rc-foundry 0.1.5__py3-none-any.whl → 0.1.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- foundry/inference_engines/checkpoint_registry.py +58 -11
- foundry/utils/alignment.py +10 -2
- foundry/version.py +2 -2
- foundry_cli/download_checkpoints.py +66 -66
- {rc_foundry-0.1.5.dist-info → rc_foundry-0.1.7.dist-info}/METADATA +25 -20
- rc_foundry-0.1.7.dist-info/RECORD +311 -0
- rf3/configs/callbacks/default.yaml +5 -0
- rf3/configs/callbacks/dump_validation_structures.yaml +6 -0
- rf3/configs/callbacks/metrics_logging.yaml +10 -0
- rf3/configs/callbacks/train_logging.yaml +16 -0
- rf3/configs/dataloader/default.yaml +15 -0
- rf3/configs/datasets/base.yaml +31 -0
- rf3/configs/datasets/pdb_and_distillation.yaml +58 -0
- rf3/configs/datasets/pdb_only.yaml +17 -0
- rf3/configs/datasets/train/disorder_distillation.yaml +48 -0
- rf3/configs/datasets/train/domain_distillation.yaml +50 -0
- rf3/configs/datasets/train/monomer_distillation.yaml +49 -0
- rf3/configs/datasets/train/na_complex_distillation.yaml +50 -0
- rf3/configs/datasets/train/pdb/af3_weighted_sampling.yaml +8 -0
- rf3/configs/datasets/train/pdb/base.yaml +32 -0
- rf3/configs/datasets/train/pdb/plinder.yaml +54 -0
- rf3/configs/datasets/train/pdb/train_interface.yaml +51 -0
- rf3/configs/datasets/train/pdb/train_pn_unit.yaml +46 -0
- rf3/configs/datasets/train/rna_monomer_distillation.yaml +56 -0
- rf3/configs/datasets/val/af3_ab_set.yaml +11 -0
- rf3/configs/datasets/val/af3_validation.yaml +11 -0
- rf3/configs/datasets/val/base.yaml +32 -0
- rf3/configs/datasets/val/runs_and_poses.yaml +12 -0
- rf3/configs/debug/default.yaml +66 -0
- rf3/configs/debug/train_specific_examples.yaml +21 -0
- rf3/configs/experiment/pretrained/rf3.yaml +50 -0
- rf3/configs/experiment/pretrained/rf3_with_confidence.yaml +13 -0
- rf3/configs/experiment/quick-rf3-with-confidence.yaml +15 -0
- rf3/configs/experiment/quick-rf3.yaml +61 -0
- rf3/configs/hydra/default.yaml +18 -0
- rf3/configs/hydra/no_logging.yaml +7 -0
- rf3/configs/inference.yaml +7 -0
- rf3/configs/inference_engine/base.yaml +23 -0
- rf3/configs/inference_engine/rf3.yaml +33 -0
- rf3/configs/logger/csv.yaml +6 -0
- rf3/configs/logger/default.yaml +3 -0
- rf3/configs/logger/wandb.yaml +15 -0
- rf3/configs/model/components/ema.yaml +1 -0
- rf3/configs/model/components/rf3_net.yaml +177 -0
- rf3/configs/model/components/rf3_net_with_confidence_head.yaml +45 -0
- rf3/configs/model/optimizers/adam.yaml +5 -0
- rf3/configs/model/rf3.yaml +43 -0
- rf3/configs/model/rf3_with_confidence.yaml +7 -0
- rf3/configs/model/schedulers/af3.yaml +6 -0
- rf3/configs/paths/data/default.yaml +43 -0
- rf3/configs/paths/default.yaml +21 -0
- rf3/configs/train.yaml +42 -0
- rf3/configs/trainer/cpu.yaml +6 -0
- rf3/configs/trainer/ddp.yaml +5 -0
- rf3/configs/trainer/loss/losses/confidence_loss.yaml +29 -0
- rf3/configs/trainer/loss/losses/diffusion_loss.yaml +9 -0
- rf3/configs/trainer/loss/losses/distogram_loss.yaml +2 -0
- rf3/configs/trainer/loss/structure_prediction.yaml +4 -0
- rf3/configs/trainer/loss/structure_prediction_with_confidence.yaml +2 -0
- rf3/configs/trainer/metrics/structure_prediction.yaml +14 -0
- rf3/configs/trainer/rf3.yaml +20 -0
- rf3/configs/trainer/rf3_with_confidence.yaml +13 -0
- rf3/configs/validate.yaml +45 -0
- rfd3/cli.py +10 -4
- rfd3/configs/__init__.py +0 -0
- rfd3/configs/callbacks/design_callbacks.yaml +10 -0
- rfd3/configs/callbacks/metrics_logging.yaml +20 -0
- rfd3/configs/callbacks/train_logging.yaml +24 -0
- rfd3/configs/dataloader/default.yaml +15 -0
- rfd3/configs/dataloader/fast.yaml +11 -0
- rfd3/configs/datasets/conditions/dna_condition.yaml +3 -0
- rfd3/configs/datasets/conditions/island.yaml +28 -0
- rfd3/configs/datasets/conditions/ppi.yaml +2 -0
- rfd3/configs/datasets/conditions/sequence_design.yaml +17 -0
- rfd3/configs/datasets/conditions/tipatom.yaml +28 -0
- rfd3/configs/datasets/conditions/unconditional.yaml +21 -0
- rfd3/configs/datasets/design_base.yaml +97 -0
- rfd3/configs/datasets/train/pdb/af3_train_interface.yaml +46 -0
- rfd3/configs/datasets/train/pdb/af3_train_pn_unit.yaml +42 -0
- rfd3/configs/datasets/train/pdb/base.yaml +14 -0
- rfd3/configs/datasets/train/pdb/base_no_weights.yaml +19 -0
- rfd3/configs/datasets/train/pdb/base_transform_args.yaml +59 -0
- rfd3/configs/datasets/train/pdb/na_complex_distillation.yaml +20 -0
- rfd3/configs/datasets/train/pdb/pdb_base.yaml +11 -0
- rfd3/configs/datasets/train/pdb/rfd3_train_interface.yaml +22 -0
- rfd3/configs/datasets/train/pdb/rfd3_train_pn_unit.yaml +23 -0
- rfd3/configs/datasets/train/rfd3_monomer_distillation.yaml +38 -0
- rfd3/configs/datasets/val/bcov_ppi_easy_medium.yaml +9 -0
- rfd3/configs/datasets/val/design_validation_base.yaml +40 -0
- rfd3/configs/datasets/val/dna_binder_design5.yaml +9 -0
- rfd3/configs/datasets/val/dna_binder_long.yaml +13 -0
- rfd3/configs/datasets/val/dna_binder_short.yaml +13 -0
- rfd3/configs/datasets/val/indexed.yaml +9 -0
- rfd3/configs/datasets/val/mcsa_41.yaml +9 -0
- rfd3/configs/datasets/val/mcsa_41_short_rigid.yaml +10 -0
- rfd3/configs/datasets/val/ppi_inference.yaml +7 -0
- rfd3/configs/datasets/val/sm_binder_hbonds.yaml +13 -0
- rfd3/configs/datasets/val/sm_binder_hbonds_short.yaml +15 -0
- rfd3/configs/datasets/val/unconditional.yaml +9 -0
- rfd3/configs/datasets/val/unconditional_deep.yaml +9 -0
- rfd3/configs/datasets/val/unindexed.yaml +8 -0
- rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori.yaml +151 -0
- rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori_spoof_helical_bundle.yaml +7 -0
- rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori_varying_lengths.yaml +28 -0
- rfd3/configs/datasets/val/val_examples/bpem_ori_hb.yaml +212 -0
- rfd3/configs/debug/default.yaml +64 -0
- rfd3/configs/debug/train_specific_examples.yaml +21 -0
- rfd3/configs/dev.yaml +9 -0
- rfd3/configs/experiment/debug.yaml +14 -0
- rfd3/configs/experiment/pretrain.yaml +31 -0
- rfd3/configs/experiment/test-uncond.yaml +10 -0
- rfd3/configs/experiment/test-unindexed.yaml +21 -0
- rfd3/configs/hydra/default.yaml +18 -0
- rfd3/configs/hydra/no_logging.yaml +7 -0
- rfd3/configs/inference.yaml +9 -0
- rfd3/configs/inference_engine/base.yaml +15 -0
- rfd3/configs/inference_engine/dev.yaml +20 -0
- rfd3/configs/inference_engine/rfdiffusion3.yaml +65 -0
- rfd3/configs/logger/csv.yaml +6 -0
- rfd3/configs/logger/default.yaml +2 -0
- rfd3/configs/logger/wandb.yaml +15 -0
- rfd3/configs/model/components/ema.yaml +1 -0
- rfd3/configs/model/components/rfd3_net.yaml +131 -0
- rfd3/configs/model/optimizers/adam.yaml +5 -0
- rfd3/configs/model/rfd3_base.yaml +8 -0
- rfd3/configs/model/samplers/edm.yaml +21 -0
- rfd3/configs/model/samplers/symmetry.yaml +10 -0
- rfd3/configs/model/schedulers/af3.yaml +6 -0
- rfd3/configs/paths/data/default.yaml +18 -0
- rfd3/configs/paths/default.yaml +22 -0
- rfd3/configs/train.yaml +28 -0
- rfd3/configs/trainer/cpu.yaml +6 -0
- rfd3/configs/trainer/ddp.yaml +5 -0
- rfd3/configs/trainer/loss/losses/diffusion_loss.yaml +12 -0
- rfd3/configs/trainer/loss/losses/sequence_loss.yaml +3 -0
- rfd3/configs/trainer/metrics/design_metrics.yaml +22 -0
- rfd3/configs/trainer/rfd3_base.yaml +35 -0
- rfd3/configs/validate.yaml +34 -0
- rfd3/engine.py +19 -11
- rfd3/inference/input_parsing.py +1 -1
- rfd3/inference/legacy_input_parsing.py +17 -1
- rfd3/inference/parsing.py +1 -0
- rfd3/inference/symmetry/atom_array.py +1 -5
- rfd3/inference/symmetry/checks.py +53 -28
- rfd3/inference/symmetry/frames.py +8 -5
- rfd3/inference/symmetry/symmetry_utils.py +38 -60
- rfd3/run_inference.py +3 -1
- rfd3/utils/inference.py +23 -0
- rc_foundry-0.1.5.dist-info/RECORD +0 -180
- {rc_foundry-0.1.5.dist-info → rc_foundry-0.1.7.dist-info}/WHEEL +0 -0
- {rc_foundry-0.1.5.dist-info → rc_foundry-0.1.7.dist-info}/entry_points.txt +0 -0
- {rc_foundry-0.1.5.dist-info → rc_foundry-0.1.7.dist-info}/licenses/LICENSE.md +0 -0
|
@@ -0,0 +1,311 @@
|
|
|
1
|
+
foundry/__init__.py,sha256=H8S1nl5v6YeW8ggn1jKy4GdtH7c-FGS-j7CqUCAEnAU,1926
|
|
2
|
+
foundry/common.py,sha256=Aur8mH-CNmcUqSsw7VgaCQSW5sH1Bqf8Da91jzxPV1Y,3035
|
|
3
|
+
foundry/constants.py,sha256=0n1wBKCvNuw3QaQehSbmsHYkIdaGn3tLeRFItBrdeHY,913
|
|
4
|
+
foundry/version.py,sha256=szvPIs2C82UunpzuvVg3MbF4QhzbBYTsVJ8DmPfq6_E,704
|
|
5
|
+
foundry/callbacks/__init__.py,sha256=VsRT1e4sqlJHPcTCsfupMEx82Iz-LoOAGPpwvf_OJeE,126
|
|
6
|
+
foundry/callbacks/callback.py,sha256=xZBo_suP4bLrP6gl5uJPbaXm00DXigePa6dMeDxucgg,3890
|
|
7
|
+
foundry/callbacks/health_logging.py,sha256=tEtkByOlaAA7nnelxb7PbM9_dcIgOsdbxCdQY3K5pMc,16664
|
|
8
|
+
foundry/callbacks/metrics_logging.py,sha256=Vekzs831d-HE7TfLJZnQ45iPeG9ziQWLQaMBGaymfQM,8696
|
|
9
|
+
foundry/callbacks/timing_logging.py,sha256=u-r0hKp7fWOY3mLk7CcuIwHgZbhte13m5M09xNgatZA,2343
|
|
10
|
+
foundry/callbacks/train_logging.py,sha256=Xs3tmZA88qLxmdSOwt-x8YKN4NKb1kVm59uptNXl4Qo,10399
|
|
11
|
+
foundry/hydra/resolvers.py,sha256=xyJzo6OeWAc_LOu8RiHhX7_CRNoLZ22626AvYHXYl4U,2186
|
|
12
|
+
foundry/inference_engines/base.py,sha256=ZHdlmGUqH4-p3v4RdrLH-Ps8_zalr7j5mQ4x-S53N4M,8375
|
|
13
|
+
foundry/inference_engines/checkpoint_registry.py,sha256=c_me8Uz2NWXAaELhQ4bT1HMPfY8XrH67kvCKdDPrD8g,4149
|
|
14
|
+
foundry/metrics/__init__.py,sha256=qL4wwaiQ7EtR30pmZ9MCknqx909BJcNvHVmNJUaz_WM,236
|
|
15
|
+
foundry/metrics/losses.py,sha256=2CLUmf7oCdFUCvgJukdNkff0FVG3BlATI-NI60TtpVY,903
|
|
16
|
+
foundry/metrics/metric.py,sha256=23pKh_Ra0EcHGo5cSzYQQrUGr5zWRxeufKSJ58tfXXo,12687
|
|
17
|
+
foundry/model/layers/blocks.py,sha256=ihbbP_1fOlrkrcrQSk9thCrNWjK8mtxD3WxcBng9Htk,1403
|
|
18
|
+
foundry/testing/__init__.py,sha256=BnrU7fZ4l0Dm1vrGcNPQYTAw83PW4DGYz7TGhGqgrfQ,223
|
|
19
|
+
foundry/testing/fixtures.py,sha256=j27a8CAonygjlWsUjZ-95M5MF4Rjp9nw7JskqiZlweI,486
|
|
20
|
+
foundry/testing/pytest_hooks.py,sha256=5Ebw1GXYO2XqS9Jvpzty7g3gCXIdXu16jqg53XcuUx4,450
|
|
21
|
+
foundry/trainers/fabric.py,sha256=cjaTHbGuJEQwaGBvIAXD_il4bHtY-crsTY14Xn77uXA,40401
|
|
22
|
+
foundry/training/EMA.py,sha256=3OWA9Pz7XuDr-SRxbz24tZf55DmhSa2fKy9r5v2IXqA,2651
|
|
23
|
+
foundry/training/checkpoint.py,sha256=mUiObg-qcF3tvMfVu77sD9m3yVRp71czv07ccliU7qQ,1791
|
|
24
|
+
foundry/training/schedulers.py,sha256=StmXegPfIdLAv31FreCTrDh9dsOvNUfzG4YGa61Y4oE,3647
|
|
25
|
+
foundry/utils/alignment.py,sha256=2anqy0mn9zeFEiVWS_EG7zHiyPk1C_gbUu-SRvQ5mAM,2502
|
|
26
|
+
foundry/utils/components.py,sha256=Piw2TfQF26uuxC3hXG3iv_4rgud1lVO-cv6N-p05EDY,15200
|
|
27
|
+
foundry/utils/datasets.py,sha256=pLBxVezm-TSrYuC5gFnJZdGnNWV7aPH2QiWIVE2hkdQ,16629
|
|
28
|
+
foundry/utils/ddp.py,sha256=ydHrO6peGbRnWAwgH5rmpHuQd55g2gFzzoZJYypn7GU,3970
|
|
29
|
+
foundry/utils/instantiators.py,sha256=oGCp6hrmY-QPPPEjxKxe5uVFL125fH1RaLxjMKWCD_8,2169
|
|
30
|
+
foundry/utils/logging.py,sha256=jrDgiB_56q_hWDc0jkBFekvqnNWcowJBt4B-S-ipJmM,9312
|
|
31
|
+
foundry/utils/rigid.py,sha256=_Z1pmitb6xgxyguLj_TukKscUBJjQsU4bsBD24GVS84,44444
|
|
32
|
+
foundry/utils/rotation_augmentation.py,sha256=7q1WEX2iJ0i7-2aV-M97nEaEdpqexDTaZn5JquYpkUk,1927
|
|
33
|
+
foundry/utils/squashfs.py,sha256=QlcwuJyVe-QVfIOS7o1QfLhaCQPNzzox7ln4n8dcYEg,5234
|
|
34
|
+
foundry/utils/torch.py,sha256=OLsqoxw4CTXbGzWUHernLUT7uQjLu0tVPtD8h8747DI,11211
|
|
35
|
+
foundry/utils/weights.py,sha256=btz4S02xff2vgiq4xMfiXuhK1ERafqQPtmimo1DmoWY,10381
|
|
36
|
+
foundry_cli/__init__.py,sha256=0BxY2RUKJLaMXUGgypPCwlTskTEFdVnkhTR4C4ft2Kw,52
|
|
37
|
+
foundry_cli/download_checkpoints.py,sha256=CxU9dKBa1vAkVd450tfH5aZAlQIUTrHsDGTbmxzd_JQ,8922
|
|
38
|
+
mpnn/__init__.py,sha256=hgQcXFaCbAxFrhydVAy0xj8yC7UJF-GCCFhqD0sZ7I4,57
|
|
39
|
+
mpnn/inference.py,sha256=wPtGR325eVRVeesXoWtBK6b_-VcU8BZae5IfQN3-mvA,1669
|
|
40
|
+
mpnn/train.py,sha256=9eQGBd3rdNF5Zr2w8oUgETbqxBavNBajtA6Vbc5zESE,10239
|
|
41
|
+
mpnn/collate/feature_collator.py,sha256=LpzAFWo1VMa06dJLmfUWZsKe4xvLZjHbx4RICg2lgbQ,10510
|
|
42
|
+
mpnn/inference_engines/mpnn.py,sha256=PmDEsIFipdk2fY57FA-vCp4evoU83DVVuUVmlViUtWk,21725
|
|
43
|
+
mpnn/loss/nll_loss.py,sha256=KmdNe-BCzGYtijjappzBArQcT1gHVlJnKdY1PYQ4mhU,5947
|
|
44
|
+
mpnn/metrics/nll.py,sha256=T6oMeUOEeHZzOMTH8NHFtsH9vUwLAsHQDPszzj4YKXI,15299
|
|
45
|
+
mpnn/metrics/sequence_recovery.py,sha256=YDw_LmH-a3ajBYWK0mucJEQvw0_VEyxvrBN7da4vX8Q,19034
|
|
46
|
+
mpnn/model/mpnn.py,sha256=vhkair2tYoId_akRP2qEq5O0IMZv6wsv9Q-V9plKgV8,131144
|
|
47
|
+
mpnn/model/layers/graph_embeddings.py,sha256=aEtd7iorMh8DxNH0eZVrK_zOo8HDLM5FRJyIJ8Cfz6k,99795
|
|
48
|
+
mpnn/model/layers/message_passing.py,sha256=TUkG9pXuo4Rtz5Bcij-OB7T4gSKmLt1KgxNmjJYPcMY,13051
|
|
49
|
+
mpnn/model/layers/position_wise_feed_forward.py,sha256=FATM8oveWy2XW-PDaaF9XLPIiWbehOHxG715E60n_8g,1602
|
|
50
|
+
mpnn/model/layers/positional_encoding.py,sha256=f-YpH1xvPGFC75U2-sOHrK13XtA9ZAWxjxxH1GrDt1M,4876
|
|
51
|
+
mpnn/pipelines/mpnn.py,sha256=SukwxEcAzaCgUZKcA1_KusodvcCg3_buN1dAZU-Udas,6185
|
|
52
|
+
mpnn/samplers/samplers.py,sha256=LDpetPMVklMboj1tucgnNvSHRUaQuehBmR2jFl4VWIE,6129
|
|
53
|
+
mpnn/trainers/mpnn.py,sha256=waXLQ-7pFD8MJRlnK37mHWcvqD6uOjTXVP6910tB6cw,6586
|
|
54
|
+
mpnn/transforms/polymer_ligand_interface.py,sha256=lipKDt_NFrpM-GiOXtvnTAvMpISOO4eHwilCgxnISJU,6106
|
|
55
|
+
mpnn/transforms/feature_aggregation/mpnn.py,sha256=jkhyMCqJipKQ2PvjqPkvvClhoiXx_I8e03lnDeH9__M,6324
|
|
56
|
+
mpnn/transforms/feature_aggregation/polymer_ligand_interface.py,sha256=gDdt9RZd0PO0YJdouNr0qsHFZV1i-5ewU6XuJrwPY54,2870
|
|
57
|
+
mpnn/transforms/feature_aggregation/token_encodings.py,sha256=qVlUky4HcDSU5drrZpZBnUvTSGdT6C7MN8f_owa81Bw,2227
|
|
58
|
+
mpnn/transforms/feature_aggregation/user_settings.py,sha256=uKyIDXz-QG0-KWQO1kqPlMj6i7RoVM6yH4iGNXFStoU,15007
|
|
59
|
+
mpnn/utils/inference.py,sha256=QLeukqLpedMNmvjbYgvLwDS5k7Q__NWILDSEbETkoCI,96539
|
|
60
|
+
mpnn/utils/probability.py,sha256=EYisliXNGXjuSPbzZwcIKjlhyINikGsqQndGBEbQoPI,990
|
|
61
|
+
mpnn/utils/weights.py,sha256=VsaIcOWTv8G-WJ9denxLRm3FQ9l6L66AVQN08E9BMSg,16411
|
|
62
|
+
rf3/__init__.py,sha256=XBb5hF2RqBPHODGRmjiRbfTXgOGfOzdY91GbS4Vex00,70
|
|
63
|
+
rf3/_version.py,sha256=fCfpbI5aeA6yHqjo3tK78-l2dPGxhp-AyKSoCXp34Nc,739
|
|
64
|
+
rf3/alignment.py,sha256=BvvwMqQGCVxV20xIsTighD1kXMadXXL2SkckLjTerx0,2102
|
|
65
|
+
rf3/chemical.py,sha256=VECnRPgVm-icXbZeUG4svcENzdUiIupP6dhka_8zCrg,26572
|
|
66
|
+
rf3/cli.py,sha256=dPKJFRHYoV2XS6xc_ZmdLTz6frqa6HZg4qgZU5oJcXU,2356
|
|
67
|
+
rf3/inference.py,sha256=_AAJ07AfSeU3xTM2_KH9n_H12EK4qZ23IJuyauOrMaQ,2466
|
|
68
|
+
rf3/kinematics.py,sha256=V3yjalPupu1X2FEp7l3XZR-qzLKrhWLZyECk6RgIkcs,10901
|
|
69
|
+
rf3/scoring.py,sha256=dTllswE-6Fgli2eLiNzLFc2Rhz4ouDT4WL-sVbvLTGU,41541
|
|
70
|
+
rf3/train.py,sha256=V4nqCC_1JKLI3WQ-nErNa8sqFpvb1mFhXSe6ZPpEheM,7945
|
|
71
|
+
rf3/util_module.py,sha256=ltc7QXJDb5Z184wxYQuT_-Z68YWXuPmOEBMLSzS6Pes,1428
|
|
72
|
+
rf3/validate.py,sha256=wXZLTWiOdTsCKiKK2_Dfnj5PInDiv5KxojOZwaUJjuo,5832
|
|
73
|
+
rf3/callbacks/dump_validation_structures.py,sha256=j_pDfPETyI10ZtsUlvf16-zpJdaUcC5w8TEYCk--Xbo,3909
|
|
74
|
+
rf3/callbacks/metrics_logging.py,sha256=MYcM_ZYKsBTJKx2xi9H0QPr5Lh1o80_bTZXH8kfV5y8,13429
|
|
75
|
+
rf3/data/cyclic_transform.py,sha256=Cs4x_qooCUXKNiFeVdfrXAGhZ0z_yyedscWRsGmEpwM,3351
|
|
76
|
+
rf3/data/extra_xforms.py,sha256=Pxv4Nt4Ir_Ca92XWx_c6mdaCl7fS3_gFCWG775WWVSQ,1197
|
|
77
|
+
rf3/data/ground_truth_template.py,sha256=dct1bGQ7AMjiNyLIotKJZzbbUI546mc-UDdRpKMU7vU,19460
|
|
78
|
+
rf3/data/paired_msa.py,sha256=aso9awdKthzsm1ITHHO8r-1O5vFDrDL-ot7FhXB7Css,7765
|
|
79
|
+
rf3/data/pipeline_utils.py,sha256=qLNcy2iTmZxwCJJk9etXCn_vRljUYhGqSn0uNsRDGO0,5008
|
|
80
|
+
rf3/data/pipelines.py,sha256=3yy8f4pUSiV9mnhDmboO2RAsIlIJ0WYCzTzXT3OGQ5M,20913
|
|
81
|
+
rf3/diffusion_samplers/inference_sampler.py,sha256=dNhVGQujfcMhIlFdlLjZHiWXBnaLjOjRBd58eM6SJv4,9014
|
|
82
|
+
rf3/inference_engines/__init__.py,sha256=tFyTBEMsQ2oR-x2TE9-7B3HIlkHFmoOP2d6hfomj_hc,121
|
|
83
|
+
rf3/inference_engines/rf3.py,sha256=rPJaY355JUvqq_UOAM7gSHzYBE6keN0zPG57bjUb0qU,29761
|
|
84
|
+
rf3/loss/af3_confidence_loss.py,sha256=X8TLudvIFxD2GHlNLsBHoysO0qeWGdaKdW8It6G7nhE,19697
|
|
85
|
+
rf3/loss/af3_losses.py,sha256=oD-sFIJgNR11OAFK_K-6OeKdeIauEabWNMJX8M9mE6k,24492
|
|
86
|
+
rf3/loss/loss.py,sha256=3aHB8FiA0WkeTacfMUnG9mnoILyjX8AE9345eToubag,6184
|
|
87
|
+
rf3/metrics/chiral.py,sha256=xeZjBv9XFa8Tmo7aFjevwLuRk6GGpRU4CIkT41SvnFI,7139
|
|
88
|
+
rf3/metrics/clashing_chains.py,sha256=El3CILpTMSD-U-5pgUugXigNao9AZ17KxOW1-NX4N38,2518
|
|
89
|
+
rf3/metrics/distogram.py,sha256=lXLPfNtWnt4d3_Vc9A1AsAv3c0eZDRdK5tixgO9rIj8,16978
|
|
90
|
+
rf3/metrics/lddt.py,sha256=VjObCWvjAhElgGFckx_sRx8toUq4TVfr5ip8ThW06Qw,21412
|
|
91
|
+
rf3/metrics/metadata.py,sha256=hFEJ4thQiV8vs3fzj5dxK4BS3nb4PSnhCoBrfQXwD2I,1437
|
|
92
|
+
rf3/metrics/metric_utils.py,sha256=rdTY3Uc4at-Y7jLaDfaEhp17Z2KYqLGETuuCFSN59bY,7125
|
|
93
|
+
rf3/metrics/predicted_error.py,sha256=tsUFyW6Jv8m4REKui0mVQkfACB8PTVOzMstFW1d5pAA,4973
|
|
94
|
+
rf3/metrics/rasa.py,sha256=mQ6ZQdroC4CY3XDiUVWKvtHFCGTxyhDASqYF8SjnQGU,4525
|
|
95
|
+
rf3/metrics/selected_distances.py,sha256=uyTlbPHnf6PpZ6JMRkfDAAY-GkxerjpDkurTOSt3EV0,3620
|
|
96
|
+
rf3/model/RF3.py,sha256=fAJu8FG54tdo7wKcwkDLhorgBu4aBjqNAg4KGJIjgmc,22383
|
|
97
|
+
rf3/model/RF3_blocks.py,sha256=FZliymoYsYpDz_YqPsuXILDZaiE6IGcX1wJoeohueko,3218
|
|
98
|
+
rf3/model/RF3_structure.py,sha256=EnZuYk8dJWgLubp9Mui1f_e6hE0z6XuLn1HX7N_LfCo,9652
|
|
99
|
+
rf3/model/layers/af3_auxiliary_heads.py,sha256=kJqsT0_plh9_TXGN4HpPB1NzGIarCZyAIG5NiB5RN3Q,9937
|
|
100
|
+
rf3/model/layers/af3_diffusion_transformer.py,sha256=uU3OsubqsrGWjTHzEsOb6hzlc1gB5-o7GcK8ElRiLs8,19143
|
|
101
|
+
rf3/model/layers/attention.py,sha256=ofz4LR74oFBZ64RBAcbFlksV2E2NkYM69LoMDc4qedo,11189
|
|
102
|
+
rf3/model/layers/layer_utils.py,sha256=dzrYwvgdKS2ouDnRiseU2x7VBcRcXa1zeHA_EKLyO78,3382
|
|
103
|
+
rf3/model/layers/mlff.py,sha256=SFHskP18xB7zuZAzEeubw7kKwMEGZYlypGS_zZ-02yk,5017
|
|
104
|
+
rf3/model/layers/outer_product.py,sha256=OYam3gsxJa7JBet71_eFZ7D7mXQghluLXMRVHv2xUSs,2037
|
|
105
|
+
rf3/model/layers/pairformer_layers.py,sha256=nV5zwN6CLIqfCK7UTaNX_n67ASgfWp58KJMlj3TBbpg,28724
|
|
106
|
+
rf3/model/layers/structure_bias.py,sha256=xhu_KNRlE_FNfB0dwfHY47xhdFMmIPgV2qeYb_WyepI,1757
|
|
107
|
+
rf3/symmetry/resolve.py,sha256=odQF32aM4BqaOrmfEQJtwQxKgdJL5J0_Htb1I5KEDPA,10843
|
|
108
|
+
rf3/trainers/rf3.py,sha256=P9zLTMu7YaxllBiLgyrn6FnP1vKCOaerA7ciDgmqBrA,24141
|
|
109
|
+
rf3/utils/frames.py,sha256=6LVuV2XbODKNRU_ggGkd0EBXBT7F0q-HXFad4eTUOVs,3745
|
|
110
|
+
rf3/utils/inference.py,sha256=MjNkhoMzwPUb5rCouvEjtW-6XRa3yb471DQtpxzrhdk,24772
|
|
111
|
+
rf3/utils/io.py,sha256=xwOjzWviYKphuMbJgj18dylI72n0oF7mdUp8V5qlsaQ,8051
|
|
112
|
+
rf3/utils/loss.py,sha256=llaiL-5VaNTDMwh0TK_nIzniYPg0zDhIzzM8i8fYCqY,2757
|
|
113
|
+
rf3/utils/predict_and_score.py,sha256=VzRZohertYLMfnT9SwRs1gMGEhspV0LPBKmUjpU5WAY,6209
|
|
114
|
+
rf3/utils/predicted_error.py,sha256=5gIRjsD7bWvYYM30_wq9827porc1oj_Qq-cjyetYJ_s,25438
|
|
115
|
+
rf3/utils/recycling.py,sha256=nRvv0vWMsMG0Ods83XKkxdgmqKMXTw-w02n_BuZOYoo,1491
|
|
116
|
+
rfd3/.gitignore,sha256=935nLWJz_oi5h-UjxP4L_ulsMpkbRIVsl0dgGCwTCbc,109
|
|
117
|
+
rfd3/Makefile,sha256=_O87r1eIN7AmWWIqur3z0tLn1kgAPGEAGX2fcddarMs,2224
|
|
118
|
+
rfd3/__init__.py,sha256=2Wto2IsUIj2lGag9m_gqgdCwBNl5p21-Xnr7W_RpU3c,348
|
|
119
|
+
rfd3/callbacks.py,sha256=Zjt8RiaYWquoKOwRmC_wCUbRbov-V4zd2_73zjhgDHE,2783
|
|
120
|
+
rfd3/cli.py,sha256=ka3K5H117fzDYIDXFpOpJV21w_XBrHYJZdFE0thsGBI,1644
|
|
121
|
+
rfd3/constants.py,sha256=wLvDzrThpOrK8T3wGFNQeGrhAXOJQze8l3v_7pjIdMM,13141
|
|
122
|
+
rfd3/engine.py,sha256=NwATrhYFyqT7C9Bie8mWtUiqqzXgs9x6nOCkmZYPiT4,21224
|
|
123
|
+
rfd3/run_inference.py,sha256=HfRMQ30_SAHfc-VFzBV52F-aLaNdG6PW8VkdMyB__wE,1264
|
|
124
|
+
rfd3/train.py,sha256=rHswffIUhOae3_iYyvAiQ3jALoFuzrcRUgMlbJLinlI,7947
|
|
125
|
+
rfd3/inference/datasets.py,sha256=u-2U7deHXu-iOs7doiKKynewP-NEyJfdORSTDzUSaQI,6538
|
|
126
|
+
rfd3/inference/input_parsing.py,sha256=TyEzCzeCaNhuNi0RjMcq9fF2j3Sp36KbuZ1FUjlBTZ8,45442
|
|
127
|
+
rfd3/inference/legacy_input_parsing.py,sha256=G2XxkrjdIpL6i1YY7xEmkFitVv__Pc45ow6IKKPHw64,28855
|
|
128
|
+
rfd3/inference/parsing.py,sha256=ktAMUuZE3Pe4bKAjjV3zjqcEDmGlMZ-cotIUhJsEQQA,5402
|
|
129
|
+
rfd3/inference/symmetry/atom_array.py,sha256=HfFagFUB5yB-Y4IfUM5nuVGWHC5AEkyHqt0JcIqTQ_E,10922
|
|
130
|
+
rfd3/inference/symmetry/checks.py,sha256=y-Kq0l5OhEmmxsPBBsMMB0qaAt18FeEicD3-jSMQFa0,9900
|
|
131
|
+
rfd3/inference/symmetry/contigs.py,sha256=6OvbZ2dJg-a0mvvKAC0VkzUH5HpUDxOJvkByIst_roU,2127
|
|
132
|
+
rfd3/inference/symmetry/frames.py,sha256=aEwkmlUsYexERX9hu09JMhisC8QTpHPVhfITbL80-EE,10819
|
|
133
|
+
rfd3/inference/symmetry/symmetry_utils.py,sha256=p_PkxU3sw6gYGO2EmZTrbNQdLjz1mdTWEIl5MjQdIuY,14664
|
|
134
|
+
rfd3/metrics/design_metrics.py,sha256=O1RqZdjQPNlAWYRg6UJTERYg_gUI1_hVleKsm9xbWBY,16836
|
|
135
|
+
rfd3/metrics/hbonds_hbplus_metrics.py,sha256=Sewy9KzmrA1OnfkasN-fmWrQ9IRx9G7Yyhe2ua0mk28,11518
|
|
136
|
+
rfd3/metrics/hbonds_metrics.py,sha256=SIR4BnDhYdpVSqwXXRYpQ_tB-M0_fVyugGl08WivCmE,15257
|
|
137
|
+
rfd3/metrics/losses.py,sha256=GDz0uO2XyYCX1kvKJ1DR5s7wWlELIqqI2PhoCnue8IM,12705
|
|
138
|
+
rfd3/metrics/metrics_utils.py,sha256=o8zmjLq4i4LfoGiJ51rZU7KnH9LX4xEVLqbH0xBIoeI,4501
|
|
139
|
+
rfd3/metrics/sidechain_metrics.py,sha256=EGZuFuWQ0cCe83EVPAf4eysN8vP9ifNjfnmE0o5aIeA,12223
|
|
140
|
+
rfd3/model/RFD3.py,sha256=95aKzye-XzuDyLGgost-Wsfu8eT635zHIRky-pNoHSA,3569
|
|
141
|
+
rfd3/model/RFD3_diffusion_module.py,sha256=BPjKGyQpbnqdzii3gXMKLhhijNqV8Xh4bSosmfDBt8w,12094
|
|
142
|
+
rfd3/model/cfg_utils.py,sha256=XPBLyoB_bQRLmdrJ1Z0hCjcVvgUMGIPuw4rxTlHjB_s,2575
|
|
143
|
+
rfd3/model/inference_sampler.py,sha256=qge7BNJttW0NXgerg3msPY3izxQ-6FsvWSTAMhZ4GJs,24696
|
|
144
|
+
rfd3/model/layers/attention.py,sha256=XuNA7WyFlRfLnAgky1PtGvXFCnDGv7GeEcXz8hodTBo,19472
|
|
145
|
+
rfd3/model/layers/block_utils.py,sha256=EZq2qYUeO6_VCLKDVC60cxfBE_EPwvp84FPmqLr28ZQ,21197
|
|
146
|
+
rfd3/model/layers/blocks.py,sha256=MOjJ53THxM2MMM27Ap7xiIXRCdI_SHzqKzLLQVX6FEc,24888
|
|
147
|
+
rfd3/model/layers/chunked_pairwise.py,sha256=de5Qc3P7GEfZlX-QLaKfJxr6Ky5vgLcWWogatCw2UnY,14582
|
|
148
|
+
rfd3/model/layers/encoders.py,sha256=CqByjHNSbtMIaNP_h2iEJZdTbm-N8SGo1bZgvRNpMJ8,15207
|
|
149
|
+
rfd3/model/layers/layer_utils.py,sha256=UPYo-DYa__93KONSEj2YZWLtBqvYNSA9_wHDDPhVrIc,5710
|
|
150
|
+
rfd3/model/layers/pairformer_layers.py,sha256=uimskhN-Ec0apEXAU6JqomyKX5-6ormrEsCFJotkBtM,3991
|
|
151
|
+
rfd3/testing/debug.py,sha256=EeuGCEKyp-caoiskjnyfi88TfnJr5lcnPT2z4gblqvY,3958
|
|
152
|
+
rfd3/testing/debug_utils.py,sha256=i_GjrsRjeaREv6hlX2sEmeztpo9w9rg7Ne3VT5-YILA,2170
|
|
153
|
+
rfd3/testing/testing_utils.py,sha256=CtpTDxePbCluzuvd6jBfJNI2a3_8Ry2Whbgcf-5upiM,12202
|
|
154
|
+
rfd3/trainer/dump_validation_structures.py,sha256=qY8s2hPBflJTXPiIUnqFFE9g36y_7s39MEcMRrxZUmA,6027
|
|
155
|
+
rfd3/trainer/fabric_trainer.py,sha256=8dcyDSJFviyFU9fp6Ez02CmucKi9-DOEEwHIRcB6kQU,40074
|
|
156
|
+
rfd3/trainer/recycling.py,sha256=nRvv0vWMsMG0Ods83XKkxdgmqKMXTw-w02n_BuZOYoo,1491
|
|
157
|
+
rfd3/trainer/rfd3.py,sha256=9B_FgvTNvTDpZhRVXD1ufIRNrXOnERkFJosxe7Zy8-E,21181
|
|
158
|
+
rfd3/trainer/trainer_utils.py,sha256=1m331JI86uQvBrapLHjjEliGjU3qxafp-v47bTjsx-I,20528
|
|
159
|
+
rfd3/transforms/conditioning_base.py,sha256=A0Z2-v7ttvNa6xArpBdV8srH58gSaMI1J48ULXvQJTg,19517
|
|
160
|
+
rfd3/transforms/conditioning_utils.py,sha256=9Pn9AFbih2FCzp5OOM9y7z6KH7HPxVibxTrfuXiitMs,7498
|
|
161
|
+
rfd3/transforms/design_transforms.py,sha256=ePvnLsuKUOsE4LLcmF0bbkx1vf2AiD-35rzF4zUEcEE,30944
|
|
162
|
+
rfd3/transforms/dna_crop.py,sha256=JeOsG0tXghJvgzEimfzBvlFN_lVd9TrvjnC929Abz5A,18214
|
|
163
|
+
rfd3/transforms/hbonds.py,sha256=ijfJapFlhsh3JktpDoT3VFqKTTg6ynrqMlD7dU2xFsA,16415
|
|
164
|
+
rfd3/transforms/hbonds_hbplus.py,sha256=xyDP-CyVl2OsUY90HsrPoKw1VycBXUrq00WfrX8HJVM,8364
|
|
165
|
+
rfd3/transforms/ncaa_transforms.py,sha256=Lz4L8OGuOOG53sKJHcLSdV7WPQ3YzOzwd5tJG4CHqP0,4983
|
|
166
|
+
rfd3/transforms/pipelines.py,sha256=FGH-XH3taTWQ6k1zpDO_d-097EQdXmL6uqXZXw4HIMs,22086
|
|
167
|
+
rfd3/transforms/ppi_transforms.py,sha256=7rXyf-tn2TLz6ybYR_YVDtSDG7hOgqhYY4shNviA_Sw,23493
|
|
168
|
+
rfd3/transforms/rasa.py,sha256=a4IPFvVMMxldoGLyJQiSlGg7IyUkcBASbRZLWmguAKk,4156
|
|
169
|
+
rfd3/transforms/symmetry.py,sha256=GSnMF7oAnUxPozfafsRuHEv0yKXW0BpLTI6wsKGZrbc,2658
|
|
170
|
+
rfd3/transforms/training_conditions.py,sha256=UXiUPjDwrNKM95tRe0eXrMeRN8XlTPc_MXUvo6UpePo,19510
|
|
171
|
+
rfd3/transforms/util_transforms.py,sha256=2AcLkzx-73ZFgcWD1cIHv7NyniRPI4_zThHK8azyQaY,18119
|
|
172
|
+
rfd3/transforms/virtual_atoms.py,sha256=UpmxzPPd5FaJigcRoxgLSHHrLLOqsCvZ5PPZfQSGqII,12547
|
|
173
|
+
rfd3/utils/inference.py,sha256=-8IKzkB9ulhLEJgapvnZSdIaIPQDPMpyPpHTQlFS7r0,27317
|
|
174
|
+
rfd3/utils/io.py,sha256=wbdjUTQkDc3RCSM7gdogA-XOKR68HeQ-cfvyN4pP90w,9849
|
|
175
|
+
rfd3/utils/vizualize.py,sha256=HPlczrA3zkOuxV5X05eOvy_Oga9e3cPnFUXOEP4RR_g,11046
|
|
176
|
+
rf3/configs/inference.yaml,sha256=JmEZdkAnbnOrX79lGS5xrYYho9aBFfVxfUp-8KjJV5I,309
|
|
177
|
+
rf3/configs/train.yaml,sha256=4KW2fKc9a_gjg8yMoQfOpfkC-nJ5mdQEfoikOKxbnKc,1573
|
|
178
|
+
rf3/configs/validate.yaml,sha256=3LkhXyneEuuH-ueFH9FyYY5cCDi1_0KoHNwEceuQPwI,1581
|
|
179
|
+
rf3/configs/callbacks/default.yaml,sha256=MkxOj7dMXh4jJRIE62gLjoOYecGuZLWiJrr780_nubA,89
|
|
180
|
+
rf3/configs/callbacks/dump_validation_structures.yaml,sha256=EYEibR25v7KZJtadvCFLFMEPTf0FvKFNW2ocx4wm57A,259
|
|
181
|
+
rf3/configs/callbacks/metrics_logging.yaml,sha256=MNm4OpvOHxvDJofVUA27NVaiDkp1NzqOYCzl6l_7ceo,432
|
|
182
|
+
rf3/configs/callbacks/train_logging.yaml,sha256=ekSMSl1Kijxx8B8dDxvy5Zg-4Ej79O3vf7di31Rnt48,505
|
|
183
|
+
rf3/configs/dataloader/default.yaml,sha256=onP9QDyqTymI8686ZA8hGY_hRxIaosLEYxqHw_WhUdw,404
|
|
184
|
+
rf3/configs/datasets/base.yaml,sha256=j6RwP1Q9dsv2qKBH9QK_22_b2NO_JRruWyqzZopQYNU,557
|
|
185
|
+
rf3/configs/datasets/pdb_and_distillation.yaml,sha256=I9IFZee3EWHf5nzXsg6XFb6cTYOuMMM62fiFSOiV67A,2032
|
|
186
|
+
rf3/configs/datasets/pdb_only.yaml,sha256=FRjrtbInhlalmvmCXynXDauJ7Eq9l_dt9JLIfW27W4A,489
|
|
187
|
+
rf3/configs/datasets/train/disorder_distillation.yaml,sha256=Uyf1braO-PhEmyOKokqZhsLSmqc70LefcIZBdLuGsHo,1877
|
|
188
|
+
rf3/configs/datasets/train/domain_distillation.yaml,sha256=BNknJl7f9H3c0_4BQiffaod9LMh3Bg-LAgTtayGwxvo,1843
|
|
189
|
+
rf3/configs/datasets/train/monomer_distillation.yaml,sha256=JZ5ybnlWaDisvDqM25xAbHoNPpoCSMY_B7FB4K3MSAs,1989
|
|
190
|
+
rf3/configs/datasets/train/na_complex_distillation.yaml,sha256=v1zF29BdTqPapYfpp49alwR_NpHGVPaREKJym_kctn0,1996
|
|
191
|
+
rf3/configs/datasets/train/rna_monomer_distillation.yaml,sha256=lyK-n_Q-8aUPnH4AP4SJNGxmKhwlGW4QdviBh3RdT0k,2110
|
|
192
|
+
rf3/configs/datasets/train/pdb/af3_weighted_sampling.yaml,sha256=ODhH4ASK49JXpVOIe78jR5tFMBIJNVSO53VNuNzs680,286
|
|
193
|
+
rf3/configs/datasets/train/pdb/base.yaml,sha256=D2mQENj8Gc_p2ILxEAClV2xUd1klXYCCvNmLfsO5CNs,1485
|
|
194
|
+
rf3/configs/datasets/train/pdb/plinder.yaml,sha256=ScIrW7zmH6OwB8j2EZK0q0gtnYtDZErvu9vB54_G1KE,1932
|
|
195
|
+
rf3/configs/datasets/train/pdb/train_interface.yaml,sha256=0BLZJg-i4QyvIYhR3Zb7oSVYGtFs7Ve-vp8ey02eSl8,1664
|
|
196
|
+
rf3/configs/datasets/train/pdb/train_pn_unit.yaml,sha256=f67V-_sFrhaPEF4r_operKRUUUqvVE7shRtVJFE91Uk,1388
|
|
197
|
+
rf3/configs/datasets/val/af3_ab_set.yaml,sha256=PSIgfq-KQ62nkc6DEhNsthFVpoteaugHn7S-oSVMlDs,332
|
|
198
|
+
rf3/configs/datasets/val/af3_validation.yaml,sha256=Nq83pq2upr8NT4U7YnTszWJfXQcvtV82V-hwht1QbOg,327
|
|
199
|
+
rf3/configs/datasets/val/base.yaml,sha256=Ks5cXX_r-UI_h8rnVDa9t51Onl_3MZLLmOkZLXiQxAQ,1482
|
|
200
|
+
rf3/configs/datasets/val/runs_and_poses.yaml,sha256=dXNBuatMCJTE0qOBUMNklS6BdprA3pfYEt7Bjd5VkAQ,394
|
|
201
|
+
rf3/configs/debug/default.yaml,sha256=sv0TQJ1SpAy7WJv-q49--1F-VgVEB54GtV_ngZ_XxFA,1751
|
|
202
|
+
rf3/configs/debug/train_specific_examples.yaml,sha256=r97RIXKFxUJDpqC1pfhAU_k9x7RqhyRHOIzILMxAbzw,506
|
|
203
|
+
rf3/configs/experiment/quick-rf3-with-confidence.yaml,sha256=nzcJrVDyBoVSQ3O_9xL7SDYCuOjKBuCBprws5YGf_6c,386
|
|
204
|
+
rf3/configs/experiment/quick-rf3.yaml,sha256=Zt2v29GMl6xtQcb72Ha4xgRGRsvb3dKafkFVVMCvz8E,1789
|
|
205
|
+
rf3/configs/experiment/pretrained/rf3.yaml,sha256=LcdtFcCQIySN78ETpko1FedWk_7Zhz64-BFx3W7D-Zc,2164
|
|
206
|
+
rf3/configs/experiment/pretrained/rf3_with_confidence.yaml,sha256=IOFiS9WaV0-dg_0GydbPm3IO9QhkJ8QXXSmCmf8LqgM,326
|
|
207
|
+
rf3/configs/hydra/default.yaml,sha256=SYDTSU8bAw20QssrtTi7lptiBD5H3XNyzApsyy0brps,614
|
|
208
|
+
rf3/configs/hydra/no_logging.yaml,sha256=MUXDFcw-QwaRPz9HcE-1tdZwbNha1mexTe31G-Zt9_w,120
|
|
209
|
+
rf3/configs/inference_engine/base.yaml,sha256=wloIgZbe2UcrT2G7c1_kHmJUsYystRVeO90GtdT_8Mw,477
|
|
210
|
+
rf3/configs/inference_engine/rf3.yaml,sha256=vUGo_BVCaMcyRPHfjI1QXZS8jJyyrintrmix0dfKySw,657
|
|
211
|
+
rf3/configs/logger/csv.yaml,sha256=DtcywAIS4OxLXP2QxSEvqdrjhMpT6xHiGspoYw5qkus,245
|
|
212
|
+
rf3/configs/logger/default.yaml,sha256=kOdrsVdgMwDP5oazTgM-6mdtqxCY9FI31VL4uk_4mI4,27
|
|
213
|
+
rf3/configs/logger/wandb.yaml,sha256=mOIxaFurBo1XHJsI7Y-Yx-JZVWkIMMvIJtw5lO8kAqw,670
|
|
214
|
+
rf3/configs/model/rf3.yaml,sha256=Sx7eU2_B-aoX8uJHhy3xN_HifJ-NC8dthf-jaRLMgTY,1862
|
|
215
|
+
rf3/configs/model/rf3_with_confidence.yaml,sha256=7ajtluhRYmUXY4Os18354Cgq2hbWpO_cNcX9ZkdDVqI,126
|
|
216
|
+
rf3/configs/model/components/ema.yaml,sha256=AIzf4RZLKP8AcfaxdvZBS1rFw3AlSo431rmpMUBbFtw,24
|
|
217
|
+
rf3/configs/model/components/rf3_net.yaml,sha256=sI-Ty58cLIoXYFhSZibj6GniwcUQfzG7HRDuD5z_2Pw,4313
|
|
218
|
+
rf3/configs/model/components/rf3_net_with_confidence_head.yaml,sha256=fn3XoEMZzsKfEk1iHoo-TT4c6v00Ahuy7EOCqkkMBOQ,1326
|
|
219
|
+
rf3/configs/model/optimizers/adam.yaml,sha256=cTRNo4_4lNgLv0b329v-KiC_MCQtTVVTxeer5Au_FIM,145
|
|
220
|
+
rf3/configs/model/schedulers/af3.yaml,sha256=xEtRb--KPjg_5pW_IJvN9AHWVqCtOM4QOnXlMH2KrEg,149
|
|
221
|
+
rf3/configs/paths/default.yaml,sha256=tvlIY1vNcthP-ogUteJ_kFEgXXQ0FJj5HXBYOgmMmZ4,1016
|
|
222
|
+
rf3/configs/paths/data/default.yaml,sha256=qTPphktwF77RrgBkT0P-CDZeqlTFnTe6Ql-Q5cupx60,1539
|
|
223
|
+
rf3/configs/trainer/cpu.yaml,sha256=J1WbK2SQ_VMoEOOqv0XTg0FYKPaec1TNySvWklMaE4k,68
|
|
224
|
+
rf3/configs/trainer/ddp.yaml,sha256=uClrdTzEMNxgq4IQhMgm8okC16wUS2I5i3rKnm5SktU,65
|
|
225
|
+
rf3/configs/trainer/rf3.yaml,sha256=WBjnaYofmEV7OfJisvFGN6y_UJGNEskAdmbV9oO4ICI,500
|
|
226
|
+
rf3/configs/trainer/rf3_with_confidence.yaml,sha256=meDTw0S2nTcuAj5tefGwJteo2715x6kO143FMd3db14,346
|
|
227
|
+
rf3/configs/trainer/loss/structure_prediction.yaml,sha256=XPH2RcIo6m1BDrIoBvd2xBgJ0c4KEOnbWc5oEcBKVAM,164
|
|
228
|
+
rf3/configs/trainer/loss/structure_prediction_with_confidence.yaml,sha256=OZxtrQIqYGDFlhp3-1fFVZ2Ek6QRMP74ImsrNOJcelo,52
|
|
229
|
+
rf3/configs/trainer/loss/losses/confidence_loss.yaml,sha256=c9xI7Q32Ddl5R_GpoWq4RS7AxiJf4hsnGeMZxWs9mBU,501
|
|
230
|
+
rf3/configs/trainer/loss/losses/diffusion_loss.yaml,sha256=ktBy3bUjslklPuRhGWuHbl1gXccNaMUg5rmn0RUUFPs,221
|
|
231
|
+
rf3/configs/trainer/loss/losses/distogram_loss.yaml,sha256=-dZWPeQ1mWwi9pUtB7xJW57qKgUNMQ4vao1PXo07RC0,56
|
|
232
|
+
rf3/configs/trainer/metrics/structure_prediction.yaml,sha256=xWp2DqoqlofbgRLMNi0LKuAaDSCbW1tAEuEk83fmc0w,439
|
|
233
|
+
rfd3/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
234
|
+
rfd3/configs/dev.yaml,sha256=Y3PiHaCRIdRXf2Ea2aUDJk6hFxyNEljJf-O2VKQRNH0,151
|
|
235
|
+
rfd3/configs/inference.yaml,sha256=tUo5-G1-rsCU8RLclSP0ZKu5-O6JC5ofgI6bHb5kwmw,119
|
|
236
|
+
rfd3/configs/train.yaml,sha256=SbP5136VjJH_i2fc_4b0U0ZOqz3jeby1YORXSQtiFk0,450
|
|
237
|
+
rfd3/configs/validate.yaml,sha256=TSToLqzuP8hecj0K6TAfCywtpTZI1u1-THsX0jxCG1s,537
|
|
238
|
+
rfd3/configs/callbacks/design_callbacks.yaml,sha256=JWgE1-v_spzUy7JH3_6dHct_-oX4DevozRH-pM5Ds2k,196
|
|
239
|
+
rfd3/configs/callbacks/metrics_logging.yaml,sha256=pZPePSYGKEV560e3WatuLvJiHlz1CIGFOaOWoRmBh8g,694
|
|
240
|
+
rfd3/configs/callbacks/train_logging.yaml,sha256=Z25GVLTHo1HvQUjnBdayaozmNww8UhAh9DczStYaZig,1050
|
|
241
|
+
rfd3/configs/dataloader/default.yaml,sha256=gko2tj9F4IBbXrJIPBgkydjzIm74EiYb-xQV_a8WPkg,405
|
|
242
|
+
rfd3/configs/dataloader/fast.yaml,sha256=XxuFdH48HbHEbwRDhyMCCUjuDIuF2GFVMV_HiEbH9yg,162
|
|
243
|
+
rfd3/configs/datasets/design_base.yaml,sha256=KM1fnbF2TMEl_PQz1hhTeE1pirC067hDbUzjIGiLUGk,3067
|
|
244
|
+
rfd3/configs/datasets/conditions/dna_condition.yaml,sha256=AEOLioe14IAqGcvuJzQ1WWLx_6zxm8TkySGsnMYTz6M,108
|
|
245
|
+
rfd3/configs/datasets/conditions/island.yaml,sha256=nT-bCzaMyYeKBnobCdazOZHpeYB3dpF81vx5bdGE2Ro,1170
|
|
246
|
+
rfd3/configs/datasets/conditions/ppi.yaml,sha256=b9JvNVc0Dtd9GnCQFj5dm_-jQAxCM5DnVFX40zbEUEI,73
|
|
247
|
+
rfd3/configs/datasets/conditions/sequence_design.yaml,sha256=D1K6WOysmSAQ4LogltUBEp9hGXSUNsoHZuFk3MDnayY,299
|
|
248
|
+
rfd3/configs/datasets/conditions/tipatom.yaml,sha256=0010o7UUL-l75qI8HCjC_tdBXFWysm2dgVXzE7bQyZ0,650
|
|
249
|
+
rfd3/configs/datasets/conditions/unconditional.yaml,sha256=z1eVHylswLyludXWFs1AMt3mTMu3EbAUHrP8J3XBsRU,446
|
|
250
|
+
rfd3/configs/datasets/train/rfd3_monomer_distillation.yaml,sha256=1f61uFeRB8OD6sifFuIKFov8D7PcHpqRT4Z-M5EzO4w,1207
|
|
251
|
+
rfd3/configs/datasets/train/pdb/af3_train_interface.yaml,sha256=DSIpXW2SQ3drDp12490y0tFbjbugecyA7TI_x3WrKng,1546
|
|
252
|
+
rfd3/configs/datasets/train/pdb/af3_train_pn_unit.yaml,sha256=DPoEhLlyBu0RdBkkJeWB8pkOV4z0DBc6XmclLgww9II,1324
|
|
253
|
+
rfd3/configs/datasets/train/pdb/base.yaml,sha256=2VUEAKADyvjJmWP4FeOJwRat9r6F3_GXuyGYjvMvArw,291
|
|
254
|
+
rfd3/configs/datasets/train/pdb/base_no_weights.yaml,sha256=8HchN7DqYESBK520vShdg7xidWBSogGRAxfaxa5pKdE,554
|
|
255
|
+
rfd3/configs/datasets/train/pdb/base_transform_args.yaml,sha256=Sb8N60ONcz4Z5DaFhCM-lR0BXf3QAnQ1t-TNSTXoEd4,2848
|
|
256
|
+
rfd3/configs/datasets/train/pdb/na_complex_distillation.yaml,sha256=BQXn3w4bhQHO35z-O-sCMMcuG6w07x-8l0tFNEPYes0,456
|
|
257
|
+
rfd3/configs/datasets/train/pdb/pdb_base.yaml,sha256=5PAHphvkt5tbg9Lao35LuX6flvFCXjLkpG6ICBYoLD0,231
|
|
258
|
+
rfd3/configs/datasets/train/pdb/rfd3_train_interface.yaml,sha256=8z3_V-a7m-iV4-3dEugqFlVXYEnqpyJYBdViAfjDHN8,924
|
|
259
|
+
rfd3/configs/datasets/train/pdb/rfd3_train_pn_unit.yaml,sha256=5qAXUgj9ZnicCv8RtFnixRF6acE6BobtNQ_7vBeLM7E,784
|
|
260
|
+
rfd3/configs/datasets/val/bcov_ppi_easy_medium.yaml,sha256=UUWQ8JKdbLv_cgxJwhM8d2skjsxeM1E67BKlSmN8pJw,165
|
|
261
|
+
rfd3/configs/datasets/val/design_validation_base.yaml,sha256=YTvIXIEZIFjyzAJnzFtW23Hq46B7FqzJ5XanPFsCwic,2048
|
|
262
|
+
rfd3/configs/datasets/val/dna_binder_design5.yaml,sha256=Bamuz8wPxHTQWDW1zxPVwL3ZaUKeypUZEIboIVYPAos,166
|
|
263
|
+
rfd3/configs/datasets/val/dna_binder_long.yaml,sha256=9ffUPaB9dt7FufiWOKUmcBJ1K2k_xc-Dfw5cq-qmdWE,215
|
|
264
|
+
rfd3/configs/datasets/val/dna_binder_short.yaml,sha256=s0etIL8SkiHNRYmB0O4jRIYbqEqGWwxl6dhJGqK24tE,229
|
|
265
|
+
rfd3/configs/datasets/val/indexed.yaml,sha256=rYRjzyyMGiwi3rqjWAj3JtUymz13fA7HvrPFgdgPO1E,160
|
|
266
|
+
rfd3/configs/datasets/val/mcsa_41.yaml,sha256=QP6zqvnsacBwQAvftsZskVps5FYaAcdBuOEvkJ8Ikz8,163
|
|
267
|
+
rfd3/configs/datasets/val/mcsa_41_short_rigid.yaml,sha256=-bgbsC9pQFhi0_xBV10KpvaWdptSL9N126bZJBY8PZ0,171
|
|
268
|
+
rfd3/configs/datasets/val/ppi_inference.yaml,sha256=pDILIqiEZ_GfxPQxkP_8WfMYXJQ9oPw_jitlh8p_xio,165
|
|
269
|
+
rfd3/configs/datasets/val/sm_binder_hbonds.yaml,sha256=ZqfUzq5ehXdMdKA1CWXWfnPcKwDCPUCFvg07LE10u1g,235
|
|
270
|
+
rfd3/configs/datasets/val/sm_binder_hbonds_short.yaml,sha256=fnthrBl89SgdXJgPYCxPtZgddRSOJ1NA7BycmWpgaHY,275
|
|
271
|
+
rfd3/configs/datasets/val/unconditional.yaml,sha256=oN0h7G8lOTruXx4AC0-9lZMM0Sy_Hes-mcssIZ3KC-U,243
|
|
272
|
+
rfd3/configs/datasets/val/unconditional_deep.yaml,sha256=-b0k2glQUPtin-6hE4QWxBrk-L05FwuD9aC5riVfd1w,174
|
|
273
|
+
rfd3/configs/datasets/val/unindexed.yaml,sha256=cr4CQFvsVAKI5-Q3mUDOz-q0uzSH7kk7xQrRqQCVOIw,137
|
|
274
|
+
rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori.yaml,sha256=WXyHVwtnw6biLGok361sxwVAPxQFNt0_SF1RJkhtBAs,2929
|
|
275
|
+
rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori_spoof_helical_bundle.yaml,sha256=LMktwyMA-JK_2per1GK5LFIILJOd-bxvnUmsNTti7AE,142
|
|
276
|
+
rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori_varying_lengths.yaml,sha256=jDvJEMu3Kaz-nUKcYczhx1xaR2idhnZ2Sk9BmpocBRs,471
|
|
277
|
+
rfd3/configs/datasets/val/val_examples/bpem_ori_hb.yaml,sha256=OTx9ax0jGhQ-K9rq1ewQqvQydgYNyumD7oG0VzIN15g,2850
|
|
278
|
+
rfd3/configs/debug/default.yaml,sha256=VnF0ETg0Aa_0p6oUAisDpV2Alh2_0VPNu0b3SVHkagI,1649
|
|
279
|
+
rfd3/configs/debug/train_specific_examples.yaml,sha256=foOOrGSAYgV7aHTPYw_r2TqdUVzXgLAU12227Hb6eK8,449
|
|
280
|
+
rfd3/configs/experiment/debug.yaml,sha256=yvA7U6pr3hyGcoVZ4KfbrdpZfG4Vf7gDLyAP7-gavvU,169
|
|
281
|
+
rfd3/configs/experiment/pretrain.yaml,sha256=-Y-HerSE9r3b-1RUIQX6i0WxUjBRvdKQXcBU4s6Mocg,731
|
|
282
|
+
rfd3/configs/experiment/test-uncond.yaml,sha256=pq_MdeV2h1xUOHuLayOX0F0Vk6Ximxng0Vn8-0MrE1g,150
|
|
283
|
+
rfd3/configs/experiment/test-unindexed.yaml,sha256=XTC7YC5dX9tTXzs44YB5ZgNMO8Jer63OM97VFYeo_sA,397
|
|
284
|
+
rfd3/configs/hydra/default.yaml,sha256=SYDTSU8bAw20QssrtTi7lptiBD5H3XNyzApsyy0brps,614
|
|
285
|
+
rfd3/configs/hydra/no_logging.yaml,sha256=MUXDFcw-QwaRPz9HcE-1tdZwbNha1mexTe31G-Zt9_w,120
|
|
286
|
+
rfd3/configs/inference_engine/base.yaml,sha256=ekP5U7bAALpeJGpwyj1v0N5LiEtptl5loRCtM8FRzRM,246
|
|
287
|
+
rfd3/configs/inference_engine/dev.yaml,sha256=-2snClOTwj5TQt7jnwSrI4pzAiI4nFulXKJflmgIyUw,304
|
|
288
|
+
rfd3/configs/inference_engine/rfdiffusion3.yaml,sha256=3bHIAhzFhFDIag0xQWYxHBUMSc71fjClHXKbZ-tpHzA,2112
|
|
289
|
+
rfd3/configs/logger/csv.yaml,sha256=DtcywAIS4OxLXP2QxSEvqdrjhMpT6xHiGspoYw5qkus,245
|
|
290
|
+
rfd3/configs/logger/default.yaml,sha256=pSyHyxT-J_T-g4_6TtD2yzN3rzxgY6rOG_Vh4RjZeFY,17
|
|
291
|
+
rfd3/configs/logger/wandb.yaml,sha256=RhCnFtO0hNc3R75ts417l5ICZeGm74lOj9Bfe7ZvRNA,652
|
|
292
|
+
rfd3/configs/model/rfd3_base.yaml,sha256=i97UJe3_5ClSXSCqFzbkGOaSGKux7L3kmuahQkjPvCY,174
|
|
293
|
+
rfd3/configs/model/components/ema.yaml,sha256=AIzf4RZLKP8AcfaxdvZBS1rFw3AlSo431rmpMUBbFtw,24
|
|
294
|
+
rfd3/configs/model/components/rfd3_net.yaml,sha256=95FF4U7aWmLCoHvyxsRoE74n-bxTPD6KlAhPKNemVH4,3275
|
|
295
|
+
rfd3/configs/model/optimizers/adam.yaml,sha256=cTRNo4_4lNgLv0b329v-KiC_MCQtTVVTxeer5Au_FIM,145
|
|
296
|
+
rfd3/configs/model/samplers/edm.yaml,sha256=QycHAIrfhRgx0mJygTOs56FT93tGCWTGxrQSKBOA7Mc,483
|
|
297
|
+
rfd3/configs/model/samplers/symmetry.yaml,sha256=pI0Ens6jmbpAIl8E4eYsJR1SqIppe5OsWh91KfpjNjs,214
|
|
298
|
+
rfd3/configs/model/schedulers/af3.yaml,sha256=xEtRb--KPjg_5pW_IJvN9AHWVqCtOM4QOnXlMH2KrEg,149
|
|
299
|
+
rfd3/configs/paths/default.yaml,sha256=bjB04SNu_5E6W_v4mRBjwce0xmdKwO5wsVf4gfaRl0Y,1045
|
|
300
|
+
rfd3/configs/paths/data/default.yaml,sha256=jfs1dbbcOqHja4_6lXheyRg4t0YExqVn2w0rZEWL6XE,788
|
|
301
|
+
rfd3/configs/trainer/cpu.yaml,sha256=rJf5LHf6x5fN5EKg8mFEn2SwfGW5dV1JdYaHqWMfpXc,74
|
|
302
|
+
rfd3/configs/trainer/ddp.yaml,sha256=uClrdTzEMNxgq4IQhMgm8okC16wUS2I5i3rKnm5SktU,65
|
|
303
|
+
rfd3/configs/trainer/rfd3_base.yaml,sha256=R3lZxdyjUirjlLU31qWlnZgHaz4GcWTGGIz4fUl7AyM,1016
|
|
304
|
+
rfd3/configs/trainer/loss/losses/diffusion_loss.yaml,sha256=FE4FCEfurE0ekwZ4YfS6wCvPSNqxClwg_kc73cPql5Y,323
|
|
305
|
+
rfd3/configs/trainer/loss/losses/sequence_loss.yaml,sha256=kezbQcqwAZ0VKQPUBr2MsNr9DcDL3ENIP1i-j7h-6Co,64
|
|
306
|
+
rfd3/configs/trainer/metrics/design_metrics.yaml,sha256=xVDpClhHqSHvsf-8StL26z51Vn-iuWMDG9KMB-kqOI0,719
|
|
307
|
+
rc_foundry-0.1.7.dist-info/METADATA,sha256=zlvCxfZ5-Ow7WuGKskfW6P1DGhZB9OfLIIBUBGncFeQ,11309
|
|
308
|
+
rc_foundry-0.1.7.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
|
|
309
|
+
rc_foundry-0.1.7.dist-info/entry_points.txt,sha256=BmiWCbWGtrd_lSOFMuCLBXyo84B7Nco-alj7hB0Yw9A,130
|
|
310
|
+
rc_foundry-0.1.7.dist-info/licenses/LICENSE.md,sha256=NKtPCJ7QMysFmzeDg56ZfUStvgzbq5sOvRQv7_ddZOs,1533
|
|
311
|
+
rc_foundry-0.1.7.dist-info/RECORD,,
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
store_validation_metrics_in_df_callback:
|
|
2
|
+
_target_: rf3.callbacks.metrics_logging.StoreValidationMetricsInDFCallback
|
|
3
|
+
save_dir: ${paths.output_dir}/val_metrics
|
|
4
|
+
metrics_to_save: "all"
|
|
5
|
+
|
|
6
|
+
log_af3_validation_metrics_callback:
|
|
7
|
+
_target_: rf3.callbacks.metrics_logging.LogAF3ValidationMetricsCallback
|
|
8
|
+
# Only logs if present in the metric output dictionary
|
|
9
|
+
# Must be subset of metrics_to_save
|
|
10
|
+
metrics_to_log: "all"
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
log_af3_training_losses_callback:
|
|
2
|
+
_target_: foundry.callbacks.train_logging.LogAF3TrainingLossesCallback
|
|
3
|
+
log_every_n: 10
|
|
4
|
+
log_full_batch_losses: true
|
|
5
|
+
|
|
6
|
+
log_learning_rate_callback:
|
|
7
|
+
_target_: foundry.callbacks.train_logging.LogLearningRateCallback
|
|
8
|
+
log_every_n: 10
|
|
9
|
+
|
|
10
|
+
log_model_parameters_callback:
|
|
11
|
+
_target_: foundry.callbacks.train_logging.LogModelParametersCallback
|
|
12
|
+
|
|
13
|
+
log_dataset_sampling_ratios_callback:
|
|
14
|
+
_target_: foundry.callbacks.train_logging.LogDatasetSamplingRatiosCallback
|
|
15
|
+
|
|
16
|
+
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
train:
|
|
2
|
+
dataloader_params:
|
|
3
|
+
# These parameters will be unpacked as kwargs for the DataLoader
|
|
4
|
+
batch_size: 1
|
|
5
|
+
num_workers: 2
|
|
6
|
+
prefetch_factor: 3
|
|
7
|
+
n_fallback_retries: 4
|
|
8
|
+
|
|
9
|
+
val:
|
|
10
|
+
dataloader_params:
|
|
11
|
+
# These parameters will be unpacked as kwargs for the DataLoader
|
|
12
|
+
batch_size: 1
|
|
13
|
+
num_workers: 2
|
|
14
|
+
prefetch_factor: 3
|
|
15
|
+
n_fallback_retries: 0 # Disable fallback retries for validation
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
# Base Transform defaults
|
|
2
|
+
diffusion_batch_size_train: 48
|
|
3
|
+
diffusion_batch_size_inference: 5
|
|
4
|
+
|
|
5
|
+
n_recycles_train: 4
|
|
6
|
+
n_recycles_validation: 10
|
|
7
|
+
|
|
8
|
+
run_confidence_head: false
|
|
9
|
+
|
|
10
|
+
# Conditioning
|
|
11
|
+
p_unconditional: 0.9
|
|
12
|
+
|
|
13
|
+
# Embeddings
|
|
14
|
+
p_dropout_atom_level_embeddings: 0.5
|
|
15
|
+
|
|
16
|
+
n_msa: 1024
|
|
17
|
+
crop_size: 384
|
|
18
|
+
max_atoms_in_crop: 5000
|
|
19
|
+
|
|
20
|
+
key_to_balance: n_tokens_total
|
|
21
|
+
|
|
22
|
+
take_first_chiral_subordering: false
|
|
23
|
+
use_element_for_atom_names_of_atomized_tokens: true
|
|
24
|
+
mirror_prob: 0.02
|
|
25
|
+
atomization_prob: 0.02
|
|
26
|
+
ligand_dropout_prob: 0.0
|
|
27
|
+
|
|
28
|
+
add_residue_is_paired_feature: true
|
|
29
|
+
|
|
30
|
+
add_cyclic_bonds: true
|
|
31
|
+
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
# AF3 dataset configuration with monomer distillation
|
|
2
|
+
|
|
3
|
+
defaults:
|
|
4
|
+
- base
|
|
5
|
+
# The @ symbol specifies the tree under which the item will be attached to the config
|
|
6
|
+
- train/pdb/train_interface@train.pdb.sub_datasets.interface
|
|
7
|
+
- train/pdb/train_pn_unit@train.pdb.sub_datasets.pn_unit
|
|
8
|
+
- train:
|
|
9
|
+
- monomer_distillation
|
|
10
|
+
- na_complex_distillation
|
|
11
|
+
- disorder_distillation
|
|
12
|
+
# - domain_distillation
|
|
13
|
+
# - rna_monomer_distillation
|
|
14
|
+
- val/af3_validation@val.af3_validation
|
|
15
|
+
- val/af3_validation@val.quick_af3_validation_with_templating
|
|
16
|
+
- _self_
|
|
17
|
+
|
|
18
|
+
# Dataloading pipeline to use
|
|
19
|
+
pipeline_target: rf3.data.pipelines.build_af3_transform_pipeline
|
|
20
|
+
|
|
21
|
+
# Dataset weighting
|
|
22
|
+
train:
|
|
23
|
+
pdb:
|
|
24
|
+
probability: 0.50
|
|
25
|
+
monomer_distillation:
|
|
26
|
+
probability: 0.46
|
|
27
|
+
na_complex_distillation:
|
|
28
|
+
probability: 0.02
|
|
29
|
+
disorder_distillation:
|
|
30
|
+
probability: 0.02
|
|
31
|
+
# multidomain_distillation:
|
|
32
|
+
# probability: 0.06
|
|
33
|
+
# rna_monomer_distillation:
|
|
34
|
+
# probability: 0.04
|
|
35
|
+
|
|
36
|
+
val:
|
|
37
|
+
quick_af3_validation_with_templating:
|
|
38
|
+
dataset:
|
|
39
|
+
dataset:
|
|
40
|
+
filters:
|
|
41
|
+
# Only score examples with protein-ligand interfaces
|
|
42
|
+
- "interfaces_to_score.str.contains('protein-ligand')"
|
|
43
|
+
# Small examples only - very fast
|
|
44
|
+
- "n_tokens_total < 400"
|
|
45
|
+
transform:
|
|
46
|
+
# +-- Conditioning --+
|
|
47
|
+
p_unconditional: 0.0 # Always show conditioning
|
|
48
|
+
# (Templates)
|
|
49
|
+
template_noise_scales:
|
|
50
|
+
not_atomized: 1e-4 # No noise on polymer atoms (epsilon to avoid division by zero)
|
|
51
|
+
atomized: 1e-4 # No noise on ligand atoms (epsilon to avoid division by zero)
|
|
52
|
+
allowed_chain_types_for_conditioning:
|
|
53
|
+
_target_: atomworks.enums.ChainType.get_all_types
|
|
54
|
+
p_condition_per_token: 1.0 # Always condition
|
|
55
|
+
p_provide_inter_molecule_distances: 0.0 # No inter-chain distances
|
|
56
|
+
# (Reference conformer)
|
|
57
|
+
p_give_non_polymer_ref_conf: 1.0 # Always give non-polymer reference conformers
|
|
58
|
+
p_give_polymer_ref_conf: 1.0 # Always give polymer reference conformers
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
# AF3 dataset configuration with monomer distillation
|
|
2
|
+
|
|
3
|
+
defaults:
|
|
4
|
+
- base
|
|
5
|
+
# The @ symbol specifies the tree under which the item will be attached to the config
|
|
6
|
+
- train/pdb/train_interface@train.pdb.sub_datasets.interface
|
|
7
|
+
- train/pdb/train_pn_unit@train.pdb.sub_datasets.pn_unit
|
|
8
|
+
- val/af3_validation@val.af3_validation
|
|
9
|
+
- _self_
|
|
10
|
+
|
|
11
|
+
# Dataloading pipeline to use
|
|
12
|
+
pipeline_target: rf3.data.pipelines.build_af3_transform_pipeline
|
|
13
|
+
|
|
14
|
+
# Dataset weighting
|
|
15
|
+
train:
|
|
16
|
+
pdb:
|
|
17
|
+
probability: 1.0
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
# TODO: Inherit from common config with default Transform pipeline
|
|
2
|
+
|
|
3
|
+
disorder_distillation:
|
|
4
|
+
dataset:
|
|
5
|
+
_target_: atomworks.ml.datasets.StructuralDatasetWrapper
|
|
6
|
+
save_failed_examples_to_dir: null
|
|
7
|
+
|
|
8
|
+
# cif parser arguments
|
|
9
|
+
cif_parser_args:
|
|
10
|
+
cache_dir: null
|
|
11
|
+
load_from_cache: False
|
|
12
|
+
save_to_cache: False
|
|
13
|
+
|
|
14
|
+
# metadata parser
|
|
15
|
+
dataset_parser:
|
|
16
|
+
_target_: atomworks.ml.datasets.parsers.GenericDFParser
|
|
17
|
+
pn_unit_iid_colnames: null
|
|
18
|
+
|
|
19
|
+
# metadata dataset
|
|
20
|
+
dataset:
|
|
21
|
+
_target_: atomworks.ml.datasets.PandasDataset
|
|
22
|
+
name: pdb_diso_distillation
|
|
23
|
+
id_column: example_id
|
|
24
|
+
data: ${paths.data.disorder_distill_parquet_dir}/disorderDistillation.csv
|
|
25
|
+
columns_to_load:
|
|
26
|
+
- example_id
|
|
27
|
+
- path
|
|
28
|
+
transform:
|
|
29
|
+
_target_: ${datasets.pipeline_target}
|
|
30
|
+
is_inference: False
|
|
31
|
+
protein_msa_dirs: ${paths.data.protein_msa_dirs}
|
|
32
|
+
rna_msa_dirs: ${paths.data.rna_msa_dirs}
|
|
33
|
+
n_recycles: ${datasets.n_recycles_train}
|
|
34
|
+
crop_size: ${datasets.crop_size}
|
|
35
|
+
n_msa: ${datasets.n_msa}
|
|
36
|
+
diffusion_batch_size: ${datasets.diffusion_batch_size_train}
|
|
37
|
+
max_atoms_in_crop: ${datasets.max_atoms_in_crop}
|
|
38
|
+
crop_contiguous_probability: 0.25
|
|
39
|
+
crop_spatial_probability: 0.75
|
|
40
|
+
run_confidence_head: ${datasets.run_confidence_head}
|
|
41
|
+
take_first_chiral_subordering: ${datasets.take_first_chiral_subordering}
|
|
42
|
+
use_element_for_atom_names_of_atomized_tokens: ${datasets.use_element_for_atom_names_of_atomized_tokens}
|
|
43
|
+
mirror_prob: ${datasets.mirror_prob}
|
|
44
|
+
atomization_prob: ${datasets.atomization_prob}
|
|
45
|
+
ligand_dropout_prob: ${datasets.ligand_dropout_prob}
|
|
46
|
+
p_unconditional: ${datasets.p_unconditional}
|
|
47
|
+
p_dropout_atom_level_embeddings: ${datasets.p_dropout_atom_level_embeddings}
|
|
48
|
+
add_residue_is_paired_feature: ${datasets.add_residue_is_paired_feature}
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
# TODO: Inherit from common config with default Transform pipeline
|
|
2
|
+
|
|
3
|
+
multidomain_distillation:
|
|
4
|
+
dataset:
|
|
5
|
+
_target_: rf3.data.paired_msa.MultiInputDatasetWrapper
|
|
6
|
+
save_failed_examples_to_dir: null
|
|
7
|
+
|
|
8
|
+
# cif parser
|
|
9
|
+
cif_parser_args:
|
|
10
|
+
#assume_residues_all_resolved: true
|
|
11
|
+
cache_dir: null
|
|
12
|
+
load_from_cache: false
|
|
13
|
+
save_to_cache: false
|
|
14
|
+
|
|
15
|
+
# metadata parser
|
|
16
|
+
dataset_parser:
|
|
17
|
+
_target_: rf3.data.paired_msa.MultidomainDFParser
|
|
18
|
+
|
|
19
|
+
# metadata dataset
|
|
20
|
+
dataset:
|
|
21
|
+
_target_: atomworks.ml.datasets.PandasDataset
|
|
22
|
+
name: multidomain_distillation
|
|
23
|
+
id_column: example_id
|
|
24
|
+
data: /projects/ml/datahub/dfs/domain_domain/domain_domain_dataset.DIGS.parquet
|
|
25
|
+
columns_to_load:
|
|
26
|
+
- example_id
|
|
27
|
+
- pdb_path
|
|
28
|
+
- msa_path
|
|
29
|
+
transform:
|
|
30
|
+
_target_: ${datasets.pipeline_target}
|
|
31
|
+
is_inference: False
|
|
32
|
+
input_contains_explicit_msa: True
|
|
33
|
+
protein_msa_dirs: []
|
|
34
|
+
rna_msa_dirs: []
|
|
35
|
+
n_recycles: ${datasets.n_recycles_train}
|
|
36
|
+
crop_size: ${datasets.crop_size}
|
|
37
|
+
n_msa: ${datasets.n_msa}
|
|
38
|
+
diffusion_batch_size: ${datasets.diffusion_batch_size_train}
|
|
39
|
+
max_atoms_in_crop: ${datasets.max_atoms_in_crop}
|
|
40
|
+
crop_contiguous_probability: 0.25
|
|
41
|
+
crop_spatial_probability: 0.75
|
|
42
|
+
run_confidence_head: ${datasets.run_confidence_head}
|
|
43
|
+
take_first_chiral_subordering: ${datasets.take_first_chiral_subordering}
|
|
44
|
+
use_element_for_atom_names_of_atomized_tokens: ${datasets.use_element_for_atom_names_of_atomized_tokens}
|
|
45
|
+
mirror_prob: 0.0
|
|
46
|
+
atomization_prob: ${datasets.atomization_prob}
|
|
47
|
+
ligand_dropout_prob: 0.0
|
|
48
|
+
p_unconditional: ${datasets.p_unconditional}
|
|
49
|
+
p_dropout_atom_level_embeddings: ${datasets.p_dropout_atom_level_embeddings}
|
|
50
|
+
add_residue_is_paired_feature: ${datasets.add_residue_is_paired_feature}
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
# TODO: Inherit from common config with default Transform pipeline
|
|
2
|
+
|
|
3
|
+
monomer_distillation:
|
|
4
|
+
dataset:
|
|
5
|
+
_target_: atomworks.ml.datasets.StructuralDatasetWrapper
|
|
6
|
+
save_failed_examples_to_dir: ${paths.data.failed_examples_dir}
|
|
7
|
+
|
|
8
|
+
# cif parser arguments
|
|
9
|
+
cif_parser_args:
|
|
10
|
+
cache_dir: null
|
|
11
|
+
load_from_cache: False
|
|
12
|
+
save_to_cache: False
|
|
13
|
+
|
|
14
|
+
# metadata parser
|
|
15
|
+
dataset_parser:
|
|
16
|
+
_target_: atomworks.ml.datasets.parsers.GenericDFParser
|
|
17
|
+
pn_unit_iid_colnames: null
|
|
18
|
+
|
|
19
|
+
# metadata dataset
|
|
20
|
+
dataset:
|
|
21
|
+
_target_: atomworks.ml.datasets.PandasDataset
|
|
22
|
+
name: af2fb_distillation
|
|
23
|
+
id_column: example_id
|
|
24
|
+
data: ${paths.data.monomer_distillation_parquet_dir}/af2_distillation_facebook.parquet
|
|
25
|
+
columns_to_load:
|
|
26
|
+
- example_id
|
|
27
|
+
- path
|
|
28
|
+
transform:
|
|
29
|
+
_target_: ${datasets.pipeline_target}
|
|
30
|
+
is_inference: False
|
|
31
|
+
protein_msa_dirs: [{"dir": "${paths.data.monomer_distillation_data_dir}/msa", "extension": ".a3m", "directory_depth": 2}]
|
|
32
|
+
rna_msa_dirs: []
|
|
33
|
+
n_recycles: ${datasets.n_recycles_train}
|
|
34
|
+
crop_size: ${datasets.crop_size}
|
|
35
|
+
n_msa: ${datasets.n_msa}
|
|
36
|
+
diffusion_batch_size: ${datasets.diffusion_batch_size_train}
|
|
37
|
+
max_atoms_in_crop: ${datasets.max_atoms_in_crop}
|
|
38
|
+
crop_contiguous_probability: 0.25
|
|
39
|
+
crop_spatial_probability: 0.75
|
|
40
|
+
b_factor_min: 70.0
|
|
41
|
+
run_confidence_head: ${datasets.run_confidence_head}
|
|
42
|
+
take_first_chiral_subordering: ${datasets.take_first_chiral_subordering}
|
|
43
|
+
use_element_for_atom_names_of_atomized_tokens: ${datasets.use_element_for_atom_names_of_atomized_tokens}
|
|
44
|
+
mirror_prob: ${datasets.mirror_prob}
|
|
45
|
+
atomization_prob: ${datasets.atomization_prob}
|
|
46
|
+
ligand_dropout_prob: ${datasets.ligand_dropout_prob}
|
|
47
|
+
p_unconditional: ${datasets.p_unconditional}
|
|
48
|
+
p_dropout_atom_level_embeddings: ${datasets.p_dropout_atom_level_embeddings}
|
|
49
|
+
add_residue_is_paired_feature: ${datasets.add_residue_is_paired_feature}
|