rc-foundry 0.1.4__py3-none-any.whl → 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (139) hide show
  1. foundry/version.py +2 -2
  2. {rc_foundry-0.1.4.dist-info → rc_foundry-0.1.6.dist-info}/METADATA +1 -1
  3. {rc_foundry-0.1.4.dist-info → rc_foundry-0.1.6.dist-info}/RECORD +139 -8
  4. rf3/configs/callbacks/default.yaml +5 -0
  5. rf3/configs/callbacks/dump_validation_structures.yaml +6 -0
  6. rf3/configs/callbacks/metrics_logging.yaml +10 -0
  7. rf3/configs/callbacks/train_logging.yaml +16 -0
  8. rf3/configs/dataloader/default.yaml +15 -0
  9. rf3/configs/datasets/base.yaml +31 -0
  10. rf3/configs/datasets/pdb_and_distillation.yaml +58 -0
  11. rf3/configs/datasets/pdb_only.yaml +17 -0
  12. rf3/configs/datasets/train/disorder_distillation.yaml +48 -0
  13. rf3/configs/datasets/train/domain_distillation.yaml +50 -0
  14. rf3/configs/datasets/train/monomer_distillation.yaml +49 -0
  15. rf3/configs/datasets/train/na_complex_distillation.yaml +50 -0
  16. rf3/configs/datasets/train/pdb/af3_weighted_sampling.yaml +8 -0
  17. rf3/configs/datasets/train/pdb/base.yaml +32 -0
  18. rf3/configs/datasets/train/pdb/plinder.yaml +54 -0
  19. rf3/configs/datasets/train/pdb/train_interface.yaml +51 -0
  20. rf3/configs/datasets/train/pdb/train_pn_unit.yaml +46 -0
  21. rf3/configs/datasets/train/rna_monomer_distillation.yaml +56 -0
  22. rf3/configs/datasets/val/af3_ab_set.yaml +11 -0
  23. rf3/configs/datasets/val/af3_validation.yaml +11 -0
  24. rf3/configs/datasets/val/base.yaml +32 -0
  25. rf3/configs/datasets/val/runs_and_poses.yaml +12 -0
  26. rf3/configs/debug/default.yaml +66 -0
  27. rf3/configs/debug/train_specific_examples.yaml +21 -0
  28. rf3/configs/experiment/pretrained/rf3.yaml +50 -0
  29. rf3/configs/experiment/pretrained/rf3_with_confidence.yaml +13 -0
  30. rf3/configs/experiment/quick-rf3-with-confidence.yaml +15 -0
  31. rf3/configs/experiment/quick-rf3.yaml +61 -0
  32. rf3/configs/hydra/default.yaml +18 -0
  33. rf3/configs/hydra/no_logging.yaml +7 -0
  34. rf3/configs/inference.yaml +7 -0
  35. rf3/configs/inference_engine/base.yaml +23 -0
  36. rf3/configs/inference_engine/rf3.yaml +33 -0
  37. rf3/configs/logger/csv.yaml +6 -0
  38. rf3/configs/logger/default.yaml +3 -0
  39. rf3/configs/logger/wandb.yaml +15 -0
  40. rf3/configs/model/components/ema.yaml +1 -0
  41. rf3/configs/model/components/rf3_net.yaml +177 -0
  42. rf3/configs/model/components/rf3_net_with_confidence_head.yaml +45 -0
  43. rf3/configs/model/optimizers/adam.yaml +5 -0
  44. rf3/configs/model/rf3.yaml +43 -0
  45. rf3/configs/model/rf3_with_confidence.yaml +7 -0
  46. rf3/configs/model/schedulers/af3.yaml +6 -0
  47. rf3/configs/paths/data/default.yaml +43 -0
  48. rf3/configs/paths/default.yaml +21 -0
  49. rf3/configs/train.yaml +42 -0
  50. rf3/configs/trainer/cpu.yaml +6 -0
  51. rf3/configs/trainer/ddp.yaml +5 -0
  52. rf3/configs/trainer/loss/losses/confidence_loss.yaml +29 -0
  53. rf3/configs/trainer/loss/losses/diffusion_loss.yaml +9 -0
  54. rf3/configs/trainer/loss/losses/distogram_loss.yaml +2 -0
  55. rf3/configs/trainer/loss/structure_prediction.yaml +4 -0
  56. rf3/configs/trainer/loss/structure_prediction_with_confidence.yaml +2 -0
  57. rf3/configs/trainer/metrics/structure_prediction.yaml +14 -0
  58. rf3/configs/trainer/rf3.yaml +20 -0
  59. rf3/configs/trainer/rf3_with_confidence.yaml +13 -0
  60. rf3/configs/validate.yaml +45 -0
  61. rfd3/cli.py +10 -4
  62. rfd3/configs/__init__.py +0 -0
  63. rfd3/configs/callbacks/design_callbacks.yaml +10 -0
  64. rfd3/configs/callbacks/metrics_logging.yaml +20 -0
  65. rfd3/configs/callbacks/train_logging.yaml +24 -0
  66. rfd3/configs/dataloader/default.yaml +15 -0
  67. rfd3/configs/dataloader/fast.yaml +11 -0
  68. rfd3/configs/datasets/conditions/dna_condition.yaml +3 -0
  69. rfd3/configs/datasets/conditions/island.yaml +28 -0
  70. rfd3/configs/datasets/conditions/ppi.yaml +2 -0
  71. rfd3/configs/datasets/conditions/sequence_design.yaml +17 -0
  72. rfd3/configs/datasets/conditions/tipatom.yaml +28 -0
  73. rfd3/configs/datasets/conditions/unconditional.yaml +21 -0
  74. rfd3/configs/datasets/design_base.yaml +97 -0
  75. rfd3/configs/datasets/train/pdb/af3_train_interface.yaml +46 -0
  76. rfd3/configs/datasets/train/pdb/af3_train_pn_unit.yaml +42 -0
  77. rfd3/configs/datasets/train/pdb/base.yaml +14 -0
  78. rfd3/configs/datasets/train/pdb/base_no_weights.yaml +19 -0
  79. rfd3/configs/datasets/train/pdb/base_transform_args.yaml +59 -0
  80. rfd3/configs/datasets/train/pdb/na_complex_distillation.yaml +20 -0
  81. rfd3/configs/datasets/train/pdb/pdb_base.yaml +11 -0
  82. rfd3/configs/datasets/train/pdb/rfd3_train_interface.yaml +22 -0
  83. rfd3/configs/datasets/train/pdb/rfd3_train_pn_unit.yaml +23 -0
  84. rfd3/configs/datasets/train/rfd3_monomer_distillation.yaml +38 -0
  85. rfd3/configs/datasets/val/bcov_ppi_easy_medium.yaml +9 -0
  86. rfd3/configs/datasets/val/design_validation_base.yaml +40 -0
  87. rfd3/configs/datasets/val/dna_binder_design5.yaml +9 -0
  88. rfd3/configs/datasets/val/dna_binder_long.yaml +13 -0
  89. rfd3/configs/datasets/val/dna_binder_short.yaml +13 -0
  90. rfd3/configs/datasets/val/indexed.yaml +9 -0
  91. rfd3/configs/datasets/val/mcsa_41.yaml +9 -0
  92. rfd3/configs/datasets/val/mcsa_41_short_rigid.yaml +10 -0
  93. rfd3/configs/datasets/val/ppi_inference.yaml +7 -0
  94. rfd3/configs/datasets/val/sm_binder_hbonds.yaml +13 -0
  95. rfd3/configs/datasets/val/sm_binder_hbonds_short.yaml +15 -0
  96. rfd3/configs/datasets/val/unconditional.yaml +9 -0
  97. rfd3/configs/datasets/val/unconditional_deep.yaml +9 -0
  98. rfd3/configs/datasets/val/unindexed.yaml +8 -0
  99. rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori.yaml +151 -0
  100. rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori_spoof_helical_bundle.yaml +7 -0
  101. rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori_varying_lengths.yaml +28 -0
  102. rfd3/configs/datasets/val/val_examples/bpem_ori_hb.yaml +212 -0
  103. rfd3/configs/debug/default.yaml +64 -0
  104. rfd3/configs/debug/train_specific_examples.yaml +21 -0
  105. rfd3/configs/dev.yaml +9 -0
  106. rfd3/configs/experiment/debug.yaml +14 -0
  107. rfd3/configs/experiment/pretrain.yaml +31 -0
  108. rfd3/configs/experiment/test-uncond.yaml +10 -0
  109. rfd3/configs/experiment/test-unindexed.yaml +21 -0
  110. rfd3/configs/hydra/default.yaml +18 -0
  111. rfd3/configs/hydra/no_logging.yaml +7 -0
  112. rfd3/configs/inference.yaml +9 -0
  113. rfd3/configs/inference_engine/base.yaml +15 -0
  114. rfd3/configs/inference_engine/dev.yaml +20 -0
  115. rfd3/configs/inference_engine/rfdiffusion3.yaml +65 -0
  116. rfd3/configs/logger/csv.yaml +6 -0
  117. rfd3/configs/logger/default.yaml +2 -0
  118. rfd3/configs/logger/wandb.yaml +15 -0
  119. rfd3/configs/model/components/ema.yaml +1 -0
  120. rfd3/configs/model/components/rfd3_net.yaml +131 -0
  121. rfd3/configs/model/optimizers/adam.yaml +5 -0
  122. rfd3/configs/model/rfd3_base.yaml +8 -0
  123. rfd3/configs/model/samplers/edm.yaml +21 -0
  124. rfd3/configs/model/samplers/symmetry.yaml +10 -0
  125. rfd3/configs/model/schedulers/af3.yaml +6 -0
  126. rfd3/configs/paths/data/default.yaml +18 -0
  127. rfd3/configs/paths/default.yaml +22 -0
  128. rfd3/configs/train.yaml +28 -0
  129. rfd3/configs/trainer/cpu.yaml +6 -0
  130. rfd3/configs/trainer/ddp.yaml +5 -0
  131. rfd3/configs/trainer/loss/losses/diffusion_loss.yaml +12 -0
  132. rfd3/configs/trainer/loss/losses/sequence_loss.yaml +3 -0
  133. rfd3/configs/trainer/metrics/design_metrics.yaml +22 -0
  134. rfd3/configs/trainer/rfd3_base.yaml +35 -0
  135. rfd3/configs/validate.yaml +34 -0
  136. rfd3/run_inference.py +3 -7
  137. {rc_foundry-0.1.4.dist-info → rc_foundry-0.1.6.dist-info}/WHEEL +0 -0
  138. {rc_foundry-0.1.4.dist-info → rc_foundry-0.1.6.dist-info}/entry_points.txt +0 -0
  139. {rc_foundry-0.1.4.dist-info → rc_foundry-0.1.6.dist-info}/licenses/LICENSE.md +0 -0
foundry/version.py CHANGED
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
28
28
  commit_id: COMMIT_ID
29
29
  __commit_id__: COMMIT_ID
30
30
 
31
- __version__ = version = '0.1.4'
32
- __version_tuple__ = version_tuple = (0, 1, 4)
31
+ __version__ = version = '0.1.6'
32
+ __version_tuple__ = version_tuple = (0, 1, 6)
33
33
 
34
34
  __commit_id__ = commit_id = None
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: rc-foundry
3
- Version: 0.1.4
3
+ Version: 0.1.6
4
4
  Summary: Shared utilities and training infrastructure for biomolecular structure prediction models.
5
5
  Author-email: Institute for Protein Design <contact@ipd.uw.edu>
6
6
  License: BSD 3-Clause License
@@ -1,7 +1,7 @@
1
1
  foundry/__init__.py,sha256=H8S1nl5v6YeW8ggn1jKy4GdtH7c-FGS-j7CqUCAEnAU,1926
2
2
  foundry/common.py,sha256=Aur8mH-CNmcUqSsw7VgaCQSW5sH1Bqf8Da91jzxPV1Y,3035
3
3
  foundry/constants.py,sha256=0n1wBKCvNuw3QaQehSbmsHYkIdaGn3tLeRFItBrdeHY,913
4
- foundry/version.py,sha256=rLCrf4heo25FJtBY-2Ap7ZuWW-5FS7sqTjsolIUuI5c,704
4
+ foundry/version.py,sha256=riGXiVTWXmtdoju9hVCWvTxpszEMAAIK0sZZWoLKlnU,704
5
5
  foundry/callbacks/__init__.py,sha256=VsRT1e4sqlJHPcTCsfupMEx82Iz-LoOAGPpwvf_OJeE,126
6
6
  foundry/callbacks/callback.py,sha256=xZBo_suP4bLrP6gl5uJPbaXm00DXigePa6dMeDxucgg,3890
7
7
  foundry/callbacks/health_logging.py,sha256=tEtkByOlaAA7nnelxb7PbM9_dcIgOsdbxCdQY3K5pMc,16664
@@ -117,10 +117,10 @@ rfd3/.gitignore,sha256=935nLWJz_oi5h-UjxP4L_ulsMpkbRIVsl0dgGCwTCbc,109
117
117
  rfd3/Makefile,sha256=_O87r1eIN7AmWWIqur3z0tLn1kgAPGEAGX2fcddarMs,2224
118
118
  rfd3/__init__.py,sha256=2Wto2IsUIj2lGag9m_gqgdCwBNl5p21-Xnr7W_RpU3c,348
119
119
  rfd3/callbacks.py,sha256=Zjt8RiaYWquoKOwRmC_wCUbRbov-V4zd2_73zjhgDHE,2783
120
- rfd3/cli.py,sha256=TZpZouXGmwAMFaH8hp4r3q9tbUi1xlcN8n_r8hO2q8c,1424
120
+ rfd3/cli.py,sha256=ka3K5H117fzDYIDXFpOpJV21w_XBrHYJZdFE0thsGBI,1644
121
121
  rfd3/constants.py,sha256=wLvDzrThpOrK8T3wGFNQeGrhAXOJQze8l3v_7pjIdMM,13141
122
122
  rfd3/engine.py,sha256=La_dB48Ewz0IdY1ocxvSWg-PXVAsySm0OGvwyz42lI8,20824
123
- rfd3/run_inference.py,sha256=dubMwEFkNPOq_yYf0ny37qvvEkRjNNPRFksZgmEFkUc,1520
123
+ rfd3/run_inference.py,sha256=ljzsCKEtrlfAvP0SDFPeQwTM3rV_X3ewHOhcRFVI37c,1258
124
124
  rfd3/train.py,sha256=rHswffIUhOae3_iYyvAiQ3jALoFuzrcRUgMlbJLinlI,7947
125
125
  rfd3/inference/datasets.py,sha256=u-2U7deHXu-iOs7doiKKynewP-NEyJfdORSTDzUSaQI,6538
126
126
  rfd3/inference/input_parsing.py,sha256=mk3HBvo7MPTFEET7NagCo5TSjb47w-hxUDoeQxUW_h4,45449
@@ -173,8 +173,139 @@ rfd3/transforms/virtual_atoms.py,sha256=UpmxzPPd5FaJigcRoxgLSHHrLLOqsCvZ5PPZfQSG
173
173
  rfd3/utils/inference.py,sha256=RQp5CCy6Z6uHVZ2Mx0zmmGluYEOrASke4bABtfRjpy0,26448
174
174
  rfd3/utils/io.py,sha256=wbdjUTQkDc3RCSM7gdogA-XOKR68HeQ-cfvyN4pP90w,9849
175
175
  rfd3/utils/vizualize.py,sha256=HPlczrA3zkOuxV5X05eOvy_Oga9e3cPnFUXOEP4RR_g,11046
176
- rc_foundry-0.1.4.dist-info/METADATA,sha256=hzcS1buvLzRRAv7rPRgKwYjeNDL_iTGyR6u8CRpL-Ic,10585
177
- rc_foundry-0.1.4.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
178
- rc_foundry-0.1.4.dist-info/entry_points.txt,sha256=BmiWCbWGtrd_lSOFMuCLBXyo84B7Nco-alj7hB0Yw9A,130
179
- rc_foundry-0.1.4.dist-info/licenses/LICENSE.md,sha256=NKtPCJ7QMysFmzeDg56ZfUStvgzbq5sOvRQv7_ddZOs,1533
180
- rc_foundry-0.1.4.dist-info/RECORD,,
176
+ rf3/configs/inference.yaml,sha256=JmEZdkAnbnOrX79lGS5xrYYho9aBFfVxfUp-8KjJV5I,309
177
+ rf3/configs/train.yaml,sha256=4KW2fKc9a_gjg8yMoQfOpfkC-nJ5mdQEfoikOKxbnKc,1573
178
+ rf3/configs/validate.yaml,sha256=3LkhXyneEuuH-ueFH9FyYY5cCDi1_0KoHNwEceuQPwI,1581
179
+ rf3/configs/callbacks/default.yaml,sha256=MkxOj7dMXh4jJRIE62gLjoOYecGuZLWiJrr780_nubA,89
180
+ rf3/configs/callbacks/dump_validation_structures.yaml,sha256=EYEibR25v7KZJtadvCFLFMEPTf0FvKFNW2ocx4wm57A,259
181
+ rf3/configs/callbacks/metrics_logging.yaml,sha256=MNm4OpvOHxvDJofVUA27NVaiDkp1NzqOYCzl6l_7ceo,432
182
+ rf3/configs/callbacks/train_logging.yaml,sha256=ekSMSl1Kijxx8B8dDxvy5Zg-4Ej79O3vf7di31Rnt48,505
183
+ rf3/configs/dataloader/default.yaml,sha256=onP9QDyqTymI8686ZA8hGY_hRxIaosLEYxqHw_WhUdw,404
184
+ rf3/configs/datasets/base.yaml,sha256=j6RwP1Q9dsv2qKBH9QK_22_b2NO_JRruWyqzZopQYNU,557
185
+ rf3/configs/datasets/pdb_and_distillation.yaml,sha256=I9IFZee3EWHf5nzXsg6XFb6cTYOuMMM62fiFSOiV67A,2032
186
+ rf3/configs/datasets/pdb_only.yaml,sha256=FRjrtbInhlalmvmCXynXDauJ7Eq9l_dt9JLIfW27W4A,489
187
+ rf3/configs/datasets/train/disorder_distillation.yaml,sha256=Uyf1braO-PhEmyOKokqZhsLSmqc70LefcIZBdLuGsHo,1877
188
+ rf3/configs/datasets/train/domain_distillation.yaml,sha256=BNknJl7f9H3c0_4BQiffaod9LMh3Bg-LAgTtayGwxvo,1843
189
+ rf3/configs/datasets/train/monomer_distillation.yaml,sha256=JZ5ybnlWaDisvDqM25xAbHoNPpoCSMY_B7FB4K3MSAs,1989
190
+ rf3/configs/datasets/train/na_complex_distillation.yaml,sha256=v1zF29BdTqPapYfpp49alwR_NpHGVPaREKJym_kctn0,1996
191
+ rf3/configs/datasets/train/rna_monomer_distillation.yaml,sha256=lyK-n_Q-8aUPnH4AP4SJNGxmKhwlGW4QdviBh3RdT0k,2110
192
+ rf3/configs/datasets/train/pdb/af3_weighted_sampling.yaml,sha256=ODhH4ASK49JXpVOIe78jR5tFMBIJNVSO53VNuNzs680,286
193
+ rf3/configs/datasets/train/pdb/base.yaml,sha256=D2mQENj8Gc_p2ILxEAClV2xUd1klXYCCvNmLfsO5CNs,1485
194
+ rf3/configs/datasets/train/pdb/plinder.yaml,sha256=ScIrW7zmH6OwB8j2EZK0q0gtnYtDZErvu9vB54_G1KE,1932
195
+ rf3/configs/datasets/train/pdb/train_interface.yaml,sha256=0BLZJg-i4QyvIYhR3Zb7oSVYGtFs7Ve-vp8ey02eSl8,1664
196
+ rf3/configs/datasets/train/pdb/train_pn_unit.yaml,sha256=f67V-_sFrhaPEF4r_operKRUUUqvVE7shRtVJFE91Uk,1388
197
+ rf3/configs/datasets/val/af3_ab_set.yaml,sha256=PSIgfq-KQ62nkc6DEhNsthFVpoteaugHn7S-oSVMlDs,332
198
+ rf3/configs/datasets/val/af3_validation.yaml,sha256=Nq83pq2upr8NT4U7YnTszWJfXQcvtV82V-hwht1QbOg,327
199
+ rf3/configs/datasets/val/base.yaml,sha256=Ks5cXX_r-UI_h8rnVDa9t51Onl_3MZLLmOkZLXiQxAQ,1482
200
+ rf3/configs/datasets/val/runs_and_poses.yaml,sha256=dXNBuatMCJTE0qOBUMNklS6BdprA3pfYEt7Bjd5VkAQ,394
201
+ rf3/configs/debug/default.yaml,sha256=sv0TQJ1SpAy7WJv-q49--1F-VgVEB54GtV_ngZ_XxFA,1751
202
+ rf3/configs/debug/train_specific_examples.yaml,sha256=r97RIXKFxUJDpqC1pfhAU_k9x7RqhyRHOIzILMxAbzw,506
203
+ rf3/configs/experiment/quick-rf3-with-confidence.yaml,sha256=nzcJrVDyBoVSQ3O_9xL7SDYCuOjKBuCBprws5YGf_6c,386
204
+ rf3/configs/experiment/quick-rf3.yaml,sha256=Zt2v29GMl6xtQcb72Ha4xgRGRsvb3dKafkFVVMCvz8E,1789
205
+ rf3/configs/experiment/pretrained/rf3.yaml,sha256=LcdtFcCQIySN78ETpko1FedWk_7Zhz64-BFx3W7D-Zc,2164
206
+ rf3/configs/experiment/pretrained/rf3_with_confidence.yaml,sha256=IOFiS9WaV0-dg_0GydbPm3IO9QhkJ8QXXSmCmf8LqgM,326
207
+ rf3/configs/hydra/default.yaml,sha256=SYDTSU8bAw20QssrtTi7lptiBD5H3XNyzApsyy0brps,614
208
+ rf3/configs/hydra/no_logging.yaml,sha256=MUXDFcw-QwaRPz9HcE-1tdZwbNha1mexTe31G-Zt9_w,120
209
+ rf3/configs/inference_engine/base.yaml,sha256=wloIgZbe2UcrT2G7c1_kHmJUsYystRVeO90GtdT_8Mw,477
210
+ rf3/configs/inference_engine/rf3.yaml,sha256=vUGo_BVCaMcyRPHfjI1QXZS8jJyyrintrmix0dfKySw,657
211
+ rf3/configs/logger/csv.yaml,sha256=DtcywAIS4OxLXP2QxSEvqdrjhMpT6xHiGspoYw5qkus,245
212
+ rf3/configs/logger/default.yaml,sha256=kOdrsVdgMwDP5oazTgM-6mdtqxCY9FI31VL4uk_4mI4,27
213
+ rf3/configs/logger/wandb.yaml,sha256=mOIxaFurBo1XHJsI7Y-Yx-JZVWkIMMvIJtw5lO8kAqw,670
214
+ rf3/configs/model/rf3.yaml,sha256=Sx7eU2_B-aoX8uJHhy3xN_HifJ-NC8dthf-jaRLMgTY,1862
215
+ rf3/configs/model/rf3_with_confidence.yaml,sha256=7ajtluhRYmUXY4Os18354Cgq2hbWpO_cNcX9ZkdDVqI,126
216
+ rf3/configs/model/components/ema.yaml,sha256=AIzf4RZLKP8AcfaxdvZBS1rFw3AlSo431rmpMUBbFtw,24
217
+ rf3/configs/model/components/rf3_net.yaml,sha256=sI-Ty58cLIoXYFhSZibj6GniwcUQfzG7HRDuD5z_2Pw,4313
218
+ rf3/configs/model/components/rf3_net_with_confidence_head.yaml,sha256=fn3XoEMZzsKfEk1iHoo-TT4c6v00Ahuy7EOCqkkMBOQ,1326
219
+ rf3/configs/model/optimizers/adam.yaml,sha256=cTRNo4_4lNgLv0b329v-KiC_MCQtTVVTxeer5Au_FIM,145
220
+ rf3/configs/model/schedulers/af3.yaml,sha256=xEtRb--KPjg_5pW_IJvN9AHWVqCtOM4QOnXlMH2KrEg,149
221
+ rf3/configs/paths/default.yaml,sha256=tvlIY1vNcthP-ogUteJ_kFEgXXQ0FJj5HXBYOgmMmZ4,1016
222
+ rf3/configs/paths/data/default.yaml,sha256=qTPphktwF77RrgBkT0P-CDZeqlTFnTe6Ql-Q5cupx60,1539
223
+ rf3/configs/trainer/cpu.yaml,sha256=J1WbK2SQ_VMoEOOqv0XTg0FYKPaec1TNySvWklMaE4k,68
224
+ rf3/configs/trainer/ddp.yaml,sha256=uClrdTzEMNxgq4IQhMgm8okC16wUS2I5i3rKnm5SktU,65
225
+ rf3/configs/trainer/rf3.yaml,sha256=WBjnaYofmEV7OfJisvFGN6y_UJGNEskAdmbV9oO4ICI,500
226
+ rf3/configs/trainer/rf3_with_confidence.yaml,sha256=meDTw0S2nTcuAj5tefGwJteo2715x6kO143FMd3db14,346
227
+ rf3/configs/trainer/loss/structure_prediction.yaml,sha256=XPH2RcIo6m1BDrIoBvd2xBgJ0c4KEOnbWc5oEcBKVAM,164
228
+ rf3/configs/trainer/loss/structure_prediction_with_confidence.yaml,sha256=OZxtrQIqYGDFlhp3-1fFVZ2Ek6QRMP74ImsrNOJcelo,52
229
+ rf3/configs/trainer/loss/losses/confidence_loss.yaml,sha256=c9xI7Q32Ddl5R_GpoWq4RS7AxiJf4hsnGeMZxWs9mBU,501
230
+ rf3/configs/trainer/loss/losses/diffusion_loss.yaml,sha256=ktBy3bUjslklPuRhGWuHbl1gXccNaMUg5rmn0RUUFPs,221
231
+ rf3/configs/trainer/loss/losses/distogram_loss.yaml,sha256=-dZWPeQ1mWwi9pUtB7xJW57qKgUNMQ4vao1PXo07RC0,56
232
+ rf3/configs/trainer/metrics/structure_prediction.yaml,sha256=xWp2DqoqlofbgRLMNi0LKuAaDSCbW1tAEuEk83fmc0w,439
233
+ rfd3/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
234
+ rfd3/configs/dev.yaml,sha256=Y3PiHaCRIdRXf2Ea2aUDJk6hFxyNEljJf-O2VKQRNH0,151
235
+ rfd3/configs/inference.yaml,sha256=tUo5-G1-rsCU8RLclSP0ZKu5-O6JC5ofgI6bHb5kwmw,119
236
+ rfd3/configs/train.yaml,sha256=SbP5136VjJH_i2fc_4b0U0ZOqz3jeby1YORXSQtiFk0,450
237
+ rfd3/configs/validate.yaml,sha256=TSToLqzuP8hecj0K6TAfCywtpTZI1u1-THsX0jxCG1s,537
238
+ rfd3/configs/callbacks/design_callbacks.yaml,sha256=JWgE1-v_spzUy7JH3_6dHct_-oX4DevozRH-pM5Ds2k,196
239
+ rfd3/configs/callbacks/metrics_logging.yaml,sha256=pZPePSYGKEV560e3WatuLvJiHlz1CIGFOaOWoRmBh8g,694
240
+ rfd3/configs/callbacks/train_logging.yaml,sha256=Z25GVLTHo1HvQUjnBdayaozmNww8UhAh9DczStYaZig,1050
241
+ rfd3/configs/dataloader/default.yaml,sha256=gko2tj9F4IBbXrJIPBgkydjzIm74EiYb-xQV_a8WPkg,405
242
+ rfd3/configs/dataloader/fast.yaml,sha256=XxuFdH48HbHEbwRDhyMCCUjuDIuF2GFVMV_HiEbH9yg,162
243
+ rfd3/configs/datasets/design_base.yaml,sha256=KM1fnbF2TMEl_PQz1hhTeE1pirC067hDbUzjIGiLUGk,3067
244
+ rfd3/configs/datasets/conditions/dna_condition.yaml,sha256=AEOLioe14IAqGcvuJzQ1WWLx_6zxm8TkySGsnMYTz6M,108
245
+ rfd3/configs/datasets/conditions/island.yaml,sha256=nT-bCzaMyYeKBnobCdazOZHpeYB3dpF81vx5bdGE2Ro,1170
246
+ rfd3/configs/datasets/conditions/ppi.yaml,sha256=b9JvNVc0Dtd9GnCQFj5dm_-jQAxCM5DnVFX40zbEUEI,73
247
+ rfd3/configs/datasets/conditions/sequence_design.yaml,sha256=D1K6WOysmSAQ4LogltUBEp9hGXSUNsoHZuFk3MDnayY,299
248
+ rfd3/configs/datasets/conditions/tipatom.yaml,sha256=0010o7UUL-l75qI8HCjC_tdBXFWysm2dgVXzE7bQyZ0,650
249
+ rfd3/configs/datasets/conditions/unconditional.yaml,sha256=z1eVHylswLyludXWFs1AMt3mTMu3EbAUHrP8J3XBsRU,446
250
+ rfd3/configs/datasets/train/rfd3_monomer_distillation.yaml,sha256=1f61uFeRB8OD6sifFuIKFov8D7PcHpqRT4Z-M5EzO4w,1207
251
+ rfd3/configs/datasets/train/pdb/af3_train_interface.yaml,sha256=mwbdGJQ9SXc8WvO3qqSWzS--K4rvbFsM0MR371FUrr0,1552
252
+ rfd3/configs/datasets/train/pdb/af3_train_pn_unit.yaml,sha256=DPoEhLlyBu0RdBkkJeWB8pkOV4z0DBc6XmclLgww9II,1324
253
+ rfd3/configs/datasets/train/pdb/base.yaml,sha256=2VUEAKADyvjJmWP4FeOJwRat9r6F3_GXuyGYjvMvArw,291
254
+ rfd3/configs/datasets/train/pdb/base_no_weights.yaml,sha256=8HchN7DqYESBK520vShdg7xidWBSogGRAxfaxa5pKdE,554
255
+ rfd3/configs/datasets/train/pdb/base_transform_args.yaml,sha256=Sb8N60ONcz4Z5DaFhCM-lR0BXf3QAnQ1t-TNSTXoEd4,2848
256
+ rfd3/configs/datasets/train/pdb/na_complex_distillation.yaml,sha256=BQXn3w4bhQHO35z-O-sCMMcuG6w07x-8l0tFNEPYes0,456
257
+ rfd3/configs/datasets/train/pdb/pdb_base.yaml,sha256=5PAHphvkt5tbg9Lao35LuX6flvFCXjLkpG6ICBYoLD0,231
258
+ rfd3/configs/datasets/train/pdb/rfd3_train_interface.yaml,sha256=8z3_V-a7m-iV4-3dEugqFlVXYEnqpyJYBdViAfjDHN8,924
259
+ rfd3/configs/datasets/train/pdb/rfd3_train_pn_unit.yaml,sha256=5qAXUgj9ZnicCv8RtFnixRF6acE6BobtNQ_7vBeLM7E,784
260
+ rfd3/configs/datasets/val/bcov_ppi_easy_medium.yaml,sha256=UUWQ8JKdbLv_cgxJwhM8d2skjsxeM1E67BKlSmN8pJw,165
261
+ rfd3/configs/datasets/val/design_validation_base.yaml,sha256=YTvIXIEZIFjyzAJnzFtW23Hq46B7FqzJ5XanPFsCwic,2048
262
+ rfd3/configs/datasets/val/dna_binder_design5.yaml,sha256=Bamuz8wPxHTQWDW1zxPVwL3ZaUKeypUZEIboIVYPAos,166
263
+ rfd3/configs/datasets/val/dna_binder_long.yaml,sha256=9ffUPaB9dt7FufiWOKUmcBJ1K2k_xc-Dfw5cq-qmdWE,215
264
+ rfd3/configs/datasets/val/dna_binder_short.yaml,sha256=s0etIL8SkiHNRYmB0O4jRIYbqEqGWwxl6dhJGqK24tE,229
265
+ rfd3/configs/datasets/val/indexed.yaml,sha256=rYRjzyyMGiwi3rqjWAj3JtUymz13fA7HvrPFgdgPO1E,160
266
+ rfd3/configs/datasets/val/mcsa_41.yaml,sha256=QP6zqvnsacBwQAvftsZskVps5FYaAcdBuOEvkJ8Ikz8,163
267
+ rfd3/configs/datasets/val/mcsa_41_short_rigid.yaml,sha256=-bgbsC9pQFhi0_xBV10KpvaWdptSL9N126bZJBY8PZ0,171
268
+ rfd3/configs/datasets/val/ppi_inference.yaml,sha256=pDILIqiEZ_GfxPQxkP_8WfMYXJQ9oPw_jitlh8p_xio,165
269
+ rfd3/configs/datasets/val/sm_binder_hbonds.yaml,sha256=ZqfUzq5ehXdMdKA1CWXWfnPcKwDCPUCFvg07LE10u1g,235
270
+ rfd3/configs/datasets/val/sm_binder_hbonds_short.yaml,sha256=fnthrBl89SgdXJgPYCxPtZgddRSOJ1NA7BycmWpgaHY,275
271
+ rfd3/configs/datasets/val/unconditional.yaml,sha256=oN0h7G8lOTruXx4AC0-9lZMM0Sy_Hes-mcssIZ3KC-U,243
272
+ rfd3/configs/datasets/val/unconditional_deep.yaml,sha256=-b0k2glQUPtin-6hE4QWxBrk-L05FwuD9aC5riVfd1w,174
273
+ rfd3/configs/datasets/val/unindexed.yaml,sha256=cr4CQFvsVAKI5-Q3mUDOz-q0uzSH7kk7xQrRqQCVOIw,137
274
+ rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori.yaml,sha256=WXyHVwtnw6biLGok361sxwVAPxQFNt0_SF1RJkhtBAs,2929
275
+ rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori_spoof_helical_bundle.yaml,sha256=LMktwyMA-JK_2per1GK5LFIILJOd-bxvnUmsNTti7AE,142
276
+ rfd3/configs/datasets/val/val_examples/bcov_ppi_easy_medium_with_ori_varying_lengths.yaml,sha256=jDvJEMu3Kaz-nUKcYczhx1xaR2idhnZ2Sk9BmpocBRs,471
277
+ rfd3/configs/datasets/val/val_examples/bpem_ori_hb.yaml,sha256=OTx9ax0jGhQ-K9rq1ewQqvQydgYNyumD7oG0VzIN15g,2850
278
+ rfd3/configs/debug/default.yaml,sha256=VnF0ETg0Aa_0p6oUAisDpV2Alh2_0VPNu0b3SVHkagI,1649
279
+ rfd3/configs/debug/train_specific_examples.yaml,sha256=foOOrGSAYgV7aHTPYw_r2TqdUVzXgLAU12227Hb6eK8,449
280
+ rfd3/configs/experiment/debug.yaml,sha256=yvA7U6pr3hyGcoVZ4KfbrdpZfG4Vf7gDLyAP7-gavvU,169
281
+ rfd3/configs/experiment/pretrain.yaml,sha256=-Y-HerSE9r3b-1RUIQX6i0WxUjBRvdKQXcBU4s6Mocg,731
282
+ rfd3/configs/experiment/test-uncond.yaml,sha256=pq_MdeV2h1xUOHuLayOX0F0Vk6Ximxng0Vn8-0MrE1g,150
283
+ rfd3/configs/experiment/test-unindexed.yaml,sha256=XTC7YC5dX9tTXzs44YB5ZgNMO8Jer63OM97VFYeo_sA,397
284
+ rfd3/configs/hydra/default.yaml,sha256=SYDTSU8bAw20QssrtTi7lptiBD5H3XNyzApsyy0brps,614
285
+ rfd3/configs/hydra/no_logging.yaml,sha256=MUXDFcw-QwaRPz9HcE-1tdZwbNha1mexTe31G-Zt9_w,120
286
+ rfd3/configs/inference_engine/base.yaml,sha256=ekP5U7bAALpeJGpwyj1v0N5LiEtptl5loRCtM8FRzRM,246
287
+ rfd3/configs/inference_engine/dev.yaml,sha256=-2snClOTwj5TQt7jnwSrI4pzAiI4nFulXKJflmgIyUw,304
288
+ rfd3/configs/inference_engine/rfdiffusion3.yaml,sha256=h2e9U9RFCcvXjKAJ6U8puj-8O-U57ZxeZLA0HLB2txA,2161
289
+ rfd3/configs/logger/csv.yaml,sha256=DtcywAIS4OxLXP2QxSEvqdrjhMpT6xHiGspoYw5qkus,245
290
+ rfd3/configs/logger/default.yaml,sha256=pSyHyxT-J_T-g4_6TtD2yzN3rzxgY6rOG_Vh4RjZeFY,17
291
+ rfd3/configs/logger/wandb.yaml,sha256=RhCnFtO0hNc3R75ts417l5ICZeGm74lOj9Bfe7ZvRNA,652
292
+ rfd3/configs/model/rfd3_base.yaml,sha256=i97UJe3_5ClSXSCqFzbkGOaSGKux7L3kmuahQkjPvCY,174
293
+ rfd3/configs/model/components/ema.yaml,sha256=AIzf4RZLKP8AcfaxdvZBS1rFw3AlSo431rmpMUBbFtw,24
294
+ rfd3/configs/model/components/rfd3_net.yaml,sha256=95FF4U7aWmLCoHvyxsRoE74n-bxTPD6KlAhPKNemVH4,3275
295
+ rfd3/configs/model/optimizers/adam.yaml,sha256=cTRNo4_4lNgLv0b329v-KiC_MCQtTVVTxeer5Au_FIM,145
296
+ rfd3/configs/model/samplers/edm.yaml,sha256=QycHAIrfhRgx0mJygTOs56FT93tGCWTGxrQSKBOA7Mc,483
297
+ rfd3/configs/model/samplers/symmetry.yaml,sha256=BZZOIhk2ndAvIntf-16nnqCuOW43iWTB7iDU-RsxOcc,214
298
+ rfd3/configs/model/schedulers/af3.yaml,sha256=xEtRb--KPjg_5pW_IJvN9AHWVqCtOM4QOnXlMH2KrEg,149
299
+ rfd3/configs/paths/default.yaml,sha256=bjB04SNu_5E6W_v4mRBjwce0xmdKwO5wsVf4gfaRl0Y,1045
300
+ rfd3/configs/paths/data/default.yaml,sha256=jfs1dbbcOqHja4_6lXheyRg4t0YExqVn2w0rZEWL6XE,788
301
+ rfd3/configs/trainer/cpu.yaml,sha256=rJf5LHf6x5fN5EKg8mFEn2SwfGW5dV1JdYaHqWMfpXc,74
302
+ rfd3/configs/trainer/ddp.yaml,sha256=uClrdTzEMNxgq4IQhMgm8okC16wUS2I5i3rKnm5SktU,65
303
+ rfd3/configs/trainer/rfd3_base.yaml,sha256=R3lZxdyjUirjlLU31qWlnZgHaz4GcWTGGIz4fUl7AyM,1016
304
+ rfd3/configs/trainer/loss/losses/diffusion_loss.yaml,sha256=FE4FCEfurE0ekwZ4YfS6wCvPSNqxClwg_kc73cPql5Y,323
305
+ rfd3/configs/trainer/loss/losses/sequence_loss.yaml,sha256=kezbQcqwAZ0VKQPUBr2MsNr9DcDL3ENIP1i-j7h-6Co,64
306
+ rfd3/configs/trainer/metrics/design_metrics.yaml,sha256=xVDpClhHqSHvsf-8StL26z51Vn-iuWMDG9KMB-kqOI0,719
307
+ rc_foundry-0.1.6.dist-info/METADATA,sha256=EEOkAi2nABzo70kEP-n9t5aXZ8a4Gqr5wYZ2mjIBqp4,10585
308
+ rc_foundry-0.1.6.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
309
+ rc_foundry-0.1.6.dist-info/entry_points.txt,sha256=BmiWCbWGtrd_lSOFMuCLBXyo84B7Nco-alj7hB0Yw9A,130
310
+ rc_foundry-0.1.6.dist-info/licenses/LICENSE.md,sha256=NKtPCJ7QMysFmzeDg56ZfUStvgzbq5sOvRQv7_ddZOs,1533
311
+ rc_foundry-0.1.6.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ defaults:
2
+ - train_logging
3
+ - metrics_logging
4
+ - dump_validation_structures
5
+ - _self_
@@ -0,0 +1,6 @@
1
+ dump_validation_structures_callback:
2
+ _target_: rf3.callbacks.dump_validation_structures.DumpValidationStructuresCallback
3
+ save_dir: ${paths.output_dir}/val_structures
4
+ dump_predictions: True
5
+ one_model_per_file: False
6
+ dump_trajectories: False
@@ -0,0 +1,10 @@
1
+ store_validation_metrics_in_df_callback:
2
+ _target_: rf3.callbacks.metrics_logging.StoreValidationMetricsInDFCallback
3
+ save_dir: ${paths.output_dir}/val_metrics
4
+ metrics_to_save: "all"
5
+
6
+ log_af3_validation_metrics_callback:
7
+ _target_: rf3.callbacks.metrics_logging.LogAF3ValidationMetricsCallback
8
+ # Only logs if present in the metric output dictionary
9
+ # Must be subset of metrics_to_save
10
+ metrics_to_log: "all"
@@ -0,0 +1,16 @@
1
+ log_af3_training_losses_callback:
2
+ _target_: foundry.callbacks.train_logging.LogAF3TrainingLossesCallback
3
+ log_every_n: 10
4
+ log_full_batch_losses: true
5
+
6
+ log_learning_rate_callback:
7
+ _target_: foundry.callbacks.train_logging.LogLearningRateCallback
8
+ log_every_n: 10
9
+
10
+ log_model_parameters_callback:
11
+ _target_: foundry.callbacks.train_logging.LogModelParametersCallback
12
+
13
+ log_dataset_sampling_ratios_callback:
14
+ _target_: foundry.callbacks.train_logging.LogDatasetSamplingRatiosCallback
15
+
16
+
@@ -0,0 +1,15 @@
1
+ train:
2
+ dataloader_params:
3
+ # These parameters will be unpacked as kwargs for the DataLoader
4
+ batch_size: 1
5
+ num_workers: 2
6
+ prefetch_factor: 3
7
+ n_fallback_retries: 4
8
+
9
+ val:
10
+ dataloader_params:
11
+ # These parameters will be unpacked as kwargs for the DataLoader
12
+ batch_size: 1
13
+ num_workers: 2
14
+ prefetch_factor: 3
15
+ n_fallback_retries: 0 # Disable fallback retries for validation
@@ -0,0 +1,31 @@
1
+ # Base Transform defaults
2
+ diffusion_batch_size_train: 48
3
+ diffusion_batch_size_inference: 5
4
+
5
+ n_recycles_train: 4
6
+ n_recycles_validation: 10
7
+
8
+ run_confidence_head: false
9
+
10
+ # Conditioning
11
+ p_unconditional: 0.9
12
+
13
+ # Embeddings
14
+ p_dropout_atom_level_embeddings: 0.5
15
+
16
+ n_msa: 1024
17
+ crop_size: 384
18
+ max_atoms_in_crop: 5000
19
+
20
+ key_to_balance: n_tokens_total
21
+
22
+ take_first_chiral_subordering: false
23
+ use_element_for_atom_names_of_atomized_tokens: true
24
+ mirror_prob: 0.02
25
+ atomization_prob: 0.02
26
+ ligand_dropout_prob: 0.0
27
+
28
+ add_residue_is_paired_feature: true
29
+
30
+ add_cyclic_bonds: true
31
+
@@ -0,0 +1,58 @@
1
+ # AF3 dataset configuration with monomer distillation
2
+
3
+ defaults:
4
+ - base
5
+ # The @ symbol specifies the tree under which the item will be attached to the config
6
+ - train/pdb/train_interface@train.pdb.sub_datasets.interface
7
+ - train/pdb/train_pn_unit@train.pdb.sub_datasets.pn_unit
8
+ - train:
9
+ - monomer_distillation
10
+ - na_complex_distillation
11
+ - disorder_distillation
12
+ # - domain_distillation
13
+ # - rna_monomer_distillation
14
+ - val/af3_validation@val.af3_validation
15
+ - val/af3_validation@val.quick_af3_validation_with_templating
16
+ - _self_
17
+
18
+ # Dataloading pipeline to use
19
+ pipeline_target: rf3.data.pipelines.build_af3_transform_pipeline
20
+
21
+ # Dataset weighting
22
+ train:
23
+ pdb:
24
+ probability: 0.50
25
+ monomer_distillation:
26
+ probability: 0.46
27
+ na_complex_distillation:
28
+ probability: 0.02
29
+ disorder_distillation:
30
+ probability: 0.02
31
+ # multidomain_distillation:
32
+ # probability: 0.06
33
+ # rna_monomer_distillation:
34
+ # probability: 0.04
35
+
36
+ val:
37
+ quick_af3_validation_with_templating:
38
+ dataset:
39
+ dataset:
40
+ filters:
41
+ # Only score examples with protein-ligand interfaces
42
+ - "interfaces_to_score.str.contains('protein-ligand')"
43
+ # Small examples only - very fast
44
+ - "n_tokens_total < 400"
45
+ transform:
46
+ # +-- Conditioning --+
47
+ p_unconditional: 0.0 # Always show conditioning
48
+ # (Templates)
49
+ template_noise_scales:
50
+ not_atomized: 1e-4 # No noise on polymer atoms (epsilon to avoid division by zero)
51
+ atomized: 1e-4 # No noise on ligand atoms (epsilon to avoid division by zero)
52
+ allowed_chain_types_for_conditioning:
53
+ _target_: atomworks.enums.ChainType.get_all_types
54
+ p_condition_per_token: 1.0 # Always condition
55
+ p_provide_inter_molecule_distances: 0.0 # No inter-chain distances
56
+ # (Reference conformer)
57
+ p_give_non_polymer_ref_conf: 1.0 # Always give non-polymer reference conformers
58
+ p_give_polymer_ref_conf: 1.0 # Always give polymer reference conformers
@@ -0,0 +1,17 @@
1
+ # AF3 dataset configuration with monomer distillation
2
+
3
+ defaults:
4
+ - base
5
+ # The @ symbol specifies the tree under which the item will be attached to the config
6
+ - train/pdb/train_interface@train.pdb.sub_datasets.interface
7
+ - train/pdb/train_pn_unit@train.pdb.sub_datasets.pn_unit
8
+ - val/af3_validation@val.af3_validation
9
+ - _self_
10
+
11
+ # Dataloading pipeline to use
12
+ pipeline_target: rf3.data.pipelines.build_af3_transform_pipeline
13
+
14
+ # Dataset weighting
15
+ train:
16
+ pdb:
17
+ probability: 1.0
@@ -0,0 +1,48 @@
1
+ # TODO: Inherit from common config with default Transform pipeline
2
+
3
+ disorder_distillation:
4
+ dataset:
5
+ _target_: atomworks.ml.datasets.StructuralDatasetWrapper
6
+ save_failed_examples_to_dir: null
7
+
8
+ # cif parser arguments
9
+ cif_parser_args:
10
+ cache_dir: null
11
+ load_from_cache: False
12
+ save_to_cache: False
13
+
14
+ # metadata parser
15
+ dataset_parser:
16
+ _target_: atomworks.ml.datasets.parsers.GenericDFParser
17
+ pn_unit_iid_colnames: null
18
+
19
+ # metadata dataset
20
+ dataset:
21
+ _target_: atomworks.ml.datasets.PandasDataset
22
+ name: pdb_diso_distillation
23
+ id_column: example_id
24
+ data: ${paths.data.disorder_distill_parquet_dir}/disorderDistillation.csv
25
+ columns_to_load:
26
+ - example_id
27
+ - path
28
+ transform:
29
+ _target_: ${datasets.pipeline_target}
30
+ is_inference: False
31
+ protein_msa_dirs: ${paths.data.protein_msa_dirs}
32
+ rna_msa_dirs: ${paths.data.rna_msa_dirs}
33
+ n_recycles: ${datasets.n_recycles_train}
34
+ crop_size: ${datasets.crop_size}
35
+ n_msa: ${datasets.n_msa}
36
+ diffusion_batch_size: ${datasets.diffusion_batch_size_train}
37
+ max_atoms_in_crop: ${datasets.max_atoms_in_crop}
38
+ crop_contiguous_probability: 0.25
39
+ crop_spatial_probability: 0.75
40
+ run_confidence_head: ${datasets.run_confidence_head}
41
+ take_first_chiral_subordering: ${datasets.take_first_chiral_subordering}
42
+ use_element_for_atom_names_of_atomized_tokens: ${datasets.use_element_for_atom_names_of_atomized_tokens}
43
+ mirror_prob: ${datasets.mirror_prob}
44
+ atomization_prob: ${datasets.atomization_prob}
45
+ ligand_dropout_prob: ${datasets.ligand_dropout_prob}
46
+ p_unconditional: ${datasets.p_unconditional}
47
+ p_dropout_atom_level_embeddings: ${datasets.p_dropout_atom_level_embeddings}
48
+ add_residue_is_paired_feature: ${datasets.add_residue_is_paired_feature}
@@ -0,0 +1,50 @@
1
+ # TODO: Inherit from common config with default Transform pipeline
2
+
3
+ multidomain_distillation:
4
+ dataset:
5
+ _target_: rf3.data.paired_msa.MultiInputDatasetWrapper
6
+ save_failed_examples_to_dir: null
7
+
8
+ # cif parser
9
+ cif_parser_args:
10
+ #assume_residues_all_resolved: true
11
+ cache_dir: null
12
+ load_from_cache: false
13
+ save_to_cache: false
14
+
15
+ # metadata parser
16
+ dataset_parser:
17
+ _target_: rf3.data.paired_msa.MultidomainDFParser
18
+
19
+ # metadata dataset
20
+ dataset:
21
+ _target_: atomworks.ml.datasets.PandasDataset
22
+ name: multidomain_distillation
23
+ id_column: example_id
24
+ data: /projects/ml/datahub/dfs/domain_domain/domain_domain_dataset.DIGS.parquet
25
+ columns_to_load:
26
+ - example_id
27
+ - pdb_path
28
+ - msa_path
29
+ transform:
30
+ _target_: ${datasets.pipeline_target}
31
+ is_inference: False
32
+ input_contains_explicit_msa: True
33
+ protein_msa_dirs: []
34
+ rna_msa_dirs: []
35
+ n_recycles: ${datasets.n_recycles_train}
36
+ crop_size: ${datasets.crop_size}
37
+ n_msa: ${datasets.n_msa}
38
+ diffusion_batch_size: ${datasets.diffusion_batch_size_train}
39
+ max_atoms_in_crop: ${datasets.max_atoms_in_crop}
40
+ crop_contiguous_probability: 0.25
41
+ crop_spatial_probability: 0.75
42
+ run_confidence_head: ${datasets.run_confidence_head}
43
+ take_first_chiral_subordering: ${datasets.take_first_chiral_subordering}
44
+ use_element_for_atom_names_of_atomized_tokens: ${datasets.use_element_for_atom_names_of_atomized_tokens}
45
+ mirror_prob: 0.0
46
+ atomization_prob: ${datasets.atomization_prob}
47
+ ligand_dropout_prob: 0.0
48
+ p_unconditional: ${datasets.p_unconditional}
49
+ p_dropout_atom_level_embeddings: ${datasets.p_dropout_atom_level_embeddings}
50
+ add_residue_is_paired_feature: ${datasets.add_residue_is_paired_feature}
@@ -0,0 +1,49 @@
1
+ # TODO: Inherit from common config with default Transform pipeline
2
+
3
+ monomer_distillation:
4
+ dataset:
5
+ _target_: atomworks.ml.datasets.StructuralDatasetWrapper
6
+ save_failed_examples_to_dir: ${paths.data.failed_examples_dir}
7
+
8
+ # cif parser arguments
9
+ cif_parser_args:
10
+ cache_dir: null
11
+ load_from_cache: False
12
+ save_to_cache: False
13
+
14
+ # metadata parser
15
+ dataset_parser:
16
+ _target_: atomworks.ml.datasets.parsers.GenericDFParser
17
+ pn_unit_iid_colnames: null
18
+
19
+ # metadata dataset
20
+ dataset:
21
+ _target_: atomworks.ml.datasets.PandasDataset
22
+ name: af2fb_distillation
23
+ id_column: example_id
24
+ data: ${paths.data.monomer_distillation_parquet_dir}/af2_distillation_facebook.parquet
25
+ columns_to_load:
26
+ - example_id
27
+ - path
28
+ transform:
29
+ _target_: ${datasets.pipeline_target}
30
+ is_inference: False
31
+ protein_msa_dirs: [{"dir": "${paths.data.monomer_distillation_data_dir}/msa", "extension": ".a3m", "directory_depth": 2}]
32
+ rna_msa_dirs: []
33
+ n_recycles: ${datasets.n_recycles_train}
34
+ crop_size: ${datasets.crop_size}
35
+ n_msa: ${datasets.n_msa}
36
+ diffusion_batch_size: ${datasets.diffusion_batch_size_train}
37
+ max_atoms_in_crop: ${datasets.max_atoms_in_crop}
38
+ crop_contiguous_probability: 0.25
39
+ crop_spatial_probability: 0.75
40
+ b_factor_min: 70.0
41
+ run_confidence_head: ${datasets.run_confidence_head}
42
+ take_first_chiral_subordering: ${datasets.take_first_chiral_subordering}
43
+ use_element_for_atom_names_of_atomized_tokens: ${datasets.use_element_for_atom_names_of_atomized_tokens}
44
+ mirror_prob: ${datasets.mirror_prob}
45
+ atomization_prob: ${datasets.atomization_prob}
46
+ ligand_dropout_prob: ${datasets.ligand_dropout_prob}
47
+ p_unconditional: ${datasets.p_unconditional}
48
+ p_dropout_atom_level_embeddings: ${datasets.p_dropout_atom_level_embeddings}
49
+ add_residue_is_paired_feature: ${datasets.add_residue_is_paired_feature}
@@ -0,0 +1,50 @@
1
+ # TODO: Inherit from common config with default Transform pipeline
2
+
3
+ na_complex_distillation:
4
+ dataset:
5
+ _target_: atomworks.ml.datasets.StructuralDatasetWrapper
6
+ save_failed_examples_to_dir: null
7
+
8
+ # cif parser
9
+ cif_parser_args:
10
+ #assume_residues_all_resolved: true
11
+ cache_dir: null
12
+ load_from_cache: false
13
+ save_to_cache: false
14
+
15
+ # metadata parser
16
+ dataset_parser:
17
+ _target_: atomworks.ml.datasets.parsers.GenericDFParser
18
+ pn_unit_iid_colnames: null #[]
19
+
20
+ # metadata dataset
21
+ dataset:
22
+ _target_: atomworks.ml.datasets.PandasDataset
23
+ name: tf_distillation
24
+ id_column: example_id
25
+ data: ${paths.data.na_complex_distillation_parquet_dir}/transcriptionFactor_distillation_rf3.newDL.csv
26
+ columns_to_load:
27
+ - example_id
28
+ - path
29
+ transform:
30
+ _target_: ${datasets.pipeline_target}
31
+ is_inference: False
32
+ protein_msa_dirs: [{"dir": "${paths.data.na_complex_distillation_data_dir}/a3m/", "extension": ".a3m", "directory_depth": 1}]
33
+ rna_msa_dirs: []
34
+ n_recycles: ${datasets.n_recycles_train}
35
+ crop_size: ${datasets.crop_size}
36
+ n_msa: ${datasets.n_msa}
37
+ diffusion_batch_size: ${datasets.diffusion_batch_size_train}
38
+ max_atoms_in_crop: ${datasets.max_atoms_in_crop}
39
+ crop_contiguous_probability: 0.25
40
+ crop_spatial_probability: 0.75
41
+ pad_dna_p_skip: 0.0
42
+ run_confidence_head: ${datasets.run_confidence_head}
43
+ take_first_chiral_subordering: ${datasets.take_first_chiral_subordering}
44
+ use_element_for_atom_names_of_atomized_tokens: ${datasets.use_element_for_atom_names_of_atomized_tokens}
45
+ mirror_prob: 0.0
46
+ atomization_prob: ${datasets.atomization_prob}
47
+ ligand_dropout_prob: ${datasets.ligand_dropout_prob}
48
+ p_unconditional: ${datasets.p_unconditional}
49
+ p_dropout_atom_level_embeddings: ${datasets.p_dropout_atom_level_embeddings}
50
+ add_residue_is_paired_feature: ${datasets.add_residue_is_paired_feature}
@@ -0,0 +1,8 @@
1
+ weights:
2
+ _target_: atomworks.ml.samplers.calculate_weights_for_pdb_dataset_df
3
+ # We do not include beta here, since it is different for interfaces and chains
4
+ alphas:
5
+ a_prot: 3.0 # 3 for AF-3
6
+ a_nuc: 3.0 # 3 for AF-3
7
+ a_ligand: 1.0 # 1 for AF-3
8
+ a_loi: 5.0 # 5 for AF-3
@@ -0,0 +1,32 @@
1
+ dataset:
2
+ _target_: atomworks.ml.datasets.StructuralDatasetWrapper
3
+ save_failed_examples_to_dir: ${paths.data.failed_examples_dir}
4
+ cif_parser_args:
5
+ cache_dir: null
6
+ load_from_cache: false
7
+ save_to_cache: false
8
+ dataset:
9
+ _target_: atomworks.ml.datasets.PandasDataset
10
+ # we will use the example_id as the unique column
11
+ id_column: example_id
12
+ transform:
13
+ # common Transform pipeline components for all PDB datasets
14
+ _target_: ${datasets.pipeline_target}
15
+ is_inference: False
16
+ protein_msa_dirs: ${paths.data.protein_msa_dirs}
17
+ rna_msa_dirs: ${paths.data.rna_msa_dirs}
18
+ n_recycles: ${datasets.n_recycles_train}
19
+ crop_size: ${datasets.crop_size}
20
+ n_msa: ${datasets.n_msa}
21
+ diffusion_batch_size: ${datasets.diffusion_batch_size_train}
22
+ max_atoms_in_crop: ${datasets.max_atoms_in_crop}
23
+ run_confidence_head: ${datasets.run_confidence_head}
24
+ p_unconditional: ${datasets.p_unconditional}
25
+ p_dropout_atom_level_embeddings: ${datasets.p_dropout_atom_level_embeddings}
26
+ take_first_chiral_subordering: ${datasets.take_first_chiral_subordering}
27
+ use_element_for_atom_names_of_atomized_tokens: ${datasets.use_element_for_atom_names_of_atomized_tokens}
28
+ mirror_prob: ${datasets.mirror_prob}
29
+ atomization_prob: ${datasets.atomization_prob}
30
+ ligand_dropout_prob: ${datasets.ligand_dropout_prob}
31
+ add_residue_is_paired_feature: ${datasets.add_residue_is_paired_feature}
32
+ add_cyclic_bonds: ${datasets.add_cyclic_bonds}