rc-foundry 0.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- foundry/__init__.py +57 -0
- foundry/callbacks/__init__.py +5 -0
- foundry/callbacks/callback.py +116 -0
- foundry/callbacks/health_logging.py +419 -0
- foundry/callbacks/metrics_logging.py +211 -0
- foundry/callbacks/timing_logging.py +67 -0
- foundry/callbacks/train_logging.py +278 -0
- foundry/common.py +108 -0
- foundry/constants.py +28 -0
- foundry/hydra/resolvers.py +77 -0
- foundry/inference_engines/base.py +235 -0
- foundry/inference_engines/checkpoint_registry.py +66 -0
- foundry/metrics/__init__.py +12 -0
- foundry/metrics/losses.py +30 -0
- foundry/metrics/metric.py +319 -0
- foundry/model/layers/blocks.py +47 -0
- foundry/testing/__init__.py +6 -0
- foundry/testing/fixtures.py +19 -0
- foundry/testing/pytest_hooks.py +15 -0
- foundry/trainers/fabric.py +923 -0
- foundry/training/EMA.py +67 -0
- foundry/training/checkpoint.py +61 -0
- foundry/training/schedulers.py +91 -0
- foundry/utils/alignment.py +86 -0
- foundry/utils/components.py +415 -0
- foundry/utils/datasets.py +405 -0
- foundry/utils/ddp.py +103 -0
- foundry/utils/instantiators.py +72 -0
- foundry/utils/logging.py +279 -0
- foundry/utils/rigid.py +1460 -0
- foundry/utils/rotation_augmentation.py +65 -0
- foundry/utils/squashfs.py +172 -0
- foundry/utils/torch.py +317 -0
- foundry/utils/weights.py +271 -0
- foundry/version.py +34 -0
- foundry_cli/__init__.py +3 -0
- foundry_cli/download_checkpoints.py +281 -0
- mpnn/__init__.py +1 -0
- mpnn/collate/feature_collator.py +265 -0
- mpnn/inference.py +53 -0
- mpnn/inference_engines/mpnn.py +549 -0
- mpnn/loss/nll_loss.py +122 -0
- mpnn/metrics/nll.py +369 -0
- mpnn/metrics/sequence_recovery.py +440 -0
- mpnn/model/layers/graph_embeddings.py +2372 -0
- mpnn/model/layers/message_passing.py +332 -0
- mpnn/model/layers/position_wise_feed_forward.py +44 -0
- mpnn/model/layers/positional_encoding.py +98 -0
- mpnn/model/mpnn.py +2632 -0
- mpnn/pipelines/mpnn.py +162 -0
- mpnn/samplers/samplers.py +167 -0
- mpnn/train.py +341 -0
- mpnn/trainers/mpnn.py +193 -0
- mpnn/transforms/feature_aggregation/mpnn.py +184 -0
- mpnn/transforms/feature_aggregation/polymer_ligand_interface.py +76 -0
- mpnn/transforms/feature_aggregation/token_encodings.py +132 -0
- mpnn/transforms/feature_aggregation/user_settings.py +347 -0
- mpnn/transforms/polymer_ligand_interface.py +164 -0
- mpnn/utils/inference.py +2397 -0
- mpnn/utils/probability.py +37 -0
- mpnn/utils/weights.py +309 -0
- rc_foundry-0.1.1.dist-info/METADATA +239 -0
- rc_foundry-0.1.1.dist-info/RECORD +180 -0
- rc_foundry-0.1.1.dist-info/WHEEL +4 -0
- rc_foundry-0.1.1.dist-info/entry_points.txt +5 -0
- rc_foundry-0.1.1.dist-info/licenses/LICENSE.md +28 -0
- rf3/__init__.py +3 -0
- rf3/_version.py +33 -0
- rf3/alignment.py +79 -0
- rf3/callbacks/dump_validation_structures.py +101 -0
- rf3/callbacks/metrics_logging.py +324 -0
- rf3/chemical.py +1529 -0
- rf3/cli.py +77 -0
- rf3/data/cyclic_transform.py +78 -0
- rf3/data/extra_xforms.py +36 -0
- rf3/data/ground_truth_template.py +463 -0
- rf3/data/paired_msa.py +206 -0
- rf3/data/pipeline_utils.py +128 -0
- rf3/data/pipelines.py +558 -0
- rf3/diffusion_samplers/inference_sampler.py +222 -0
- rf3/inference.py +65 -0
- rf3/inference_engines/__init__.py +5 -0
- rf3/inference_engines/rf3.py +735 -0
- rf3/kinematics.py +354 -0
- rf3/loss/af3_confidence_loss.py +515 -0
- rf3/loss/af3_losses.py +655 -0
- rf3/loss/loss.py +179 -0
- rf3/metrics/chiral.py +179 -0
- rf3/metrics/clashing_chains.py +68 -0
- rf3/metrics/distogram.py +421 -0
- rf3/metrics/lddt.py +523 -0
- rf3/metrics/metadata.py +43 -0
- rf3/metrics/metric_utils.py +192 -0
- rf3/metrics/predicted_error.py +134 -0
- rf3/metrics/rasa.py +108 -0
- rf3/metrics/selected_distances.py +91 -0
- rf3/model/RF3.py +527 -0
- rf3/model/RF3_blocks.py +92 -0
- rf3/model/RF3_structure.py +303 -0
- rf3/model/layers/af3_auxiliary_heads.py +255 -0
- rf3/model/layers/af3_diffusion_transformer.py +544 -0
- rf3/model/layers/attention.py +313 -0
- rf3/model/layers/layer_utils.py +127 -0
- rf3/model/layers/mlff.py +118 -0
- rf3/model/layers/outer_product.py +59 -0
- rf3/model/layers/pairformer_layers.py +783 -0
- rf3/model/layers/structure_bias.py +56 -0
- rf3/scoring.py +1787 -0
- rf3/symmetry/resolve.py +284 -0
- rf3/train.py +194 -0
- rf3/trainers/rf3.py +570 -0
- rf3/util_module.py +47 -0
- rf3/utils/frames.py +109 -0
- rf3/utils/inference.py +665 -0
- rf3/utils/io.py +198 -0
- rf3/utils/loss.py +72 -0
- rf3/utils/predict_and_score.py +165 -0
- rf3/utils/predicted_error.py +673 -0
- rf3/utils/recycling.py +42 -0
- rf3/validate.py +140 -0
- rfd3/.gitignore +7 -0
- rfd3/Makefile +76 -0
- rfd3/__init__.py +12 -0
- rfd3/callbacks.py +66 -0
- rfd3/cli.py +41 -0
- rfd3/constants.py +212 -0
- rfd3/engine.py +543 -0
- rfd3/inference/datasets.py +193 -0
- rfd3/inference/input_parsing.py +1123 -0
- rfd3/inference/legacy_input_parsing.py +717 -0
- rfd3/inference/parsing.py +165 -0
- rfd3/inference/symmetry/atom_array.py +298 -0
- rfd3/inference/symmetry/checks.py +241 -0
- rfd3/inference/symmetry/contigs.py +63 -0
- rfd3/inference/symmetry/frames.py +355 -0
- rfd3/inference/symmetry/symmetry_utils.py +398 -0
- rfd3/metrics/design_metrics.py +465 -0
- rfd3/metrics/hbonds_hbplus_metrics.py +308 -0
- rfd3/metrics/hbonds_metrics.py +389 -0
- rfd3/metrics/losses.py +325 -0
- rfd3/metrics/metrics_utils.py +118 -0
- rfd3/metrics/sidechain_metrics.py +349 -0
- rfd3/model/RFD3.py +105 -0
- rfd3/model/RFD3_diffusion_module.py +387 -0
- rfd3/model/cfg_utils.py +81 -0
- rfd3/model/inference_sampler.py +635 -0
- rfd3/model/layers/attention.py +577 -0
- rfd3/model/layers/block_utils.py +580 -0
- rfd3/model/layers/blocks.py +777 -0
- rfd3/model/layers/chunked_pairwise.py +377 -0
- rfd3/model/layers/encoders.py +417 -0
- rfd3/model/layers/layer_utils.py +197 -0
- rfd3/model/layers/pairformer_layers.py +128 -0
- rfd3/run_inference.py +45 -0
- rfd3/testing/debug.py +139 -0
- rfd3/testing/debug_utils.py +73 -0
- rfd3/testing/testing_utils.py +356 -0
- rfd3/train.py +194 -0
- rfd3/trainer/dump_validation_structures.py +154 -0
- rfd3/trainer/fabric_trainer.py +923 -0
- rfd3/trainer/recycling.py +42 -0
- rfd3/trainer/rfd3.py +485 -0
- rfd3/trainer/trainer_utils.py +502 -0
- rfd3/transforms/conditioning_base.py +508 -0
- rfd3/transforms/conditioning_utils.py +200 -0
- rfd3/transforms/design_transforms.py +807 -0
- rfd3/transforms/dna_crop.py +523 -0
- rfd3/transforms/hbonds.py +407 -0
- rfd3/transforms/hbonds_hbplus.py +246 -0
- rfd3/transforms/ncaa_transforms.py +153 -0
- rfd3/transforms/pipelines.py +632 -0
- rfd3/transforms/ppi_transforms.py +541 -0
- rfd3/transforms/rasa.py +116 -0
- rfd3/transforms/symmetry.py +76 -0
- rfd3/transforms/training_conditions.py +552 -0
- rfd3/transforms/util_transforms.py +498 -0
- rfd3/transforms/virtual_atoms.py +305 -0
- rfd3/utils/inference.py +648 -0
- rfd3/utils/io.py +245 -0
- rfd3/utils/vizualize.py +276 -0
|
@@ -0,0 +1,544 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import torch
|
|
3
|
+
import torch.nn as nn
|
|
4
|
+
from rf3.loss.loss import calc_chiral_grads_flat_impl
|
|
5
|
+
from rf3.model.layers.layer_utils import (
|
|
6
|
+
AdaLN,
|
|
7
|
+
LinearBiasInit,
|
|
8
|
+
MultiDimLinear,
|
|
9
|
+
collapse,
|
|
10
|
+
linearNoBias,
|
|
11
|
+
)
|
|
12
|
+
from rf3.model.layers.mlff import ConformerEmbeddingWeightedAverage
|
|
13
|
+
|
|
14
|
+
from foundry.training.checkpoint import activation_checkpointing
|
|
15
|
+
from foundry.utils.torch import device_of
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class AtomAttentionEncoderDiffusion(nn.Module):
|
|
19
|
+
def __init__(
|
|
20
|
+
self,
|
|
21
|
+
c_atom,
|
|
22
|
+
c_atompair,
|
|
23
|
+
c_token,
|
|
24
|
+
c_tokenpair,
|
|
25
|
+
c_s,
|
|
26
|
+
atom_1d_features,
|
|
27
|
+
c_atom_1d_features,
|
|
28
|
+
atom_transformer,
|
|
29
|
+
broadcast_trunk_feats_on_1dim_old,
|
|
30
|
+
use_chiral_features,
|
|
31
|
+
no_grad_on_chiral_center,
|
|
32
|
+
use_inv_dist_squared: bool = False,
|
|
33
|
+
use_atom_level_embedding: bool = False,
|
|
34
|
+
atom_level_embedding_dim: int = 384,
|
|
35
|
+
):
|
|
36
|
+
super().__init__()
|
|
37
|
+
self.c_atom = c_atom
|
|
38
|
+
self.c_atompair = c_atompair
|
|
39
|
+
self.c_token = c_token
|
|
40
|
+
self.c_tokenpair = c_tokenpair
|
|
41
|
+
self.c_s = c_s
|
|
42
|
+
self.atom_1d_features = atom_1d_features
|
|
43
|
+
self.broadcast_trunk_feats_on_1dim_old = broadcast_trunk_feats_on_1dim_old
|
|
44
|
+
self.use_chiral_features = use_chiral_features
|
|
45
|
+
self.no_grad_on_chiral_center = no_grad_on_chiral_center
|
|
46
|
+
self.use_atom_level_embedding = use_atom_level_embedding
|
|
47
|
+
self.atom_level_embedding_dim = atom_level_embedding_dim
|
|
48
|
+
|
|
49
|
+
self.process_input_features = linearNoBias(c_atom_1d_features, c_atom)
|
|
50
|
+
|
|
51
|
+
self.process_d = linearNoBias(3, c_atompair) # x,y,z
|
|
52
|
+
|
|
53
|
+
self.process_inverse_dist = linearNoBias(1, c_atompair)
|
|
54
|
+
self.process_valid_mask = linearNoBias(1, c_atompair)
|
|
55
|
+
|
|
56
|
+
self.process_s_trunk = nn.Sequential(
|
|
57
|
+
nn.LayerNorm(c_s), linearNoBias(c_s, c_atom)
|
|
58
|
+
)
|
|
59
|
+
self.process_z = nn.Sequential(
|
|
60
|
+
nn.LayerNorm(c_tokenpair), linearNoBias(c_tokenpair, c_atompair)
|
|
61
|
+
)
|
|
62
|
+
self.process_r = linearNoBias(3, c_atom)
|
|
63
|
+
if self.use_chiral_features:
|
|
64
|
+
self.process_ch = linearNoBias(3, c_atom)
|
|
65
|
+
|
|
66
|
+
self.process_single_l = nn.Sequential(
|
|
67
|
+
nn.ReLU(), linearNoBias(c_atom, c_atompair)
|
|
68
|
+
)
|
|
69
|
+
self.process_single_m = nn.Sequential(
|
|
70
|
+
nn.ReLU(), linearNoBias(c_atom, c_atompair)
|
|
71
|
+
)
|
|
72
|
+
|
|
73
|
+
self.pair_mlp = nn.Sequential(
|
|
74
|
+
nn.ReLU(),
|
|
75
|
+
linearNoBias(self.c_atompair, c_atompair),
|
|
76
|
+
nn.ReLU(),
|
|
77
|
+
linearNoBias(self.c_atompair, c_atompair),
|
|
78
|
+
nn.ReLU(),
|
|
79
|
+
linearNoBias(self.c_atompair, c_atompair),
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
self.process_q = nn.Sequential(
|
|
83
|
+
linearNoBias(c_atom, c_token),
|
|
84
|
+
nn.ReLU(),
|
|
85
|
+
)
|
|
86
|
+
|
|
87
|
+
self.atom_transformer = AtomTransformer(
|
|
88
|
+
c_atom=c_atom, c_atompair=c_atompair, **atom_transformer
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
self.use_inv_dist_squared = use_inv_dist_squared
|
|
92
|
+
|
|
93
|
+
if self.use_atom_level_embedding:
|
|
94
|
+
self.process_atom_level_embedding = ConformerEmbeddingWeightedAverage(
|
|
95
|
+
atom_level_embedding_dim=self.atom_level_embedding_dim,
|
|
96
|
+
c_atompair=c_atompair,
|
|
97
|
+
c_atom=c_atom,
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
def reset_parameters(self):
|
|
101
|
+
super().reset_parameters()
|
|
102
|
+
if self.use_chiral_features:
|
|
103
|
+
nn.init.zeros_(self.process_ch.weight)
|
|
104
|
+
|
|
105
|
+
def forward(
|
|
106
|
+
self,
|
|
107
|
+
f, # Dict (Input feature dictionary)
|
|
108
|
+
R_L, # [D, L, 3]
|
|
109
|
+
S_trunk_I, # [B, I, C_S_trunk] [...,I,C_S_trunk]
|
|
110
|
+
Z_II, # [B, I, I, C_Z] [...,I,I,C_Z]
|
|
111
|
+
):
|
|
112
|
+
assert R_L is not None
|
|
113
|
+
|
|
114
|
+
tok_idx = f["atom_to_token_map"]
|
|
115
|
+
L = len(tok_idx)
|
|
116
|
+
I = tok_idx.max() + 1
|
|
117
|
+
|
|
118
|
+
f["ref_atom_name_chars"] = f["ref_atom_name_chars"].reshape(L, -1)
|
|
119
|
+
# Create the atom single conditioning: Embed per-atom meta data
|
|
120
|
+
C_L = self.process_input_features(
|
|
121
|
+
torch.cat(
|
|
122
|
+
tuple(
|
|
123
|
+
collapse(f[feature_name], L)
|
|
124
|
+
for feature_name in self.atom_1d_features
|
|
125
|
+
),
|
|
126
|
+
dim=-1,
|
|
127
|
+
)
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
if self.use_atom_level_embedding:
|
|
131
|
+
assert "atom_level_embedding" in f
|
|
132
|
+
C_L = C_L + self.process_atom_level_embedding(f["atom_level_embedding"])
|
|
133
|
+
|
|
134
|
+
# Embed offsets between atom reference positions
|
|
135
|
+
D_LL = f["ref_pos"].unsqueeze(-2) - f["ref_pos"].unsqueeze(-3)
|
|
136
|
+
V_LL = (
|
|
137
|
+
f["ref_space_uid"].unsqueeze(-1) == f["ref_space_uid"].unsqueeze(-2)
|
|
138
|
+
).unsqueeze(-1)
|
|
139
|
+
P_LL = self.process_d(D_LL) * V_LL
|
|
140
|
+
|
|
141
|
+
@activation_checkpointing
|
|
142
|
+
def embed_atom_feats(R_L, C_L, D_LL, V_LL, P_LL, tok_idx):
|
|
143
|
+
# Embed pairwise inverse squared distances, and the valid mask
|
|
144
|
+
if self.training:
|
|
145
|
+
if self.use_inv_dist_squared:
|
|
146
|
+
P_LL = (
|
|
147
|
+
P_LL
|
|
148
|
+
+ self.process_inverse_dist(
|
|
149
|
+
1 / (1 + torch.sum(D_LL * D_LL, dim=-1, keepdim=True))
|
|
150
|
+
)
|
|
151
|
+
* V_LL
|
|
152
|
+
)
|
|
153
|
+
else:
|
|
154
|
+
P_LL = (
|
|
155
|
+
P_LL
|
|
156
|
+
+ self.process_inverse_dist(
|
|
157
|
+
1 / (1 + torch.linalg.norm(D_LL, dim=-1, keepdim=True))
|
|
158
|
+
)
|
|
159
|
+
* V_LL
|
|
160
|
+
)
|
|
161
|
+
P_LL = P_LL + self.process_valid_mask(V_LL.to(P_LL.dtype)) * V_LL
|
|
162
|
+
else:
|
|
163
|
+
if self.use_inv_dist_squared:
|
|
164
|
+
P_LL[V_LL[..., 0]] += self.process_inverse_dist(
|
|
165
|
+
1
|
|
166
|
+
/ (
|
|
167
|
+
1
|
|
168
|
+
+ torch.sum(
|
|
169
|
+
D_LL[V_LL[..., 0]] * D_LL[V_LL[..., 0]],
|
|
170
|
+
dim=-1,
|
|
171
|
+
keepdim=True,
|
|
172
|
+
)
|
|
173
|
+
)
|
|
174
|
+
)
|
|
175
|
+
else:
|
|
176
|
+
P_LL[V_LL[..., 0]] += self.process_inverse_dist(
|
|
177
|
+
1
|
|
178
|
+
/ (
|
|
179
|
+
1
|
|
180
|
+
+ torch.linalg.norm(
|
|
181
|
+
D_LL[V_LL[..., 0]], dim=-1, keepdim=True
|
|
182
|
+
)
|
|
183
|
+
)
|
|
184
|
+
)
|
|
185
|
+
P_LL[V_LL[..., 0]] += self.process_valid_mask(
|
|
186
|
+
V_LL[V_LL[..., 0]].to(P_LL.dtype)
|
|
187
|
+
)
|
|
188
|
+
|
|
189
|
+
# Initialise the atom single representation as the single conditioning.
|
|
190
|
+
Q_L = C_L
|
|
191
|
+
|
|
192
|
+
# If provided, add trunk embeddings and noisy positions.
|
|
193
|
+
if R_L is not None:
|
|
194
|
+
# Broadcast the single and pair embedding from the trunk.
|
|
195
|
+
S_trunk_embed_L = self.process_s_trunk(S_trunk_I)[..., tok_idx, :]
|
|
196
|
+
|
|
197
|
+
C_L = C_L + S_trunk_embed_L
|
|
198
|
+
assert not (C_L == Q_L).all()
|
|
199
|
+
if self.broadcast_trunk_feats_on_1dim_old:
|
|
200
|
+
P_LL = P_LL + self.process_z(Z_II)[..., tok_idx, tok_idx, :]
|
|
201
|
+
else:
|
|
202
|
+
P_LL = (
|
|
203
|
+
P_LL + self.process_z(Z_II)[..., tok_idx, :, :][..., tok_idx, :]
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
# Add the noisy positions.
|
|
207
|
+
Q_L = self.process_r(R_L) + Q_L
|
|
208
|
+
|
|
209
|
+
# Add chirality gradients
|
|
210
|
+
if self.use_chiral_features:
|
|
211
|
+
with torch.autocast(
|
|
212
|
+
device_type=device_of(self).type, enabled=False
|
|
213
|
+
):
|
|
214
|
+
# Do not pass grads through grad calc
|
|
215
|
+
R_L = calc_chiral_grads_flat_impl(
|
|
216
|
+
R_L.detach(),
|
|
217
|
+
f["chiral_centers"],
|
|
218
|
+
f["chiral_center_dihedral_angles"],
|
|
219
|
+
self.no_grad_on_chiral_center,
|
|
220
|
+
).nan_to_num()
|
|
221
|
+
Q_L = self.process_ch(R_L) + Q_L
|
|
222
|
+
|
|
223
|
+
# Add the combined single conditioning to the pair representation.
|
|
224
|
+
P_LL = P_LL + (
|
|
225
|
+
self.process_single_l(C_L).unsqueeze(-2)
|
|
226
|
+
+ self.process_single_m(C_L).unsqueeze(-3)
|
|
227
|
+
)
|
|
228
|
+
|
|
229
|
+
# Run a small MLP on the pair activations
|
|
230
|
+
P_LL = P_LL + self.pair_mlp(P_LL)
|
|
231
|
+
|
|
232
|
+
# Cross attention transformer.
|
|
233
|
+
Q_L = self.atom_transformer(Q_L, C_L, P_LL)
|
|
234
|
+
|
|
235
|
+
A_I_shape = Q_L.shape[:-2] + (
|
|
236
|
+
I,
|
|
237
|
+
self.c_token,
|
|
238
|
+
)
|
|
239
|
+
# Aggregate per-atom representation to per-token representation
|
|
240
|
+
processed_Q_L = self.process_q(Q_L) # [L, C_atom] -> [L, C_token]
|
|
241
|
+
# Ensure dtype consistency for index_reduce
|
|
242
|
+
processed_Q_L = processed_Q_L.to(Q_L.dtype)
|
|
243
|
+
|
|
244
|
+
A_I = (
|
|
245
|
+
torch.zeros(A_I_shape, device=Q_L.device, dtype=Q_L.dtype)
|
|
246
|
+
.index_reduce(
|
|
247
|
+
-2,
|
|
248
|
+
f["atom_to_token_map"].long(),
|
|
249
|
+
processed_Q_L,
|
|
250
|
+
"mean",
|
|
251
|
+
include_self=False,
|
|
252
|
+
)
|
|
253
|
+
.clone()
|
|
254
|
+
)
|
|
255
|
+
|
|
256
|
+
return A_I, Q_L, C_L, P_LL
|
|
257
|
+
|
|
258
|
+
return embed_atom_feats(R_L, C_L, D_LL, V_LL, P_LL, tok_idx)
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+
class AtomTransformer(nn.Module):
|
|
262
|
+
def __init__(
|
|
263
|
+
self,
|
|
264
|
+
c_atom,
|
|
265
|
+
c_atompair,
|
|
266
|
+
diffusion_transformer,
|
|
267
|
+
n_queries,
|
|
268
|
+
n_keys,
|
|
269
|
+
l_max: int = None, # HACK: Unused, kept for backwards compatibility with 9/21 checkpoint
|
|
270
|
+
):
|
|
271
|
+
super().__init__()
|
|
272
|
+
|
|
273
|
+
self.diffusion_transformer = DiffusionTransformer(
|
|
274
|
+
c_token=c_atom, c_s=c_atom, c_tokenpair=c_atompair, **diffusion_transformer
|
|
275
|
+
)
|
|
276
|
+
|
|
277
|
+
def forward(
|
|
278
|
+
self,
|
|
279
|
+
Ql, # [B, L, C_atom]
|
|
280
|
+
Cl, # [B, L, C_atom]
|
|
281
|
+
Plm, # [B, L, L, C_atompair]
|
|
282
|
+
):
|
|
283
|
+
Beta_lm = True
|
|
284
|
+
return self.diffusion_transformer(Ql, Cl, Plm, Beta_lm)
|
|
285
|
+
|
|
286
|
+
|
|
287
|
+
class DiffusionTransformer(nn.Module):
|
|
288
|
+
def __init__(self, c_token, c_s, c_tokenpair, n_block, diffusion_transformer_block):
|
|
289
|
+
super().__init__()
|
|
290
|
+
self.blocks = torch.nn.ModuleList(
|
|
291
|
+
[
|
|
292
|
+
DiffusionTransformerBlock(
|
|
293
|
+
c_token=c_token,
|
|
294
|
+
c_s=c_s,
|
|
295
|
+
c_tokenpair=c_tokenpair,
|
|
296
|
+
**diffusion_transformer_block,
|
|
297
|
+
)
|
|
298
|
+
for _ in range(n_block)
|
|
299
|
+
]
|
|
300
|
+
)
|
|
301
|
+
|
|
302
|
+
def forward(
|
|
303
|
+
self,
|
|
304
|
+
A_I, # [..., I, C_token]
|
|
305
|
+
S_I, # [..., I, C_token]
|
|
306
|
+
Z_II, # [..., I, I, C_tokenpair]
|
|
307
|
+
Beta_II, # [I, I]
|
|
308
|
+
):
|
|
309
|
+
for block in self.blocks:
|
|
310
|
+
A_I = block(A_I, S_I, Z_II, Beta_II)
|
|
311
|
+
return A_I
|
|
312
|
+
|
|
313
|
+
|
|
314
|
+
class DiffusionTransformerBlock(nn.Module):
|
|
315
|
+
def __init__(
|
|
316
|
+
self,
|
|
317
|
+
c_token,
|
|
318
|
+
c_s,
|
|
319
|
+
c_tokenpair,
|
|
320
|
+
n_head,
|
|
321
|
+
no_residual_connection_between_attention_and_transition,
|
|
322
|
+
kq_norm,
|
|
323
|
+
):
|
|
324
|
+
super().__init__()
|
|
325
|
+
self.attention_pair_bias = AttentionPairBiasDiffusion(
|
|
326
|
+
c_a=c_token, c_s=c_s, c_pair=c_tokenpair, n_head=n_head, kq_norm=kq_norm
|
|
327
|
+
)
|
|
328
|
+
self.conditioned_transition_block = ConditionedTransitionBlock(
|
|
329
|
+
c_token=c_token, c_s=c_s
|
|
330
|
+
)
|
|
331
|
+
self.no_residual_connection_between_attention_and_transition = (
|
|
332
|
+
no_residual_connection_between_attention_and_transition
|
|
333
|
+
)
|
|
334
|
+
|
|
335
|
+
@activation_checkpointing
|
|
336
|
+
def forward(
|
|
337
|
+
self,
|
|
338
|
+
A_I, # [..., I, C_token]
|
|
339
|
+
S_I, # [..., I, C_s]
|
|
340
|
+
Z_II, # [..., I, I, C_tokenpair]
|
|
341
|
+
Beta_II, # [I, I]
|
|
342
|
+
):
|
|
343
|
+
if self.no_residual_connection_between_attention_and_transition:
|
|
344
|
+
B_I = self.attention_pair_bias(A_I, S_I, Z_II, Beta_II)
|
|
345
|
+
A_I = A_I + B_I + self.conditioned_transition_block(A_I, S_I)
|
|
346
|
+
else:
|
|
347
|
+
A_I = A_I + self.attention_pair_bias(A_I, S_I, Z_II, Beta_II)
|
|
348
|
+
A_I = A_I + self.conditioned_transition_block(A_I, S_I)
|
|
349
|
+
|
|
350
|
+
return A_I
|
|
351
|
+
|
|
352
|
+
|
|
353
|
+
class ConditionedTransitionBlock(nn.Module):
|
|
354
|
+
"""SwiGLU transition block with adaptive layernorm"""
|
|
355
|
+
|
|
356
|
+
def __init__(self, c_token, c_s, n=2):
|
|
357
|
+
super().__init__()
|
|
358
|
+
self.ada_ln = AdaLN(c_a=c_token, c_s=c_s)
|
|
359
|
+
self.linear_1 = linearNoBias(c_token, c_token * n)
|
|
360
|
+
self.linear_2 = linearNoBias(c_token, c_token * n)
|
|
361
|
+
self.linear_output_project = nn.Sequential(
|
|
362
|
+
LinearBiasInit(c_s, c_token, biasinit=-2.0),
|
|
363
|
+
nn.Sigmoid(),
|
|
364
|
+
)
|
|
365
|
+
self.linear_3 = linearNoBias(c_token * n, c_token)
|
|
366
|
+
|
|
367
|
+
def forward(
|
|
368
|
+
self,
|
|
369
|
+
Ai, # [B, I, C_token]
|
|
370
|
+
Si, # [B, I, C_token]
|
|
371
|
+
):
|
|
372
|
+
Ai = self.ada_ln(Ai, Si)
|
|
373
|
+
# BUG: This is not the correct implementation of SwiGLU
|
|
374
|
+
# Bi = torch.sigmoid(self.linear_1(Ai)) * self.linear_2(Ai)
|
|
375
|
+
# FIX: This is the correct implementation of SwiGLU
|
|
376
|
+
Bi = torch.nn.functional.silu(self.linear_1(Ai)) * self.linear_2(Ai)
|
|
377
|
+
|
|
378
|
+
# Output projection (from adaLN-Zero)
|
|
379
|
+
return self.linear_output_project(Si) * self.linear_3(Bi)
|
|
380
|
+
|
|
381
|
+
|
|
382
|
+
class AttentionPairBiasDiffusion(nn.Module):
|
|
383
|
+
def __init__(self, c_a, c_s, c_pair, n_head, kq_norm):
|
|
384
|
+
super().__init__()
|
|
385
|
+
self.n_head = n_head
|
|
386
|
+
self.c_a = c_a
|
|
387
|
+
self.c_pair = c_pair
|
|
388
|
+
self.c = c_a // n_head
|
|
389
|
+
|
|
390
|
+
self.to_q = MultiDimLinear(c_a, (n_head, self.c), bias=False)
|
|
391
|
+
self.to_k = MultiDimLinear(c_a, (n_head, self.c), bias=False)
|
|
392
|
+
self.to_v = MultiDimLinear(c_a, (n_head, self.c), bias=False)
|
|
393
|
+
self.to_b = linearNoBias(c_pair, n_head)
|
|
394
|
+
self.to_g = nn.Sequential(
|
|
395
|
+
MultiDimLinear(c_a, (n_head, self.c), bias=False),
|
|
396
|
+
nn.Sigmoid(),
|
|
397
|
+
)
|
|
398
|
+
self.to_a = linearNoBias(c_a, c_a)
|
|
399
|
+
self.linear_output_project = nn.Sequential(
|
|
400
|
+
LinearBiasInit(c_s, c_a, biasinit=-2.0),
|
|
401
|
+
nn.Sigmoid(),
|
|
402
|
+
)
|
|
403
|
+
self.ln_0 = nn.LayerNorm((c_pair,))
|
|
404
|
+
self.ada_ln_1 = AdaLN(c_a=c_a, c_s=c_s)
|
|
405
|
+
self.use_deepspeed_evo = False
|
|
406
|
+
self.force_bfloat16 = True
|
|
407
|
+
|
|
408
|
+
self.kq_norm = kq_norm
|
|
409
|
+
if self.kq_norm:
|
|
410
|
+
self.key_layer_norm = nn.LayerNorm((self.n_head * self.c,))
|
|
411
|
+
self.query_layer_norm = nn.LayerNorm((self.n_head * self.c,))
|
|
412
|
+
|
|
413
|
+
@activation_checkpointing
|
|
414
|
+
def forward(
|
|
415
|
+
self,
|
|
416
|
+
A_I, # [I, C_a]
|
|
417
|
+
S_I, # [I, C_a] | None
|
|
418
|
+
Z_II, # [I, I, C_z]
|
|
419
|
+
Beta_II, # [I, I]
|
|
420
|
+
):
|
|
421
|
+
# Input projections
|
|
422
|
+
assert S_I is not None
|
|
423
|
+
if S_I is not None:
|
|
424
|
+
A_I = self.ada_ln_1(A_I, S_I)
|
|
425
|
+
|
|
426
|
+
if Beta_II is not None:
|
|
427
|
+
# zero out layer norms for the key and query
|
|
428
|
+
return self.atom_attention(A_I, S_I, Z_II)
|
|
429
|
+
|
|
430
|
+
if self.use_deepspeed_evo or self.force_bfloat16:
|
|
431
|
+
A_I = A_I.to(torch.bfloat16)
|
|
432
|
+
assert len(A_I.shape) == 3, f"(Diffusion batch, I, C_a) but got {A_I.shape}"
|
|
433
|
+
|
|
434
|
+
Q_IH = self.to_q(A_I) # / np.sqrt(self.c)
|
|
435
|
+
K_IH = self.to_k(A_I)
|
|
436
|
+
V_IH = self.to_v(A_I)
|
|
437
|
+
B_IIH = self.to_b(self.ln_0(Z_II))
|
|
438
|
+
G_IH = self.to_g(A_I)
|
|
439
|
+
|
|
440
|
+
if self.kq_norm:
|
|
441
|
+
Q_IH = self.query_layer_norm(
|
|
442
|
+
Q_IH.reshape(-1, self.n_head * self.c)
|
|
443
|
+
).reshape(Q_IH.shape)
|
|
444
|
+
K_IH = self.key_layer_norm(K_IH.reshape(-1, self.n_head * self.c)).reshape(
|
|
445
|
+
K_IH.shape
|
|
446
|
+
)
|
|
447
|
+
|
|
448
|
+
_, L = B_IIH.shape[:2]
|
|
449
|
+
|
|
450
|
+
if not self.use_deepspeed_evo or L <= 24:
|
|
451
|
+
# Attention
|
|
452
|
+
Q_IH = Q_IH / np.sqrt(self.c)
|
|
453
|
+
A_IIH = torch.softmax(
|
|
454
|
+
torch.einsum("...ihd,...jhd->...ijh", Q_IH, K_IH) + B_IIH, dim=-2
|
|
455
|
+
) # softmax over j
|
|
456
|
+
## G_IH: [B, I, H, C]
|
|
457
|
+
## A_IIH: [B, I, I, H]
|
|
458
|
+
## V_IH: [B, I, H, C]
|
|
459
|
+
A_I = torch.einsum("...ijh,...jhc->...ihc", A_IIH, V_IH)
|
|
460
|
+
A_I = G_IH * A_I # [B, I, H, C]
|
|
461
|
+
A_I = A_I.flatten(start_dim=-2) # [B, I, Ca]
|
|
462
|
+
else:
|
|
463
|
+
# DS4Sci_EvoformerAttention
|
|
464
|
+
# Q, K, V: [Batch, N_seq, N_res, Head, Dim]
|
|
465
|
+
# res_mask: [Batch, N_seq, 1, 1, N_res]
|
|
466
|
+
# pair_bias: [Batch, 1, Head, N_res, N_res]
|
|
467
|
+
from deepspeed.ops.deepspeed4science import DS4Sci_EvoformerAttention
|
|
468
|
+
|
|
469
|
+
Q_IH = Q_IH[:, None]
|
|
470
|
+
K_IH = K_IH[:, None]
|
|
471
|
+
V_IH = V_IH[:, None]
|
|
472
|
+
B_IIH = B_IIH.repeat(Q_IH.shape[0], 1, 1, 1)
|
|
473
|
+
B_IIH = B_IIH[:, None]
|
|
474
|
+
B_IIH = B_IIH.permute(0, 1, 4, 2, 3).to(torch.bfloat16)
|
|
475
|
+
mask = torch.zeros(
|
|
476
|
+
[Q_IH.shape[0], 1, 1, 1, B_IIH.shape[-1]],
|
|
477
|
+
dtype=torch.bfloat16,
|
|
478
|
+
device=B_IIH.device,
|
|
479
|
+
)
|
|
480
|
+
A_I = DS4Sci_EvoformerAttention(Q_IH, K_IH, V_IH, [mask, B_IIH])
|
|
481
|
+
A_I = A_I * G_IH[:, None]
|
|
482
|
+
A_I = A_I.view(A_I.shape[0], A_I.shape[2], -1)
|
|
483
|
+
|
|
484
|
+
A_I = self.to_a(A_I)
|
|
485
|
+
# Output projection (from adaLN-Zero)
|
|
486
|
+
if S_I is not None:
|
|
487
|
+
A_I = self.linear_output_project(S_I) * A_I
|
|
488
|
+
|
|
489
|
+
return A_I
|
|
490
|
+
|
|
491
|
+
def atom_attention(self, A_I, S_I, Z_II, qbatch=32, kbatch=128):
|
|
492
|
+
assert qbatch % 2 == 0
|
|
493
|
+
assert kbatch % 2 == 0
|
|
494
|
+
|
|
495
|
+
if len(A_I.shape) == 2:
|
|
496
|
+
A_I = A_I[None]
|
|
497
|
+
Z_II = Z_II[None]
|
|
498
|
+
D, L = A_I.shape[:2]
|
|
499
|
+
Q_IH = self.to_q(A_I)
|
|
500
|
+
K_IH = self.to_k(A_I)
|
|
501
|
+
V_IH = self.to_v(A_I)
|
|
502
|
+
B_IIH = self.to_b(self.ln_0(Z_II))
|
|
503
|
+
G_IH = self.to_g(A_I)
|
|
504
|
+
|
|
505
|
+
if self.kq_norm:
|
|
506
|
+
Q_IH = self.query_layer_norm(
|
|
507
|
+
Q_IH.reshape(-1, self.n_head * self.c)
|
|
508
|
+
).reshape(Q_IH.shape)
|
|
509
|
+
K_IH = self.key_layer_norm(K_IH.reshape(-1, self.n_head * self.c)).reshape(
|
|
510
|
+
K_IH.shape
|
|
511
|
+
)
|
|
512
|
+
|
|
513
|
+
nqbatch = (L + qbatch - 1) // qbatch
|
|
514
|
+
Cs = torch.arange(nqbatch, device=A_I.device) * qbatch + qbatch // 2
|
|
515
|
+
patchq = torch.arange(qbatch, device=A_I.device) - qbatch // 2
|
|
516
|
+
patchk = torch.arange(kbatch, device=A_I.device) - kbatch // 2
|
|
517
|
+
|
|
518
|
+
indicesQ = Cs[:, None] + patchq[None, :]
|
|
519
|
+
maskQ = (indicesQ < 0) | (indicesQ > L - 1)
|
|
520
|
+
indicesQ = torch.clamp(indicesQ, 0, L - 1)
|
|
521
|
+
|
|
522
|
+
indicesK = Cs[:, None] + patchk[None, :]
|
|
523
|
+
maskK = (indicesK < 0) | (indicesK > L - 1)
|
|
524
|
+
indicesK = torch.clamp(indicesK, 0, L - 1)
|
|
525
|
+
|
|
526
|
+
query_subset = Q_IH[:, indicesQ]
|
|
527
|
+
key_subset = K_IH[:, indicesK]
|
|
528
|
+
attn = torch.einsum("...ihd,...jhd->...ijh", query_subset, key_subset)
|
|
529
|
+
attn = attn / (self.c**0.5)
|
|
530
|
+
|
|
531
|
+
attn += B_IIH[:, indicesQ[:, :, None], indicesK[:, None, :]] - 1e9 * (
|
|
532
|
+
maskQ[None, :, :, None, None] + maskK[None, :, None, :, None]
|
|
533
|
+
)
|
|
534
|
+
attn = torch.softmax(attn, dim=-2)
|
|
535
|
+
|
|
536
|
+
value_subset = V_IH[:, indicesK]
|
|
537
|
+
atom_features = torch.einsum("...ijh,...jhc->...ihc", attn, value_subset)
|
|
538
|
+
atom_features = atom_features[:, ~maskQ]
|
|
539
|
+
atom_features = (G_IH * atom_features).view(D, L, -1)
|
|
540
|
+
atom_features = self.to_a(atom_features.view(D, L, -1))
|
|
541
|
+
|
|
542
|
+
A_I = self.linear_output_project(S_I) * atom_features
|
|
543
|
+
|
|
544
|
+
return A_I
|