ray-embedding 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ray-embedding might be problematic. Click here for more details.

@@ -0,0 +1,2 @@
1
+ from ray_embedding.deploy import deploy_model
2
+
@@ -0,0 +1,34 @@
1
+ from typing import Dict, Any, Optional
2
+ from ray.serve import Application
3
+ from ray_embedding.embedding_model import EmbeddingModel
4
+ import torch
5
+
6
+
7
+ def deploy_model(args: Dict[str, Any]) -> Application:
8
+ assert args
9
+ deployment_name: str = args.pop("deployment", "")
10
+ assert deployment_name
11
+
12
+ model: str = args.pop("model", "")
13
+ assert model
14
+
15
+ backend: Optional[str] = args.pop("backend", "torch")
16
+ matryoshka_dim: Optional[int] = args.pop("matryoshka_dim", None)
17
+ trust_remote_code: Optional[bool] = args.pop("trust_remote_code", False)
18
+ model_kwargs: Dict[str, Any] = args.pop("model_kwargs", {})
19
+ if "torch_dtype" in model_kwargs:
20
+ model_kwargs["torch_dtype"] = model_kwargs["torch_dtype"].strip()
21
+ if model_kwargs["torch_dtype"] == "float16":
22
+ model_kwargs["torch_dtype"] = torch.float16
23
+ elif model_kwargs["torch_dtype"] == "bfloat16":
24
+ model_kwargs["torch_dtype"] = torch.bfloat16
25
+ else:
26
+ del model_kwargs["torch_dtype"]
27
+
28
+ deployment = EmbeddingModel.options(name=deployment_name).bind(model=model,
29
+ backend=backend,
30
+ matryoshka_dim=matryoshka_dim,
31
+ trust_remote_code=trust_remote_code,
32
+ model_kwargs=model_kwargs
33
+ )
34
+ return deployment
ray_embedding/dto.py ADDED
@@ -0,0 +1,16 @@
1
+ from typing import Union, List, Optional
2
+ from pydantic import BaseModel
3
+
4
+
5
+ class EmbeddingRequest(BaseModel):
6
+ """Schema of embedding requests (compatible with OpenAI)"""
7
+ model: str # Model name (for compatibility; only one model is used here)
8
+ input: Union[str, List[str]] # List of strings to embed
9
+ dimensions: Optional[int] = None
10
+
11
+
12
+ class EmbeddingResponse(BaseModel):
13
+ """Schema of embedding response (compatible with OpenAI)"""
14
+ object: str
15
+ data: List[dict] # Embedding data including index and vector
16
+ model: str # Model name used for embedding
@@ -0,0 +1,93 @@
1
+ import logging
2
+ import os.path
3
+ import time
4
+ from typing import Optional, Dict, Any
5
+
6
+ import torch
7
+ from fastapi import FastAPI, HTTPException
8
+ from ray import serve
9
+ from sentence_transformers import SentenceTransformer
10
+
11
+ from ray_embedding.dto import EmbeddingResponse, EmbeddingRequest
12
+
13
+ web_api = FastAPI(title=f"Ray Embeddings - OpenAI-compatible API")
14
+
15
+
16
+ @serve.deployment(
17
+ ray_actor_options={"num_gpus": 1},
18
+ autoscaling_config={
19
+ "target_ongoing_requests": 2,
20
+ "min_replicas": 0,
21
+ "initial_replicas": 1,
22
+ "max_replicas": 1,
23
+ }
24
+ )
25
+ @serve.ingress(web_api)
26
+ class EmbeddingModel:
27
+ def __init__(self, model: str, backend: Optional[str] = "torch", matryoshka_dim: Optional[int] = None,
28
+ trust_remote_code: Optional[bool] = False, model_kwargs: Dict[str, Any] = None):
29
+ logging.basicConfig(level=logging.INFO)
30
+ self.logger = logging.getLogger(__name__)
31
+ self.model = model
32
+ self.backend = backend or "torch"
33
+ self.matryoshka_dim = matryoshka_dim
34
+ self.trust_remote_code = trust_remote_code or False
35
+ self.model_kwargs = model_kwargs or {}
36
+ self.torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
37
+ self.logger.info(f"Initializing embedding model: {self.model}")
38
+ self.embedding_model = SentenceTransformer(self.model, backend=self.backend, trust_remote_code=self.trust_remote_code,
39
+ model_kwargs=self.model_kwargs)
40
+
41
+ self.served_model_name = os.path.basename(self.model)
42
+ self.available_models = [
43
+ {"id": self.served_model_name,
44
+ "object": "model",
45
+ "created": int(time.time()),
46
+ "owned_by": "openai",
47
+ "permission": []}
48
+ ]
49
+ self.logger.info(f"Successfully initialized embedding model {self.model}")
50
+
51
+ @web_api.post("/v1/embeddings", response_model=EmbeddingResponse)
52
+ async def create_embeddings(self, request: EmbeddingRequest):
53
+ """Generate embeddings for the input text using the specified model."""
54
+ try:
55
+ assert request.model == self.served_model_name, (
56
+ f"Model '{request.model}' is not supported. Use '{self.served_model_name}' instead."
57
+ )
58
+
59
+ if isinstance(request.input, str):
60
+ request.input = [request.input]
61
+
62
+ truncate_dim = request.dimensions or self.matryoshka_dim
63
+
64
+ # Compute embeddings and convert to a PyTorch tensor on the GPU
65
+ embeddings = self.embedding_model.encode(
66
+ request.input, convert_to_tensor=True, normalize_embeddings=True
67
+ ).to(self.torch_device)
68
+
69
+ if truncate_dim is not None:
70
+ # Truncate and re-normalize the embeddings
71
+ embeddings = embeddings[:, :truncate_dim]
72
+ embeddings = embeddings / torch.norm(embeddings, dim=1, keepdim=True)
73
+
74
+ # Move all embeddings to CPU at once before conversion
75
+ embeddings = embeddings.cpu().tolist()
76
+
77
+ # Convert embeddings to list format for response
78
+ response_data = [
79
+ {"index": idx, "embedding": emb}
80
+ for idx, emb in enumerate(embeddings)
81
+ ]
82
+ return EmbeddingResponse(object="list", data=response_data, model=request.model)
83
+
84
+ except Exception as e:
85
+ raise HTTPException(status_code=500, detail=str(e))
86
+
87
+ @web_api.get("/v1/models")
88
+ async def list_models(self):
89
+ """Returns the list of available models in OpenAI-compatible format."""
90
+ return {"object": "list", "data": self.available_models}
91
+
92
+
93
+
@@ -0,0 +1,24 @@
1
+ Metadata-Version: 2.4
2
+ Name: ray-embedding
3
+ Version: 1.0.0
4
+ Summary: "Deploy SentenceTransformers models Ray-based embedding service with SentenceTransformers"
5
+ Author: Crispin Almodovar
6
+ Author-email: crispin.almodovar@docorto.ai
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: License :: OSI Approved :: MIT License
9
+ Classifier: Operating System :: OS Independent
10
+ Requires-Python: >=3.12
11
+ Description-Content-Type: text/markdown
12
+
13
+ # ray-embedding
14
+
15
+ A tool for deploying SentenceTransformers models to a ray cluster.
16
+
17
+ ### Supports the following backends
18
+
19
+ - sbert-pytorch-gpu
20
+ - sbert-pytorch-cpu
21
+ - sbert-onnx-gpu
22
+ - sbert-onnx-cpu
23
+ - sbert-openvino-cpu
24
+ - fastembed-onnx-cpu
@@ -0,0 +1,8 @@
1
+ ray_embedding/__init__.py,sha256=OYJT0rVaaGzY613JqgfktsCgroDnBkGOHxR2FE9UtRU,49
2
+ ray_embedding/deploy.py,sha256=E79J0bcVNXAFlFMVrjZTaSXLnrMZ6LvtRdD4d1DKu1w,1598
3
+ ray_embedding/dto.py,sha256=e91ejZbM_NB9WTjF1YnfuV71cajYIh0vOX8oV_g2OwM,595
4
+ ray_embedding/embedding_model.py,sha256=1sx5jXo61UgLLL8BtFBPflsbBay6J3yG1u2UMIPgAtk,3768
5
+ ray_embedding-1.0.0.dist-info/METADATA,sha256=8DBIYxBOxqsXrtHsDFd4JvIThr_w4yO0iLqo5Ui8UTM,676
6
+ ray_embedding-1.0.0.dist-info/WHEEL,sha256=1tXe9gY0PYatrMPMDd6jXqjfpz_B-Wqm32CPfRC58XU,91
7
+ ray_embedding-1.0.0.dist-info/top_level.txt,sha256=ziCblpJq1YsrryshFqxTRuRMgNuO1_tgvAAkGShATNA,14
8
+ ray_embedding-1.0.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (77.0.3)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ ray_embedding