configs/datasets/val/mcsa_41.yaml +9 -0
  95. rfd3/configs/datasets/val/mcsa_41_short_rigid.yaml +10 -0
  96. rfd3/configs/datasets/val/ppi_inference.yaml +7 -0
  97. rfd3/configs/datasets/val/sm_binder_hbonds.yaml +13 -0
  98. rfd3/configs/datasets/val/sm_binder_hbonds_short.yaml +15 -0
  99. rfd3/configs/datasets/val/unconditional.yaml +9 -0
  100. rfd3/configs/datasets/val/unconditional_deep.yaml +9 -0
  101. rfd3/configs/datasets/val/unindexed.yaml +8 -0
  102. rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori.yaml +151 -0
  103. rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori_spoof_helical_bundle.yaml +7 -0
  104. rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori_varying_lengths.yaml +28 -0
  105. rfd3/configs/datasets/val/val_examples/bpem_ori_hb.yaml +212 -0
  106. rfd3/configs/debug/default.yaml +64 -0
  107. rfd3/configs/debug/train_specific_examples.yaml +21 -0
  108. rfd3/configs/dev.yaml +9 -0
  109. rfd3/configs/experiment/debug.yaml +14 -0
  110. rfd3/configs/experiment/pretrain.yaml +31 -0
  111. rfd3/configs/experiment/test-uncond.yaml +10 -0
  112. rfd3/configs/experiment/test-unindexed.yaml +21 -0
  113. rfd3/configs/hydra/default.yaml +18 -0
  114. rfd3/configs/hydra/no_logging.yaml +7 -0
  115. rfd3/configs/inference.yaml +9 -0
  116. rfd3/configs/inference_engine/base.yaml +15 -0
  117. rfd3/configs/inference_engine/dev.yaml +20 -0
  118. rfd3/configs/inference_engine/rfdiffusion3.yaml +65 -0
  119. rfd3/configs/logger/csv.yaml +6 -0
  120. rfd3/configs/logger/default.yaml +2 -0
  121. rfd3/configs/logger/wandb.yaml +15 -0
  122. rfd3/configs/model/components/ema.yaml +1 -0
  123. rfd3/configs/model/components/rfd3_net.yaml +131 -0
  124. rfd3/configs/model/optimizers/adam.yaml +5 -0
  125. rfd3/configs/model/rfd3_base.yaml +8 -0
  126. rfd3/configs/model/samplers/edm.yaml +21 -0
  127. rfd3/configs/model/samplers/symmetry.yaml +10 -0
  128. rfd3/configs/model/schedulers/af3.yaml +6 -0
  129. rfd3/configs/paths/data/default.yaml +18 -0
  130. rfd3/configs/paths/default.yaml +22 -0
  131. rfd3/configs/train.yaml +28 -0
  132. rfd3/configs/trainer/cpu.yaml +6 -0
  133. rfd3/configs/trainer/ddp.yaml +5 -0
  134. rfd3/configs/trainer/loss/losses/diffusion_loss.yaml +12 -0
  135. rfd3/configs/trainer/loss/losses/sequence_loss.yaml +3 -0
  136. rfd3/configs/trainer/metrics/design_metrics.yaml +22 -0
  137. rfd3/configs/trainer/rfd3_base.yaml +35 -0
  138. rfd3/configs/validate.yaml +34 -0
  139. rfd3/engine.py +19 -11
  140. rfd3/inference/input_parsing.py +1 -1
  141. rfd3/inference/legacy_input_parsing.py +17 -1
  142. rfd3/inference/parsing.py +1 -0
  143. rfd3/inference/symmetry/atom_array.py +1 -5
  144. rfd3/inference/symmetry/checks.py +53 -28
  145. rfd3/inference/symmetry/frames.py +8 -5
  146. rfd3/inference/symmetry/symmetry_utils.py +38 -60
  147. rfd3/run_inference.py +3 -1
  148. rfd3/utils/inference.py +23 -0
  149. rc_foundry-0.1.5.dist-info/RECORD +0 -180
  150. {rc_foundry-0.1.5.dist-info → rc_foundry-0.1.7.dist-info}/WHEEL +0 -0
  151. {rc_foundry-0.1.5.dist-info → rc_foundry-0.1.7.dist-info}/entry_points.txt +0 -0
  152. {rc_foundry-0.1.5.dist-info → rc_foundry-0.1.7.dist-info}/licenses/LICENSE.md +0 -0
@@ -0,0 +1,311 @@
1
+ foundry/__init__.py,sha256=H8S1nl5v6YeW8ggn1jKy4GdtH7c-FGS-j7CqUCAEnAU,1926
2
+ foundry/common.py,sha256=Aur8mH-CNmcUqSsw7VgaCQSW5sH1Bqf8Da91jzxPV1Y,3035
3
+ foundry/constants.py,sha256=0n1wBKCvNuw3QaQehSbmsHYkIdaGn3tLeRFItBrdeHY,913
4
+ foundry/version.py,sha256=szvPIs2C82UunpzuvVg3MbF4QhzbBYTsVJ8DmPfq6_E,704
5
+ foundry/callbacks/__init__.py,sha256=VsRT1e4sqlJHPcTCsfupMEx82Iz-LoOAGPpwvf_OJeE,126
6
+ foundry/callbacks/callback.py,sha256=xZBo_suP4bLrP6gl5uJPbaXm00DXigePa6dMeDxucgg,3890
7
+ foundry/callbacks/health_logging.py,sha256=tEtkByOlaAA7nnelxb7PbM9_dcIgOsdbxCdQY3K5pMc,16664
8
+ foundry/callbacks/metrics_logging.py,sha256=Vekzs831d-HE7TfLJZnQ45iPeG9ziQWLQaMBGaymfQM,8696
9
+ foundry/callbacks/timing_logging.py,sha256=u-r0hKp7fWOY3mLk7CcuIwHgZbhte13m5M09xNgatZA,2343
10
+ foundry/callbacks/train_logging.py,sha256=Xs3tmZA88qLxmdSOwt-x8YKN4NKb1kVm59uptNXl4Qo,10399
11
+ foundry/hydra/resolvers.py,sha256=xyJzo6OeWAc_LOu8RiHhX7_CRNoLZ22626AvYHXYl4U,2186
12
+ foundry/inference_engines/base.py,sha256=ZHdlmGUqH4-p3v4RdrLH-Ps8_zalr7j5mQ4x-S53N4M,8375
13
+ foundry/inference_engines/checkpoint_registry.py,sha256=c_me8Uz2NWXAaELhQ4bT1HMPfY8XrH67kvCKdDPrD8g,4149
14
+ foundry/metrics/__init__.py,sha256=qL4wwaiQ7EtR30pmZ9MCknqx909BJcNvHVmNJUaz_WM,236
15
+ foundry/metrics/losses.py,sha256=2CLUmf7oCdFUCvgJukdNkff0FVG3BlATI-NI60TtpVY,903
16
+ foundry/metrics/metric.py,sha256=23pKh_Ra0EcHGo5cSzYQQrUGr5zWRxeufKSJ58tfXXo,12687
17
+ foundry/model/layers/blocks.py,sha256=ihbbP_1fOlrkrcrQSk9thCrNWjK8mtxD3WxcBng9Htk,1403
18
+ foundry/testing/__init__.py,sha256=BnrU7fZ4l0Dm1vrGcNPQYTAw83PW4DGYz7TGhGqgrfQ,223
19
+ foundry/testing/fixtures.py,sha256=j27a8CAonygjlWsUjZ-95M5MF4Rjp9nw7JskqiZlweI,486
20
+ foundry/testing/pytest_hooks.py,sha256=5Ebw1GXYO2XqS9Jvpzty7g3gCXIdXu16jqg53XcuUx4,450
21
+ foundry/trainers/fabric.py,sha256=cjaTHbGuJEQwaGBvIAXD_il4bHtY-crsTY14Xn77uXA,40401
22
+ foundry/training/EMA.py,sha256=3OWA9Pz7XuDr-SRxbz24tZf55DmhSa2fKy9r5v2IXqA,2651
23
+ foundry/training/checkpoint.py,sha256=mUiObg-qcF3tvMfVu77sD9m3yVRp71czv07ccliU7qQ,1791
24
+ foundry/training/schedulers.py,sha256=StmXegPfIdLAv31FreCTrDh9dsOvNUfzG4YGa61Y4oE,3647
25
+ foundry/utils/alignment.py,sha256=2anqy0mn9zeFEiVWS_EG7zHiyPk1C_gbUu-SRvQ5mAM,2502
26
+ foundry/utils/components.py,sha256=Piw2TfQF26uuxC3hXG3iv_4rgud1lVO-cv6N-p05EDY,15200
27
+ foundry/utils/datasets.py,sha256=pLBxVezm-TSrYuC5gFnJZdGnNWV7aPH2QiWIVE2hkdQ,16629
28
+ foundry/utils/ddp.py,sha256=ydHrO6peGbRnWAwgH5rmpHuQd55g2gFzzoZJYypn7GU,3970
29
+ foundry/utils/instantiators.py,sha256=oGCp6hrmY-QPPPEjxKxe5uVFL125fH1RaLxjMKWCD_8,2169
30
+ foundry/utils/logging.py,sha256=jrDgiB_56q_hWDc0jkBFekvqnNWcowJBt4B-S-ipJmM,9312
31
+ foundry/utils/rigid.py,sha256=_Z1pmitb6xgxyguLj_TukKscUBJjQsU4bsBD24GVS84,44444
32
+ foundry/utils/rotation_augmentation.py,sha256=7q1WEX2iJ0i7-2aV-M97nEaEdpqexDTaZn5JquYpkUk,1927
33
+ foundry/utils/squashfs.py,sha256=QlcwuJyVe-QVfIOS7o1QfLhaCQPNzzox7ln4n8dcYEg,5234
34
+ foundry/utils/torch.py,sha256=OLsqoxw4CTXbGzWUHernLUT7uQjLu0tVPtD8h8747DI,11211
35
+ foundry/utils/weights.py,sha256=btz4S02xff2vgiq4xMfiXuhK1ERafqQPtmimo1DmoWY,10381
36
+ foundry_cli/__init__.py,sha256=0BxY2RUKJLaMXUGgypPCwlTskTEFdVnkhTR4C4ft2Kw,52
37
+ foundry_cli/download_checkpoints.py,sha256=CxU9dKBa1vAkVd450tfH5aZAlQIUTrHsDGTbmxzd_JQ,8922
38
+ mpnn/__init__.py,sha256=hgQcXFaCbAxFrhydVAy0xj8yC7UJF-GCCFhqD0sZ7I4,57
39
+ mpnn/inference.py,sha256=wPtGR325eVRVeesXoWtBK6b_-VcU8BZae5IfQN3-mvA,1669
40
+ mpnn/train.py,sha256=9eQGBd3rdNF5Zr2w8oUgETbqxBavNBajtA6Vbc5zESE,10239
41
+ mpnn/collate/feature_collator.py,sha256=LpzAFWo1VMa06dJLmfUWZsKe4xvLZjHbx4RICg2lgbQ,10510
42
+ mpnn/inference_engines/mpnn.py,sha256=PmDEsIFipdk2fY57FA-vCp4evoU83DVVuUVmlViUtWk,21725
43
+ mpnn/loss/nll_loss.py,sha256=KmdNe-BCzGYtijjappzBArQcT1gHVlJnKdY1PYQ4mhU,5947
44
+ mpnn/metrics/nll.py,sha256=T6oMeUOEeHZzOMTH8NHFtsH9vUwLAsHQDPszzj4YKXI,15299
45
+ mpnn/metrics/sequence_recovery.py,sha256=YDw_LmH-a3ajBYWK0mucJEQvw0_VEyxvrBN7da4vX8Q,19034
46
+ mpnn/model/mpnn.py,sha256=vhkair2tYoId_akRP2qEq5O0IMZv6wsv9Q-V9plKgV8,131144
47
+ mpnn/model/layers/graph_embeddings.py,sha256=aEtd7iorMh8DxNH0eZVrK_zOo8HDLM5FRJyIJ8Cfz6k,99795
48
+ mpnn/model/layers/message_passing.py,sha256=TUkG9pXuo4Rtz5Bcij-OB7T4gSKmLt1KgxNmjJYPcMY,13051
49
+ mpnn/model/layers/position_wise_feed_forward.py,sha256=FATM8oveWy2XW-PDaaF9XLPIiWbehOHxG715E60n_8g,1602
50
+ mpnn/model/layers/positional_encoding.py,sha256=f-YpH1xvPGFC75U2-sOHrK13XtA9ZAWxjxxH1GrDt1M,4876
51
+ mpnn/pipelines/mpnn.py,sha256=SukwxEcAzaCgUZKcA1_KusodvcCg3_buN1dAZU-Udas,6185
52
+ mpnn/samplers/samplers.py,sha256=LDpetPMVklMboj1tucgnNvSHRUaQuehBmR2jFl4VWIE,6129
53
+ mpnn/trainers/mpnn.py,sha256=waXLQ-7pFD8MJRlnK37mHWcvqD6uOjTXVP6910tB6cw,6586
54
+ mpnn/transforms/polymer_ligand_interface.py,sha256=lipKDt_NFrpM-GiOXtvnTAvMpISOO4eHwilCgxnISJU,6106
55
+ mpnn/transforms/feature_aggregation/mpnn.py,sha256=jkhyMCqJipKQ2PvjqPkvvClhoiXx_I8e03lnDeH9__M,6324
56
+ mpnn/transforms/feature_aggregation/polymer_ligand_interface.py,sha256=gDdt9RZd0PO0YJdouNr0qsHFZV1i-5ewU6XuJrwPY54,2870
57
+ mpnn/transforms/feature_aggregation/token_encodings.py,sha256=qVlUky4HcDSU5drrZpZBnUvTSGdT6C7MN8f_owa81Bw,2227
58
+ mpnn/transforms/feature_aggregation/user_settings.py,sha256=uKyIDXz-QG0-KWQO1kqPlMj6i7RoVM6yH4iGNXFStoU,15007
59
+ mpnn/utils/inference.py,sha256=QLeukqLpedMNmvjbYgvLwDS5k7Q__NWILDSEbETkoCI,96539
60
+ mpnn/utils/probability.py,sha256=EYisliXNGXjuSPbzZwcIKjlhyINikGsqQndGBEbQoPI,990
61
+ mpnn/utils/weights.py,sha256=VsaIcOWTv8G-WJ9denxLRm3FQ9l6L66AVQN08E9BMSg,16411
62
+ rf3/__init__.py,sha256=XBb5hF2RqBPHODGRmjiRbfTXgOGfOzdY91GbS4Vex00,70
63
+ rf3/_version.py,sha256=fCfpbI5aeA6yHqjo3tK78-l2dPGxhp-AyKSoCXp34Nc,739
64
+ rf3/alignment.py,sha256=BvvwMqQGCVxV20xIsTighD1kXMadXXL2SkckLjTerx0,2102
65
+ rf3/chemical.py,sha256=VECnRPgVm-icXbZeUG4svcENzdUiIupP6dhka_8zCrg,26572
66
+ rf3/cli.py,sha256=dPKJFRHYoV2XS6xc_ZmdLTz6frqa6HZg4qgZU5oJcXU,2356
67
+ rf3/inference.py,sha256=_AAJ07AfSeU3xTM2_KH9n_H12EK4qZ23IJuyauOrMaQ,2466
68
+ rf3/kinematics.py,sha256=V3yjalPupu1X2FEp7l3XZR-qzLKrhWLZyECk6RgIkcs,10901
69
+ rf3/scoring.py,sha256=dTllswE-6Fgli2eLiNzLFc2Rhz4ouDT4WL-sVbvLTGU,41541
70
+ rf3/train.py,sha256=V4nqCC_1JKLI3WQ-nErNa8sqFpvb1mFhXSe6ZPpEheM,7945
71
+ rf3/util_module.py,sha256=ltc7QXJDb5Z184wxYQuT_-Z68YWXuPmOEBMLSzS6Pes,1428
72
+ rf3/validate.py,sha256=wXZLTWiOdTsCKiKK2_Dfnj5PInDiv5KxojOZwaUJjuo,5832
73
+ rf3/callbacks/dump_validation_structures.py,sha256=j_pDfPETyI10ZtsUlvf16-zpJdaUcC5w8TEYCk--Xbo,3909
74
+ rf3/callbacks/metrics_logging.py,sha256=MYcM_ZYKsBTJKx2xi9H0QPr5Lh1o80_bTZXH8kfV5y8,13429
75
+ rf3/data/cyclic_transform.py,sha256=Cs4x_qooCUXKNiFeVdfrXAGhZ0z_yyedscWRsGmEpwM,3351
76
+ rf3/data/extra_xforms.py,sha256=Pxv4Nt4Ir_Ca92XWx_c6mdaCl7fS3_gFCWG775WWVSQ,1197
77
+ rf3/data/ground_truth_template.py,sha256=dct1bGQ7AMjiNyLIotKJZzbbUI546mc-UDdRpKMU7vU,19460
78
+ rf3/data/paired_msa.py,sha256=aso9awdKthzsm1ITHHO8r-1O5vFDrDL-ot7FhXB7Css,7765
79
+ rf3/data/pipeline_utils.py,sha256=qLNcy2iTmZxwCJJk9etXCn_vRljUYhGqSn0uNsRDGO0,5008
80
+ rf3/data/pipelines.py,sha256=3yy8f4pUSiV9mnhDmboO2RAsIlIJ0WYCzTzXT3OGQ5M,20913
81
+ rf3/diffusion_samplers/inference_sampler.py,sha256=dNhVGQujfcMhIlFdlLjZHiWXBnaLjOjRBd58eM6SJv4,9014
82
+ rf3/inference_engines/__init__.py,sha256=tFyTBEMsQ2oR-x2TE9-7B3HIlkHFmoOP2d6hfomj_hc,121
83
+ rf3/inference_engines/rf3.py,sha256=rPJaY355JUvqq_UOAM7gSHzYBE6keN0zPG57bjUb0qU,29761
84
+ rf3/loss/af3_confidence_loss.py,sha256=X8TLudvIFxD2GHlNLsBHoysO0qeWGdaKdW8It6G7nhE,19697
85
+ rf3/loss/af3_losses.py,sha256=oD-sFIJgNR11OAFK_K-6OeKdeIauEabWNMJX8M9mE6k,24492
86
+ rf3/loss/loss.py,sha256=3aHB8FiA0WkeTacfMUnG9mnoILyjX8AE9345eToubag,6184
87
+ rf3/metrics/chiral.py,sha256=xeZjBv9XFa8Tmo7aFjevwLuRk6GGpRU4CIkT41SvnFI,7139
88
+ rf3/metrics/clashing_chains.py,sha256=El3CILpTMSD-U-5pgUugXigNao9AZ17KxOW1-NX4N38,2518
89
+ rf3/metrics/distogram.py,sha256=lXLPfNtWnt4d3_Vc9A1AsAv3c0eZDRdK5tixgO9rIj8,16978
90
+ rf3/metrics/lddt.py,sha256=VjObCWvjAhElgGFckx_sRx8toUq4TVfr5ip8ThW06Qw,21412
91
+ rf3/metrics/metadata.py,sha256=hFEJ4thQiV8vs3fzj5dxK4BS3nb4PSnhCoBrfQXwD2I,1437
92
+ rf3/metrics/metric_utils.py,sha256=rdTY3Uc4at-Y7jLaDfaEhp17Z2KYqLGETuuCFSN59bY,7125
93
+ rf3/metrics/predicted_error.py,sha256=tsUFyW6Jv8m4REKui0mVQkfACB8PTVOzMstFW1d5pAA,4973
94
+ rf3/metrics/rasa.py,sha256=mQ6ZQdroC4CY3XDiUVWKvtHFCGTxyhDASqYF8SjnQGU,4525
95
+ rf3/metrics/selected_distances.py,sha256=uyTlbPHnf6PpZ6JMRkfDAAY-GkxerjpDkurTOSt3EV0,3620
96
+ rf3/model/RF3.py,sha256=fAJu8FG54tdo7wKcwkDLhorgBu4aBjqNAg4KGJIjgmc,22383
97
+ rf3/model/RF3_blocks.py,sha256=FZliymoYsYpDz_YqPsuXILDZaiE6IGcX1wJoeohueko,3218
98
+ rf3/model/RF3_structure.py,sha256=EnZuYk8dJWgLubp9Mui1f_e6hE0z6XuLn1HX7N_LfCo,9652
99
+ rf3/model/layers/af3_auxiliary_heads.py,sha256=kJqsT0_plh9_TXGN4HpPB1NzGIarCZyAIG5NiB5RN3Q,9937
100
+ rf3/model/layers/af3_diffusion_transformer.py,sha256=uU3OsubqsrGWjTHzEsOb6hzlc1gB5-o7GcK8ElRiLs8,19143
101
+ rf3/model/layers/attention.py,sha256=ofz4LR74oFBZ64RBAcbFlksV2E2NkYM69LoMDc4qedo,11189
102
+ rf3/model/layers/layer_utils.py,sha256=dzrYwvgdKS2ouDnRiseU2x7VBcRcXa1zeHA_EKLyO78,3382
103
+ rf3/model/layers/mlff.py,sha256=SFHskP18xB7zuZAzEeubw7kKwMEGZYlypGS_zZ-02yk,5017
104
+ rf3/model/layers/outer_product.py,sha256=OYam3gsxJa7JBet71_eFZ7D7mXQghluLXMRVHv2xUSs,2037
105
+ rf3/model/layers/pairformer_layers.py,sha256=nV5zwN6CLIqfCK7UTaNX_n67ASgfWp58KJMlj3TBbpg,28724
106
+ rf3/model/layers/structure_bias.py,sha256=xhu_KNRlE_FNfB0dwfHY47xhdFMmIPgV2qeYb_WyepI,1757
107
+ rf3/symmetry/resolve.py,sha256=odQF32aM4BqaOrmfEQJtwQxKgdJL5J0_Htb1I5KEDPA,10843
108
+ rf3/trainers/rf3.py,sha256=P9zLTMu7YaxllBiLgyrn6FnP1vKCOaerA7ciDgmqBrA,24141
109
+ rf3/utils/frames.py,sha256=6LVuV2XbODKNRU_ggGkd0EBXBT7F0q-HXFad4eTUOVs,3745
110
+ rf3/utils/inference.py,sha256=MjNkhoMzwPUb5rCouvEjtW-6XRa3yb471DQtpxzrhdk,24772
111
+ rf3/utils/io.py,sha256=xwOjzWviYKphuMbJgj18dylI72n0oF7mdUp8V5qlsaQ,8051
112
+ rf3/utils/loss.py,sha256=llaiL-5VaNTDMwh0TK_nIzniYPg0zDhIzzM8i8fYCqY,2757
113
+ rf3/utils/predict_and_score.py,sha256=VzRZohertYLMfnT9SwRs1gMGEhspV0LPBKmUjpU5WAY,6209
114
+ rf3/utils/predicted_error.py,sha256=5gIRjsD7bWvYYM30_wq9827porc1oj_Qq-cjyetYJ_s,25438
115
+ rf3/utils/recycling.py,sha256=nRvv0vWMsMG0Ods83XKkxdgmqKMXTw-w02n_BuZOYoo,1491
116
+ rfd3/.gitignore,sha256=935nLWJz_oi5h-UjxP4L_ulsMpkbRIVsl0dgGCwTCbc,109
117
+ rfd3/Makefile,sha256=_O87r1eIN7AmWWIqur3z0tLn1kgAPGEAGX2fcddarMs,2224
118
+ rfd3/__init__.py,sha256=2Wto2IsUIj2lGag9m_gqgdCwBNl5p21-Xnr7W_RpU3c,348
119
+ rfd3/callbacks.py,sha256=Zjt8RiaYWquoKOwRmC_wCUbRbov-V4zd2_73zjhgDHE,2783
120
+ rfd3/cli.py,sha256=ka3K5H117fzDYIDXFpOpJV21w_XBrHYJZdFE0thsGBI,1644
121
+ rfd3/constants.py,sha256=wLvDzrThpOrK8T3wGFNQeGrhAXOJQze8l3v_7pjIdMM,13141
122
+ rfd3/engine.py,sha256=NwATrhYFyqT7C9Bie8mWtUiqqzXgs9x6nOCkmZYPiT4,21224
123
+ rfd3/run_inference.py,sha256=HfRMQ30_SAHfc-VFzBV52F-aLaNdG6PW8VkdMyB__wE,1264
124
+ rfd3/train.py,sha256=rHswffIUhOae3_iYyvAiQ3jALoFuzrcRUgMlbJLinlI,7947
125
+ rfd3/inference/datasets.py,sha256=u-2U7deHXu-iOs7doiKKynewP-NEyJfdORSTDzUSaQI,6538
126
+ rfd3/inference/input_parsing.py,sha256=TyEzCzeCaNhuNi0RjMcq9fF2j3Sp36KbuZ1FUjlBTZ8,45442
127
+ rfd3/inference/legacy_input_parsing.py,sha256=G2XxkrjdIpL6i1YY7xEmkFitVv__Pc45ow6IKKPHw64,28855
128
+ rfd3/inference/parsing.py,sha256=ktAMUuZE3Pe4bKAjjV3zjqcEDmGlMZ-cotIUhJsEQQA,5402
129
+ rfd3/inference/symmetry/atom_array.py,sha256=HfFagFUB5yB-Y4IfUM5nuVGWHC5AEkyHqt0JcIqTQ_E,10922
130
+ rfd3/inference/symmetry/checks.py,sha256=y-Kq0l5OhEmmxsPBBsMMB0qaAt18FeEicD3-jSMQFa0,9900
131
+ rfd3/inference/symmetry/contigs.py,sha256=6OvbZ2dJg-a0mvvKAC0VkzUH5HpUDxOJvkByIst_roU,2127
132
+ rfd3/inference/symmetry/frames.py,sha256=aEwkmlUsYexERX9hu09JMhisC8QTpHPVhfITbL80-EE,10819
133
+ rfd3/inference/symmetry/symmetry_utils.py,sha256=p_PkxU3sw6gYGO2EmZTrbNQdLjz1mdTWEIl5MjQdIuY,14664
134
+ rfd3/metrics/design_metrics.py,sha256=O1RqZdjQPNlAWYRg6UJTERYg_gUI1_hVleKsm9xbWBY,16836
135
+ rfd3/metrics/hbonds_hbplus_metrics.py,sha256=Sewy9KzmrA1OnfkasN-fmWrQ9IRx9G7Yyhe2ua0mk28,11518
136
+ rfd3/metrics/hbonds_metrics.py,sha256=SIR4BnDhYdpVSqwXXRYpQ_tB-M0_fVyugGl08WivCmE,15257
137
+ rfd3/metrics/losses.py,sha256=GDz0uO2XyYCX1kvKJ1DR5s7wWlELIqqI2PhoCnue8IM,12705
138
+ rfd3/metrics/metrics_utils.py,sha256=o8zmjLq4i4LfoGiJ51rZU7KnH9LX4xEVLqbH0xBIoeI,4501
139
+ rfd3/metrics/sidechain_metrics.py,sha256=EGZuFuWQ0cCe83EVPAf4eysN8vP9ifNjfnmE0o5aIeA,12223
140
+ rfd3/model/RFD3.py,sha256=95aKzye-XzuDyLGgost-Wsfu8eT635zHIRky-pNoHSA,3569
141
+ rfd3/model/RFD3_diffusion_module.py,sha256=BPjKGyQpbnqdzii3gXMKLhhijNqV8Xh4bSosmfDBt8w,12094
142
+ rfd3/model/cfg_utils.py,sha256=XPBLyoB_bQRLmdrJ1Z0hCjcVvgUMGIPuw4rxTlHjB_s,2575
143
+ rfd3/model/inference_sampler.py,sha256=qge7BNJttW0NXgerg3msPY3izxQ-6FsvWSTAMhZ4GJs,24696
144
+ rfd3/model/layers/attention.py,sha256=XuNA7WyFlRfLnAgky1PtGvXFCnDGv7GeEcXz8hodTBo,19472
145
+ rfd3/model/layers/block_utils.py,sha256=EZq2qYUeO6_VCLKDVC60cxfBE_EPwvp84FPmqLr28ZQ,21197
146
+ rfd3/model/layers/blocks.py,sha256=MOjJ53THxM2MMM27Ap7xiIXRCdI_SHzqKzLLQVX6FEc,24888
147
+ rfd3/model/layers/chunked_pairwise.py,sha256=de5Qc3P7GEfZlX-QLaKfJxr6Ky5vgLcWWogatCw2UnY,14582
148
+ rfd3/model/layers/encoders.py,sha256=CqByjHNSbtMIaNP_h2iEJZdTbm-N8SGo1bZgvRNpMJ8,15207
149
+ rfd3/model/layers/layer_utils.py,sha256=UPYo-DYa__93KONSEj2YZWLtBqvYNSA9_wHDDPhVrIc,5710
150
+ rfd3/model/layers/pairformer_layers.py,sha256=uimskhN-Ec0apEXAU6JqomyKX5-6ormrEsCFJotkBtM,3991
151
+ rfd3/testing/debug.py,sha256=EeuGCEKyp-caoiskjnyfi88TfnJr5lcnPT2z4gblqvY,3958
152
+ rfd3/testing/debug_utils.py,sha256=i_GjrsRjeaREv6hlX2sEmeztpo9w9rg7Ne3VT5-YILA,2170
153
+ rfd3/testing/testing_utils.py,sha256=CtpTDxePbCluzuvd6jBfJNI2a3_8Ry2Whbgcf-5upiM,12202
154
+ rfd3/trainer/dump_validation_structures.py,sha256=qY8s2hPBflJTXPiIUnqFFE9g36y_7s39MEcMRrxZUmA,6027
155
+ rfd3/trainer/fabric_trainer.py,sha256=8dcyDSJFviyFU9fp6Ez02CmucKi9-DOEEwHIRcB6kQU,40074
156
+ rfd3/trainer/recycling.py,sha256=nRvv0vWMsMG0Ods83XKkxdgmqKMXTw-w02n_BuZOYoo,1491
157
+ rfd3/trainer/rfd3.py,sha256=9B_FgvTNvTDpZhRVXD1ufIRNrXOnERkFJosxe7Zy8-E,21181
158
+ rfd3/trainer/trainer_utils.py,sha256=1m331JI86uQvBrapLHjjEliGjU3qxafp-v47bTjsx-I,20528
159
+ rfd3/transforms/conditioning_base.py,sha256=A0Z2-v7ttvNa6xArpBdV8srH58gSaMI1J48ULXvQJTg,19517
160
+ rfd3/transforms/conditioning_utils.py,sha256=9Pn9AFbih2FCzp5OOM9y7z6KH7HPxVibxTrfuXiitMs,7498
161
+ rfd3/transforms/design_transforms.py,sha256=ePvnLsuKUOsE4LLcmF0bbkx1vf2AiD-35rzF4zUEcEE,30944
162
+ rfd3/transforms/dna_crop.py,sha256=JeOsG0tXghJvgzEimfzBvlFN_lVd9TrvjnC929Abz5A,18214
163
+ rfd3/transforms/hbonds.py,sha256=ijfJapFlhsh3JktpDoT3VFqKTTg6ynrqMlD7dU2xFsA,16415
164
+ rfd3/transforms/hbonds_hbplus.py,sha256=xyDP-CyVl2OsUY90HsrPoKw1VycBXUrq00WfrX8HJVM,8364
165
+ rfd3/transforms/ncaa_transforms.py,sha256=Lz4L8OGuOOG53sKJHcLSdV7WPQ3YzOzwd5tJG4CHqP0,4983
166
+ rfd3/transforms/pipelines.py,sha256=FGH-XH3taTWQ6k1zpDO_d-097EQdXmL6uqXZXw4HIMs,22086
167
+ rfd3/transforms/ppi_transforms.py,sha256=7rXyf-tn2TLz6ybYR_YVDtSDG7hOgqhYY4shNviA_Sw,23493
168
+ rfd3/transforms/rasa.py,sha256=a4IPFvVMMxldoGLyJQiSlGg7IyUkcBASbRZLWmguAKk,4156
169
+ rfd3/transforms/symmetry.py,sha256=GSnMF7oAnUxPozfafsRuHEv0yKXW0BpLTI6wsKGZrbc,2658
170
+ rfd3/transforms/training_conditions.py,sha256=UXiUPjDwrNKM95tRe0eXrMeRN8XlTPc_MXUvo6UpePo,19510
171
+ rfd3/transforms/util_transforms.py,sha256=2AcLkzx-73ZFgcWD1cIHv7NyniRPI4_zThHK8azyQaY,18119
172
+ rfd3/transforms/virtual_atoms.py,sha256=UpmxzPPd5FaJigcRoxgLSHHrLLOqsCvZ5PPZfQSGqII,12547
173
+ rfd3/utils/inference.py,sha256=-8IKzkB9ulhLEJgapvnZSdIaIPQDPMpyPpHTQlFS7r0,27317
174
+ rfd3/utils/io.py,sha256=wbdjUTQkDc3RCSM7gdogA-XOKR68HeQ-cfvyN4pP90w,9849
175
+ rfd3/utils/vizualize.py,sha256=HPlczrA3zkOuxV5X05eOvy_Oga9e3cPnFUXOEP4RR_g,11046
176
+ rf3/configs/inference.yaml,sha256=JmEZdkAnbnOrX79lGS5xrYYho9aBFfVxfUp-8KjJV5I,309
177
+ rf3/configs/train.yaml,sha256=4KW2fKc9a_gjg8yMoQfOpfkC-nJ5mdQEfoikOKxbnKc,1573
178
+ rf3/configs/validate.yaml,sha256=3LkhXyneEuuH-ueFH9FyYY5cCDi1_0KoHNwEceuQPwI,1581
179
+ rf3/configs/callbacks/default.yaml,sha256=MkxOj7dMXh4jJRIE62gLjoOYecGuZLWiJrr780_nubA,89
180
+ rf3/configs/callbacks/dump_validation_structures.yaml,sha256=EYEibR25v7KZJtadvCFLFMEPTf0FvKFNW2ocx4wm57A,259
181
+ rf3/configs/callbacks/metrics_logging.yaml,sha256=MNm4OpvOHxvDJofVUA27NVaiDkp1NzqOYCzl6l_7ceo,432
182
+ rf3/configs/callbacks/train_logging.yaml,sha256=ekSMSl1Kijxx8B8dDxvy5Zg-4Ej79O3vf7di31Rnt48,505
183
+ rf3/configs/dataloader/default.yaml,sha256=onP9QDyqTymI8686ZA8hGY_hRxIaosLEYxqHw_WhUdw,404
184
+ rf3/configs/datasets/base.yaml,sha256=j6RwP1Q9dsv2qKBH9QK_22_b2NO_JRruWyqzZopQYNU,557
185
+ rf3/configs/datasets/pdb_and_distillation.yaml,sha256=I9IFZee3EWHf5nzXsg6XFb6cTYOuMMM62fiFSOiV67A,2032
186
+ rf3/configs/datasets/pdb_only.yaml,sha256=FRjrtbInhlalmvmCXynXDauJ7Eq9l_dt9JLIfW27W4A,489
187
+ rf3/configs/datasets/train/disorder_distillation.yaml,sha256=Uyf1braO-PhEmyOKokqZhsLSmqc70LefcIZBdLuGsHo,1877
188
+ rf3/configs/datasets/train/domain_distillation.yaml,sha256=BNknJl7f9H3c0_4BQiffaod9LMh3Bg-LAgTtayGwxvo,1843
189
+ rf3/configs/datasets/train/monomer_distillation.yaml,sha256=JZ5ybnlWaDisvDqM25xAbHoNPpoCSMY_B7FB4K3MSAs,1989
190
+ rf3/configs/datasets/train/na_complex_distillation.yaml,sha256=v1zF29BdTqPapYfpp49alwR_NpHGVPaREKJym_kctn0,1996
191
+ rf3/configs/datasets/train/rna_monomer_distillation.yaml,sha256=lyK-n_Q-8aUPnH4AP4SJNGxmKhwlGW4QdviBh3RdT0k,2110
192
+ rf3/configs/datasets/train/pdb/af3_weighted_sampling.yaml,sha256=ODhH4ASK49JXpVOIe78jR5tFMBIJNVSO53VNuNzs680,286
193
+ rf3/configs/datasets/train/pdb/base.yaml,sha256=D2mQENj8Gc_p2ILxEAClV2xUd1klXYCCvNmLfsO5CNs,1485
194
+ rf3/configs/datasets/train/pdb/plinder.yaml,sha256=ScIrW7zmH6OwB8j2EZK0q0gtnYtDZErvu9vB54_G1KE,1932
195
+ rf3/configs/datasets/train/pdb/train_interface.yaml,sha256=0BLZJg-i4QyvIYhR3Zb7oSVYGtFs7Ve-vp8ey02eSl8,1664
196
+ rf3/configs/datasets/train/pdb/train_pn_unit.yaml,sha256=f67V-_sFrhaPEF4r_operKRUUUqvVE7shRtVJFE91Uk,1388
197
+ rf3/configs/datasets/val/af3_ab_set.yaml,sha256=PSIgfq-KQ62nkc6DEhNsthFVpoteaugHn7S-oSVMlDs,332
198
+ rf3/configs/datasets/val/af3_validation.yaml,sha256=Nq83pq2upr8NT4U7YnTszWJfXQcvtV82V-hwht1QbOg,327
199
+ rf3/configs/datasets/val/base.yaml,sha256=Ks5cXX_r-UI_h8rnVDa9t51Onl_3MZLLmOkZLXiQxAQ,1482
200
+ rf3/configs/datasets/val/runs_and_poses.yaml,sha256=dXNBuatMCJTE0qOBUMNklS6BdprA3pfYEt7Bjd5VkAQ,394
201
+ rf3/configs/debug/default.yaml,sha256=sv0TQJ1SpAy7WJv-q49--1F-VgVEB54GtV_ngZ_XxFA,1751
202
+ rf3/configs/debug/train_specific_examples.yaml,sha256=r97RIXKFxUJDpqC1pfhAU_k9x7RqhyRHOIzILMxAbzw,506
203
+ rf3/configs/experiment/quick-rf3-with-confidence.yaml,sha256=nzcJrVDyBoVSQ3O_9xL7SDYCuOjKBuCBprws5YGf_6c,386
204
+ rf3/configs/experiment/quick-rf3.yaml,sha256=Zt2v29GMl6xtQcb72Ha4xgRGRsvb3dKafkFVVMCvz8E,1789
205
+ rf3/configs/experiment/pretrained/rf3.yaml,sha256=LcdtFcCQIySN78ETpko1FedWk_7Zhz64-BFx3W7D-Zc,2164
206
+ rf3/configs/experiment/pretrained/rf3_with_confidence.yaml,sha256=IOFiS9WaV0-dg_0GydbPm3IO9QhkJ8QXXSmCmf8LqgM,326
207
+ rf3/configs/hydra/default.yaml,sha256=SYDTSU8bAw20QssrtTi7lptiBD5H3XNyzApsyy0brps,614
208
+ rf3/configs/hydra/no_logging.yaml,sha256=MUXDFcw-QwaRPz9HcE-1tdZwbNha1mexTe31G-Zt9_w,120
209
+ rf3/configs/inference_engine/base.yaml,sha256=wloIgZbe2UcrT2G7c1_kHmJUsYystRVeO90GtdT_8Mw,477
210
+ rf3/configs/inference_engine/rf3.yaml,sha256=vUGo_BVCaMcyRPHfjI1QXZS8jJyyrintrmix0dfKySw,657
211
+ rf3/configs/logger/csv.yaml,sha256=DtcywAIS4OxLXP2QxSEvqdrjhMpT6xHiGspoYw5qkus,245
212
+ rf3/configs/logger/default.yaml,sha256=kOdrsVdgMwDP5oazTgM-6mdtqxCY9FI31VL4uk_4mI4,27
213
+ rf3/configs/logger/wandb.yaml,sha256=mOIxaFurBo1XHJsI7Y-Yx-JZVWkIMMvIJtw5lO8kAqw,670
214
+ rf3/configs/model/rf3.yaml,sha256=Sx7eU2_B-aoX8uJHhy3xN_HifJ-NC8dthf-jaRLMgTY,1862
215
+ rf3/configs/model/rf3_with_confidence.yaml,sha256=7ajtluhRYmUXY4Os18354Cgq2hbWpO_cNcX9ZkdDVqI,126
216
+ rf3/configs/model/components/ema.yaml,sha256=AIzf4RZLKP8AcfaxdvZBS1rFw3AlSo431rmpMUBbFtw,24
217
+ rf3/configs/model/components/rf3_net.yaml,sha256=sI-Ty58cLIoXYFhSZibj6GniwcUQfzG7HRDuD5z_2Pw,4313
218
+ rf3/configs/model/components/rf3_net_with_confidence_head.yaml,sha256=fn3XoEMZzsKfEk1iHoo-TT4c6v00Ahuy7EOCqkkMBOQ,1326
219
+ rf3/configs/model/optimizers/adam.yaml,sha256=cTRNo4_4lNgLv0b329v-KiC_MCQtTVVTxeer5Au_FIM,145
220
+ rf3/configs/model/schedulers/af3.yaml,sha256=xEtRb--KPjg_5pW_IJvN9AHWVqCtOM4QOnXlMH2KrEg,149
221
+ rf3/configs/paths/default.yaml,sha256=tvlIY1vNcthP-ogUteJ_kFEgXXQ0FJj5HXBYOgmMmZ4,1016
222
+ rf3/configs/paths/data/default.yaml,sha256=qTPphktwF77RrgBkT0P-CDZeqlTFnTe6Ql-Q5cupx60,1539
223
+ rf3/configs/trainer/cpu.yaml,sha256=J1WbK2SQ_VMoEOOqv0XTg0FYKPaec1TNySvWklMaE4k,68
224
+ rf3/configs/trainer/ddp.yaml,sha256=uClrdTzEMNxgq4IQhMgm8okC16wUS2I5i3rKnm5SktU,65
225
+ rf3/configs/trainer/rf3.yaml,sha256=WBjnaYofmEV7OfJisvFGN6y_UJGNEskAdmbV9oO4ICI,500
226
+ rf3/configs/trainer/rf3_with_confidence.yaml,sha256=meDTw0S2nTcuAj5tefGwJteo2715x6kO143FMd3db14,346
227
+ rf3/configs/trainer/loss/structure_prediction.yaml,sha256=XPH2RcIo6m1BDrIoBvd2xBgJ0c4KEOnbWc5oEcBKVAM,164
228
+ rf3/configs/trainer/loss/structure_prediction_with_confidence.yaml,sha256=OZxtrQIqYGDFlhp3-1fFVZ2Ek6QRMP74ImsrNOJcelo,52
229
+ rf3/configs/trainer/loss/losses/confidence_loss.yaml,sha256=c9xI7Q32Ddl5R_GpoWq4RS7AxiJf4hsnGeMZxWs9mBU,501
230
+ rf3/configs/trainer/loss/losses/diffusion_loss.yaml,sha256=ktBy3bUjslklPuRhGWuHbl1gXccNaMUg5rmn0RUUFPs,221
231
+ rf3/configs/trainer/loss/losses/distogram_loss.yaml,sha256=-dZWPeQ1mWwi9pUtB7xJW57qKgUNMQ4vao1PXo07RC0,56
232
+ rf3/configs/trainer/metrics/structure_prediction.yaml,sha256=xWp2DqoqlofbgRLMNi0LKuAaDSCbW1tAEuEk83fmc0w,439
233
+ rfd3/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
234
+ rfd3/configs/dev.yaml,sha256=Y3PiHaCRIdRXf2Ea2aUDJk6hFxyNEljJf-O2VKQRNH0,151
235
+ rfd3/configs/inference.yaml,sha256=tUo5-G1-rsCU8RLclSP0ZKu5-O6JC5ofgI6bHb5kwmw,119
236
+ rfd3/configs/train.yaml,sha256=SbP5136VjJH_i2fc_4b0U0ZOqz3jeby1YORXSQtiFk0,450
237
+ rfd3/configs/validate.yaml,sha256=TSToLqzuP8hecj0K6TAfCywtpTZI1u1-THsX0jxCG1s,537
238
+ rfd3/configs/callbacks/design_callbacks.yaml,sha256=JWgE1-v_spzUy7JH3_6dHct_-oX4DevozRH-pM5Ds2k,196
239
+ rfd3/configs/callbacks/metrics_logging.yaml,sha256=pZPePSYGKEV560e3WatuLvJiHlz1CIGFOaOWoRmBh8g,694
240
+ rfd3/configs/callbacks/train_logging.yaml,sha256=Z25GVLTHo1HvQUjnBdayaozmNww8UhAh9DczStYaZig,1050
241
+ rfd3/configs/dataloader/default.yaml,sha256=gko2tj9F4IBbXrJIPBgkydjzIm74EiYb-xQV_a8WPkg,405
242
+ rfd3/configs/dataloader/fast.yaml,sha256=XxuFdH48HbHEbwRDhyMCCUjuDIuF2GFVMV_HiEbH9yg,162
243
+ rfd3/configs/datasets/design_base.yaml,sha256=KM1fnbF2TMEl_PQz1hhTeE1pirC067hDbUzjIGiLUGk,3067
244
+ rfd3/configs/datasets/conditions/dna_condition.yaml,sha256=AEOLioe14IAqGcvuJzQ1WWLx_6zxm8TkySGsnMYTz6M,108
245
+ rfd3/configs/datasets/conditions/island.yaml,sha256=nT-bCzaMyYeKBnobCdazOZHpeYB3dpF81vx5bdGE2Ro,1170
246
+ rfd3/configs/datasets/conditions/ppi.yaml,sha256=b9JvNVc0Dtd9GnCQFj5dm_-jQAxCM5DnVFX40zbEUEI,73
247
+ rfd3/configs/datasets/conditions/sequence_design.yaml,sha256=D1K6WOysmSAQ4LogltUBEp9hGXSUNsoHZuFk3MDnayY,299
248
+ rfd3/configs/datasets/conditions/tipatom.yaml,sha256=0010o7UUL-l75qI8HCjC_tdBXFWysm2dgVXzE7bQyZ0,650
249
+ rfd3/configs/datasets/conditions/unconditional.yaml,sha256=z1eVHylswLyludXWFs1AMt3mTMu3EbAUHrP8J3XBsRU,446
250
+ rfd3/configs/datasets/train/rfd3_monomer_distillation.yaml,sha256=1f61uFeRB8OD6sifFuIKFov8D7PcHpqRT4Z-M5EzO4w,1207
251
+ rfd3/configs/datasets/train/pdb/af3_train_interface.yaml,sha256=DSIpXW2SQ3drDp12490y0tFbjbugecyA7TI_x3WrKng,1546
252
+ rfd3/configs/datasets/train/pdb/af3_train_pn_unit.yaml,sha256=DPoEhLlyBu0RdBkkJeWB8pkOV4z0DBc6XmclLgww9II,1324
253
+ rfd3/configs/datasets/train/pdb/base.yaml,sha256=2VUEAKADyvjJmWP4FeOJwRat9r6F3_GXuyGYjvMvArw,291
254
+ rfd3/configs/datasets/train/pdb/base_no_weights.yaml,sha256=8HchN7DqYESBK520vShdg7xidWBSogGRAxfaxa5pKdE,554
255
+ rfd3/configs/datasets/train/pdb/base_transform_args.yaml,sha256=Sb8N60ONcz4Z5DaFhCM-lR0BXf3QAnQ1t-TNSTXoEd4,2848
256
+ rfd3/configs/datasets/train/pdb/na_complex_distillation.yaml,sha256=BQXn3w4bhQHO35z-O-sCMMcuG6w07x-8l0tFNEPYes0,456
257
+ rfd3/configs/datasets/train/pdb/pdb_base.yaml,sha256=5PAHphvkt5tbg9Lao35LuX6flvFCXjLkpG6ICBYoLD0,231
258
+ rfd3/configs/datasets/train/pdb/rfd3_train_interface.yaml,sha256=8z3_V-a7m-iV4-3dEugqFlVXYEnqpyJYBdViAfjDHN8,924
259
+ rfd3/configs/datasets/train/pdb/rfd3_train_pn_unit.yaml,sha256=5qAXUgj9ZnicCv8RtFnixRF6acE6BobtNQ_7vBeLM7E,784
260
+ rfd3/configs/datasets/val/bcov_ppi_easy_medium.yaml,sha256=UUWQ8JKdbLv_cgxJwhM8d2skjsxeM1E67BKlSmN8pJw,165
261
+ rfd3/configs/datasets/val/design_validation_base.yaml,sha256=YTvIXIEZIFjyzAJnzFtW23Hq46B7FqzJ5XanPFsCwic,2048
262
+ rfd3/configs/datasets/val/dna_binder_design5.yaml,sha256=Bamuz8wPxHTQWDW1zxPVwL3ZaUKeypUZEIboIVYPAos,166
263
+ rfd3/configs/datasets/val/dna_binder_long.yaml,sha256=9ffUPaB9dt7FufiWOKUmcBJ1K2k_xc-Dfw5cq-qmdWE,215
264
+ rfd3/configs/datasets/val/dna_binder_short.yaml,sha256=s0etIL8SkiHNRYmB0O4jRIYbqEqGWwxl6dhJGqK24tE,229
265
+ rfd3/configs/datasets/val/indexed.yaml,sha256=rYRjzyyMGiwi3rqjWAj3JtUymz13fA7HvrPFgdgPO1E,160
266
+ rfd3/configs/datasets/val/mcsa_41.yaml,sha256=QP6zqvnsacBwQAvftsZskVps5FYaAcdBuOEvkJ8Ikz8,163
267
+ rfd3/configs/datasets/val/mcsa_41_short_rigid.yaml,sha256=-bgbsC9pQFhi0_xBV10KpvaWdptSL9N126bZJBY8PZ0,171
268
+ rfd3/configs/datasets/val/ppi_inference.yaml,sha256=pDILIqiEZ_GfxPQxkP_8WfMYXJQ9oPw_jitlh8p_xio,165
269
+ rfd3/configs/datasets/val/sm_binder_hbonds.yaml,sha256=ZqfUzq5ehXdMdKA1CWXWfnPcKwDCPUCFvg07LE10u1g,235
270
+ rfd3/configs/datasets/val/sm_binder_hbonds_short.yaml,sha256=fnthrBl89SgdXJgPYCxPtZgddRSOJ1NA7BycmWpgaHY,275
271
+ rfd3/configs/datasets/val/unconditional.yaml,sha256=oN0h7G8lOTruXx4AC0-9lZMM0Sy_Hes-mcssIZ3KC-U,243
272
+ rfd3/configs/datasets/val/unconditional_deep.yaml,sha256=-b0k2glQUPtin-6hE4QWxBrk-L05FwuD9aC5riVfd1w,174
273
+ rfd3/configs/datasets/val/unindexed.yaml,sha256=cr4CQFvsVAKI5-Q3mUDOz-q0uzSH7kk7xQrRqQCVOIw,137
274
+ rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori.yaml,sha256=WXyHVwtnw6biLGok361sxwVAPxQFNt0_SF1RJkhtBAs,2929
275
+ rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori_spoof_helical_bundle.yaml,sha256=LMktwyMA-JK_2per1GK5LFIILJOd-bxvnUmsNTti7AE,142
276
+ rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori_varying_lengths.yaml,sha256=jDvJEMu3Kaz-nUKcYczhx1xaR2idhnZ2Sk9BmpocBRs,471
277
+ rfd3/configs/datasets/val/val_examples/bpem_ori_hb.yaml,sha256=OTx9ax0jGhQ-K9rq1ewQqvQydgYNyumD7oG0VzIN15g,2850
278
+ rfd3/configs/debug/default.yaml,sha256=VnF0ETg0Aa_0p6oUAisDpV2Alh2_0VPNu0b3SVHkagI,1649
279
+ rfd3/configs/debug/train_specific_examples.yaml,sha256=foOOrGSAYgV7aHTPYw_r2TqdUVzXgLAU12227Hb6eK8,449
280
+ rfd3/configs/experiment/debug.yaml,sha256=yvA7U6pr3hyGcoVZ4KfbrdpZfG4Vf7gDLyAP7-gavvU,169
281
+ rfd3/configs/experiment/pretrain.yaml,sha256=-Y-HerSE9r3b-1RUIQX6i0WxUjBRvdKQXcBU4s6Mocg,731
282
+ rfd3/configs/experiment/test-uncond.yaml,sha256=pq_MdeV2h1xUOHuLayOX0F0Vk6Ximxng0Vn8-0MrE1g,150
283
+ rfd3/configs/experiment/test-unindexed.yaml,sha256=XTC7YC5dX9tTXzs44YB5ZgNMO8Jer63OM97VFYeo_sA,397
284
+ rfd3/configs/hydra/default.yaml,sha256=SYDTSU8bAw20QssrtTi7lptiBD5H3XNyzApsyy0brps,614
285
+ rfd3/configs/hydra/no_logging.yaml,sha256=MUXDFcw-QwaRPz9HcE-1tdZwbNha1mexTe31G-Zt9_w,120
286
+ rfd3/configs/inference_engine/base.yaml,sha256=ekP5U7bAALpeJGpwyj1v0N5LiEtptl5loRCtM8FRzRM,246
287
+ rfd3/configs/inference_engine/dev.yaml,sha256=-2snClOTwj5TQt7jnwSrI4pzAiI4nFulXKJflmgIyUw,304
288
+ rfd3/configs/inference_engine/rfdiffusion3.yaml,sha256=3bHIAhzFhFDIag0xQWYxHBUMSc71fjClHXKbZ-tpHzA,2112
289
+ rfd3/configs/logger/csv.yaml,sha256=DtcywAIS4OxLXP2QxSEvqdrjhMpT6xHiGspoYw5qkus,245
290
+ rfd3/configs/logger/default.yaml,sha256=pSyHyxT-J_T-g4_6TtD2yzN3rzxgY6rOG_Vh4RjZeFY,17
291
+ rfd3/configs/logger/wandb.yaml,sha256=RhCnFtO0hNc3R75ts417l5ICZeGm74lOj9Bfe7ZvRNA,652
292
+ rfd3/configs/model/rfd3_base.yaml,sha256=i97UJe3_5ClSXSCqFzbkGOaSGKux7L3kmuahQkjPvCY,174
293
+ rfd3/configs/model/components/ema.yaml,sha256=AIzf4RZLKP8AcfaxdvZBS1rFw3AlSo431rmpMUBbFtw,24
294
+ rfd3/configs/model/components/rfd3_net.yaml,sha256=95FF4U7aWmLCoHvyxsRoE74n-bxTPD6KlAhPKNemVH4,3275
295
+ rfd3/configs/model/optimizers/adam.yaml,sha256=cTRNo4_4lNgLv0b329v-KiC_MCQtTVVTxeer5Au_FIM,145
296
+ rfd3/configs/model/samplers/edm.yaml,sha256=QycHAIrfhRgx0mJygTOs56FT93tGCWTGxrQSKBOA7Mc,483
297
+ rfd3/configs/model/samplers/symmetry.yaml,sha256=pI0Ens6jmbpAIl8E4eYsJR1SqIppe5OsWh91KfpjNjs,214
298
+ rfd3/configs/model/schedulers/af3.yaml,sha256=xEtRb--KPjg_5pW_IJvN9AHWVqCtOM4QOnXlMH2KrEg,149
299
+ rfd3/configs/paths/default.yaml,sha256=bjB04SNu_5E6W_v4mRBjwce0xmdKwO5wsVf4gfaRl0Y,1045
300
+ rfd3/configs/paths/data/default.yaml,sha256=jfs1dbbcOqHja4_6lXheyRg4t0YExqVn2w0rZEWL6XE,788
301
+ rfd3/configs/trainer/cpu.yaml,sha256=rJf5LHf6x5fN5EKg8mFEn2SwfGW5dV1JdYaHqWMfpXc,74
302
+ rfd3/configs/trainer/ddp.yaml,sha256=uClrdTzEMNxgq4IQhMgm8okC16wUS2I5i3rKnm5SktU,65
303
+ rfd3/configs/trainer/rfd3_base.yaml,sha256=R3lZxdyjUirjlLU31qWlnZgHaz4GcWTGGIz4fUl7AyM,1016
304
+ rfd3/configs/trainer/loss/losses/diffusion_loss.yaml,sha256=FE4FCEfurE0ekwZ4YfS6wCvPSNqxClwg_kc73cPql5Y,323
305
+ rfd3/configs/trainer/loss/losses/sequence_loss.yaml,sha256=kezbQcqwAZ0VKQPUBr2MsNr9DcDL3ENIP1i-j7h-6Co,64
306
+ rfd3/configs/trainer/metrics/design_metrics.yaml,sha256=xVDpClhHqSHvsf-8StL26z51Vn-iuWMDG9KMB-kqOI0,719
307
+ rc_foundry-0.1.7.dist-info/METADATA,sha256=zlvCxfZ5-Ow7WuGKskfW6P1DGhZB9OfLIIBUBGncFeQ,11309
308
+ rc_foundry-0.1.7.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
309
+ rc_foundry-0.1.7.dist-info/entry_points.txt,sha256=BmiWCbWGtrd_lSOFMuCLBXyo84B7Nco-alj7hB0Yw9A,130
310
+ rc_foundry-0.1.7.dist-info/licenses/LICENSE.md,sha256=NKtPCJ7QMysFmzeDg56ZfUStvgzbq5sOvRQv7_ddZOs,1533
311
+ rc_foundry-0.1.7.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ defaults:
2
+ - train_logging
3
+ - metrics_logging
4
+ - dump_validation_structures
5
+ - _self_
@@ -0,0 +1,6 @@
1
+ dump_validation_structures_callback:
2
+ _target_: rf3.callbacks.dump_validation_structures.DumpValidationStructuresCallback
3
+ save_dir: ${paths.output_dir}/val_structures
4
+ dump_predictions: True
5
+ one_model_per_file: False
6
+ dump_trajectories: False
@@ -0,0 +1,10 @@
1
+ store_validation_metrics_in_df_callback:
2
+ _target_: rf3.callbacks.metrics_logging.StoreValidationMetricsInDFCallback
3
+ save_dir: ${paths.output_dir}/val_metrics
4
+ metrics_to_save: "all"
5
+
6
+ log_af3_validation_metrics_callback:
7
+ _target_: rf3.callbacks.metrics_logging.LogAF3ValidationMetricsCallback
8
+ # Only logs if present in the metric output dictionary
9
+ # Must be subset of metrics_to_save
10
+ metrics_to_log: "all"
@@ -0,0 +1,16 @@
1
+ log_af3_training_losses_callback:
2
+ _target_: foundry.callbacks.train_logging.LogAF3TrainingLossesCallback
3
+ log_every_n: 10
4
+ log_full_batch_losses: true
5
+
6
+ log_learning_rate_callback:
7
+ _target_: foundry.callbacks.train_logging.LogLearningRateCallback
8
+ log_every_n: 10
9
+
10
+ log_model_parameters_callback:
11
+ _target_: foundry.callbacks.train_logging.LogModelParametersCallback
12
+
13
+ log_dataset_sampling_ratios_callback:
14
+ _target_: foundry.callbacks.train_logging.LogDatasetSamplingRatiosCallback
15
+
16
+
@@ -0,0 +1,15 @@
1
+ train:
2
+ dataloader_params:
3
+ # These parameters will be unpacked as kwargs for the DataLoader
4
+ batch_size: 1
5
+ num_workers: 2
6
+ prefetch_factor: 3
7
+ n_fallback_retries: 4
8
+
9
+ val:
10
+ dataloader_params:
11
+ # These parameters will be unpacked as kwargs for the DataLoader
12
+ batch_size: 1
13
+ num_workers: 2
14
+ prefetch_factor: 3
15
+ n_fallback_retries: 0 # Disable fallback retries for validation
@@ -0,0 +1,31 @@
1
+ # Base Transform defaults
2
+ diffusion_batch_size_train: 48
3
+ diffusion_batch_size_inference: 5
4
+
5
+ n_recycles_train: 4
6
+ n_recycles_validation: 10
7
+
8
+ run_confidence_head: false
9
+
10
+ # Conditioning
11
+ p_unconditional: 0.9
12
+
13
+ # Embeddings
14
+ p_dropout_atom_level_embeddings: 0.5
15
+
16
+ n_msa: 1024
17
+ crop_size: 384
18
+ max_atoms_in_crop: 5000
19
+
20
+ key_to_balance: n_tokens_total
21
+
22
+ take_first_chiral_subordering: false
23
+ use_element_for_atom_names_of_atomized_tokens: true
24
+ mirror_prob: 0.02
25
+ atomization_prob: 0.02
26
+ ligand_dropout_prob: 0.0
27
+
28
+ add_residue_is_paired_feature: true
29
+
30
+ add_cyclic_bonds: true
31
+
@@ -0,0 +1,58 @@
1
+ # AF3 dataset configuration with monomer distillation
2
+
3
+ defaults:
4
+ - base
5
+ # The @ symbol specifies the tree under which the item will be attached to the config
6
+ - train/pdb/train_interface@train.pdb.sub_datasets.interface
7
+ - train/pdb/train_pn_unit@train.pdb.sub_datasets.pn_unit
8
+ - train:
9
+ - monomer_distillation
10
+ - na_complex_distillation
11
+ - disorder_distillation
12
+ # - domain_distillation
13
+ # - rna_monomer_distillation
14
+ - val/af3_validation@val.af3_validation
15
+ - val/af3_validation@val.quick_af3_validation_with_templating
16
+ - _self_
17
+
18
+ # Dataloading pipeline to use
19
+ pipeline_target: rf3.data.pipelines.build_af3_transform_pipeline
20
+
21
+ # Dataset weighting
22
+ train:
23
+ pdb:
24
+ probability: 0.50
25
+ monomer_distillation:
26
+ probability: 0.46
27
+ na_complex_distillation:
28
+ probability: 0.02
29
+ disorder_distillation:
30
+ probability: 0.02
31
+ # multidomain_distillation:
32
+ # probability: 0.06
33
+ # rna_monomer_distillation:
34
+ # probability: 0.04
35
+
36
+ val:
37
+ quick_af3_validation_with_templating:
38
+ dataset:
39
+ dataset:
40
+ filters:
41
+ # Only score examples with protein-ligand interfaces
42
+ - "interfaces_to_score.str.contains('protein-ligand')"
43
+ # Small examples only - very fast
44
+ - "n_tokens_total < 400"
45
+ transform:
46
+ # +-- Conditioning --+
47
+ p_unconditional: 0.0 # Always show conditioning
48
+ # (Templates)
49
+ template_noise_scales:
50
+ not_atomized: 1e-4 # No noise on polymer atoms (epsilon to avoid division by zero)
51
+ atomized: 1e-4 # No noise on ligand atoms (epsilon to avoid division by zero)
52
+ allowed_chain_types_for_conditioning:
53
+ _target_: atomworks.enums.ChainType.get_all_types
54
+ p_condition_per_token: 1.0 # Always condition
55
+ p_provide_inter_molecule_distances: 0.0 # No inter-chain distances
56
+ # (Reference conformer)
57
+ p_give_non_polymer_ref_conf: 1.0 # Always give non-polymer reference conformers
58
+ p_give_polymer_ref_conf: 1.0 # Always give polymer reference conformers
@@ -0,0 +1,17 @@
1
+ # AF3 dataset configuration with monomer distillation
2
+
3
+ defaults:
4
+ - base
5
+ # The @ symbol specifies the tree under which the item will be attached to the config
6
+ - train/pdb/train_interface@train.pdb.sub_datasets.interface
7
+ - train/pdb/train_pn_unit@train.pdb.sub_datasets.pn_unit
8
+ - val/af3_validation@val.af3_validation
9
+ - _self_
10
+
11
+ # Dataloading pipeline to use
12
+ pipeline_target: rf3.data.pipelines.build_af3_transform_pipeline
13
+
14
+ # Dataset weighting
15
+ train:
16
+ pdb:
17
+ probability: 1.0
@@ -0,0 +1,48 @@
1
+ # TODO: Inherit from common config with default Transform pipeline
2
+
3
+ disorder_distillation:
4
+ dataset:
5
+ _target_: atomworks.ml.datasets.StructuralDatasetWrapper
6
+ save_failed_examples_to_dir: null
7
+
8
+ # cif parser arguments
9
+ cif_parser_args:
10
+ cache_dir: null
11
+ load_from_cache: False
12
+ save_to_cache: False
13
+
14
+ # metadata parser
15
+ dataset_parser:
16
+ _target_: atomworks.ml.datasets.parsers.GenericDFParser
17
+ pn_unit_iid_colnames: null
18
+
19
+ # metadata dataset
20
+ dataset:
21
+ _target_: atomworks.ml.datasets.PandasDataset
22
+ name: pdb_diso_distillation
23
+ id_column: example_id
24
+ data: ${paths.data.disorder_distill_parquet_dir}/disorderDistillation.csv
25
+ columns_to_load:
26
+ - example_id
27
+ - path
28
+ transform:
29
+ _target_: ${datasets.pipeline_target}
30
+ is_inference: False
31
+ protein_msa_dirs: ${paths.data.protein_msa_dirs}
32
+ rna_msa_dirs: ${paths.data.rna_msa_dirs}
33
+ n_recycles: ${datasets.n_recycles_train}
34
+ crop_size: ${datasets.crop_size}
35
+ n_msa: ${datasets.n_msa}
36
+ diffusion_batch_size: ${datasets.diffusion_batch_size_train}
37
+ max_atoms_in_crop: ${datasets.max_atoms_in_crop}
38
+ crop_contiguous_probability: 0.25
39
+ crop_spatial_probability: 0.75
40
+ run_confidence_head: ${datasets.run_confidence_head}
41
+ take_first_chiral_subordering: ${datasets.take_first_chiral_subordering}
42
+ use_element_for_atom_names_of_atomized_tokens: ${datasets.use_element_for_atom_names_of_atomized_tokens}
43
+ mirror_prob: ${datasets.mirror_prob}
44
+ atomization_prob: ${datasets.atomization_prob}
45
+ ligand_dropout_prob: ${datasets.ligand_dropout_prob}
46
+ p_unconditional: ${datasets.p_unconditional}
47
+ p_dropout_atom_level_embeddings: ${datasets.p_dropout_atom_level_embeddings}
48
+ add_residue_is_paired_feature: ${datasets.add_residue_is_paired_feature}
@@ -0,0 +1,50 @@
1
+ # TODO: Inherit from common config with default Transform pipeline
2
+
3
+ multidomain_distillation:
4
+ dataset:
5
+ _target_: rf3.data.paired_msa.MultiInputDatasetWrapper
6
+ save_failed_examples_to_dir: null
7
+
8
+ # cif parser
9
+ cif_parser_args:
10
+ #assume_residues_all_resolved: true
11
+ cache_dir: null
12
+ load_from_cache: false
13
+ save_to_cache: false
14
+
15
+ # metadata parser
16
+ dataset_parser:
17
+ _target_: rf3.data.paired_msa.MultidomainDFParser
18
+
19
+ # metadata dataset
20
+ dataset:
21
+ _target_: atomworks.ml.datasets.PandasDataset
22
+ name: multidomain_distillation
23
+ id_column: example_id
24
+ data: /projects/ml/datahub/dfs/domain_domain/domain_domain_dataset.DIGS.parquet
25
+ columns_to_load:
26
+ - example_id
27
+ - pdb_path
28
+ - msa_path
29
+ transform:
30
+ _target_: ${datasets.pipeline_target}
31
+ is_inference: False
32
+ input_contains_explicit_msa: True
33
+ protein_msa_dirs: []
34
+ rna_msa_dirs: []
35
+ n_recycles: ${datasets.n_recycles_train}
36
+ crop_size: ${datasets.crop_size}
37
+ n_msa: ${datasets.n_msa}
38
+ diffusion_batch_size: ${datasets.diffusion_batch_size_train}
39
+ max_atoms_in_crop: ${datasets.max_atoms_in_crop}
40
+ crop_contiguous_probability: 0.25
41
+ crop_spatial_probability: 0.75
42
+ run_confidence_head: ${datasets.run_confidence_head}
43
+ take_first_chiral_subordering: ${datasets.take_first_chiral_subordering}
44
+ use_element_for_atom_names_of_atomized_tokens: ${datasets.use_element_for_atom_names_of_atomized_tokens}
45
+ mirror_prob: 0.0
46
+ atomization_prob: ${datasets.atomization_prob}
47
+ ligand_dropout_prob: 0.0
48
+ p_unconditional: ${datasets.p_unconditional}
49
+ p_dropout_atom_level_embeddings: ${datasets.p_dropout_atom_level_embeddings}
50
+ add_residue_is_paired_feature: ${datasets.add_residue_is_paired_feature}
@@ -0,0 +1,49 @@
1
+ # TODO: Inherit from common config with default Transform pipeline
2
+
3
+ monomer_distillation:
4
+ dataset:
5
+ _target_: atomworks.ml.datasets.StructuralDatasetWrapper
6
+ save_failed_examples_to_dir: ${paths.data.failed_examples_dir}
7
+
8
+ # cif parser arguments
9
+ cif_parser_args:
10
+ cache_dir: null
11
+ load_from_cache: False
12
+ save_to_cache: False
13
+
14
+ # metadata parser
15
+ dataset_parser:
16
+ _target_: atomworks.ml.datasets.parsers.GenericDFParser
17
+ pn_unit_iid_colnames: null
18
+
19
+ # metadata dataset
20
+ dataset:
21
+ _target_: atomworks.ml.datasets.PandasDataset
22
+ name: af2fb_distillation
23
+ id_column: example_id
24
+ data: ${paths.data.monomer_distillation_parquet_dir}/af2_distillation_facebook.parquet
25
+ columns_to_load:
26
+ - example_id
27
+ - path
28
+ transform:
29
+ _target_: ${datasets.pipeline_target}
30
+ is_inference: False
31
+ protein_msa_dirs: [{"dir": "${paths.data.monomer_distillation_data_dir}/msa", "extension": ".a3m", "directory_depth": 2}]
32
+ rna_msa_dirs: []
33
+ n_recycles: ${datasets.n_recycles_train}
34
+ crop_size: ${datasets.crop_size}
35
+ n_msa: ${datasets.n_msa}
36
+ diffusion_batch_size: ${datasets.diffusion_batch_size_train}
37
+ max_atoms_in_crop: ${datasets.max_atoms_in_crop}
38
+ crop_contiguous_probability: 0.25
39
+ crop_spatial_probability: 0.75
40
+ b_factor_min: 70.0
41
+ run_confidence_head: ${datasets.run_confidence_head}
42
+ take_first_chiral_subordering: ${datasets.take_first_chiral_subordering}
43
+ use_element_for_atom_names_of_atomized_tokens: ${datasets.use_element_for_atom_names_of_atomized_tokens}
44
+ mirror_prob: ${datasets.mirror_prob}
45
+ atomization_prob: ${datasets.atomization_prob}
46
+ ligand_dropout_prob: ${datasets.ligand_dropout_prob}
47
+ p_unconditional: ${datasets.p_unconditional}
48
+ p_dropout_atom_level_embeddings: ${datasets.p_dropout_atom_level_embeddings}
49
+ add_residue_is_paired_feature: ${datasets.add_residue_is_paired_feature}