ray-embedding 0.11.8__py3-none-any.whl → 0.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ray-embedding might be problematic. Click here for more details.

ray_embedding/deploy.py CHANGED
@@ -48,7 +48,8 @@ def build_model(model_config: ModelDeploymentConfig) -> DeployedModel:
48
48
  def build_app(args: AppConfig) -> Application:
49
49
  model_router, models = args.model_router, args.models
50
50
  assert model_router and models
51
+ assert model_router.path_prefix
51
52
 
52
53
  deployed_models = {model_config.served_model_name: build_model(model_config) for model_config in models}
53
- router = ModelRouter.options(name=model_router.deployment).bind(deployed_models)
54
+ router = ModelRouter.options(name=model_router.deployment).bind(deployed_models, model_router.path_prefix)
54
55
  return router
ray_embedding/dto.py CHANGED
@@ -20,6 +20,7 @@ class EmbeddingResponse(BaseModel):
20
20
 
21
21
  class ModelRouterConfig(BaseModel):
22
22
  deployment: str
23
+ path_prefix: List[str] = []
23
24
 
24
25
 
25
26
  class ModelDeploymentConfig(BaseModel):
@@ -34,9 +34,9 @@ class EmbeddingModel:
34
34
  trust_remote_code=self.trust_remote_code,
35
35
  model_kwargs=self.model_kwargs)
36
36
 
37
- self.logger.info(f"Successfully initialized embedding model {self.model} using device {self.torch_device}")
37
+ self.logger.info(f"Successfully initialized model {self.model} using device {self.torch_device}")
38
38
 
39
- async def __call__(self, text: Union[str, List[str]], dimensions: Optional[int] = None):
39
+ async def __call__(self, text: Union[str, List[str]], dimensions: Optional[int] = None) -> List[List[float]]:
40
40
  """Compute embeddings for the input text using the loaded model."""
41
41
  if isinstance(text, str):
42
42
  text = [text]
@@ -53,8 +53,8 @@ class EmbeddingModel:
53
53
  embeddings = embeddings / torch.norm(embeddings, dim=1, keepdim=True)
54
54
 
55
55
  # Move all embeddings to CPU at once before conversion
56
- embeddings = embeddings.cpu().tolist()
57
- return embeddings
56
+ embeddings_list = embeddings.cpu().tolist()
57
+ return embeddings_list
58
58
 
59
59
 
60
60
  def wait_for_cuda(self, wait: int = 10):
@@ -1,10 +1,11 @@
1
1
  import asyncio
2
2
  import logging
3
3
  import time
4
- from typing import Optional, Dict, List
4
+ from typing import Optional, Dict, List, Tuple, Any, Coroutine
5
5
 
6
6
  from fastapi import FastAPI, HTTPException
7
7
  from ray import serve
8
+ from ray.serve.handle import DeploymentHandle
8
9
 
9
10
  from ray_embedding.dto import EmbeddingResponse, EmbeddingRequest, DeployedModel
10
11
 
@@ -13,11 +14,14 @@ web_api = FastAPI(title="Ray Embeddings - OpenAI-compatible API")
13
14
  @serve.deployment
14
15
  @serve.ingress(web_api)
15
16
  class ModelRouter:
16
- def __init__(self, deployed_models: Dict[str, DeployedModel]):
17
+ def __init__(self, deployed_models: Dict[str, DeployedModel], path_prefix: List[str]):
17
18
  assert deployed_models, "models cannot be empty"
19
+ assert path_prefix, "path_prefix cannot be empty"
20
+
18
21
  logging.basicConfig(level=logging.INFO)
19
22
  self.logger = logging.getLogger(self.__class__.__name__)
20
23
  self.deployed_models = deployed_models
24
+ self.path_prefix = path_prefix
21
25
  self.available_models = [
22
26
  {"id": str(item),
23
27
  "object": "model",
@@ -28,7 +32,6 @@ class ModelRouter:
28
32
  self.logger.info(f"Successfully registered models: {self.available_models}")
29
33
 
30
34
  async def _compute_embeddings_from_resized_batches(self, model: str, inputs: List[str], dimensions: Optional[int] = None):
31
- assert model in self.deployed_models
32
35
  deployed_model = self.deployed_models[model]
33
36
  model_handle = deployed_model.deployment_handle
34
37
  batch_size = deployed_model.batch_size
@@ -38,33 +41,49 @@ class ModelRouter:
38
41
  batches = [inputs[i:i+batch_size] for i in range(0, len(inputs), batch_size)]
39
42
  if len(inputs) > batch_size:
40
43
  self.logger.info(f"Original input (length {len(inputs)} was resized "
41
- f"to {len(batches)} mini-batches of length {batch_size}")
44
+ f"to {len(batches)} mini-batches, each with max length {batch_size}.")
45
+
46
+ # Call embedding model replicas in parallel
42
47
  tasks = [model_handle.remote(batch, dimensions) for batch in batches]
43
48
  all_results = await asyncio.gather(*tasks, return_exceptions=True)
44
49
 
45
50
  # Retry any failed model calls
46
51
  for i, result in enumerate(all_results):
47
52
  if isinstance(result, Exception):
48
- retries = 0
49
- while retries < num_retries:
50
- try:
51
- all_results[i] = await model_handle.remote(batches[i], dimensions)
52
- except Exception as e:
53
- self.logger.warning(e)
54
- finally:
55
- retries += 1
56
- if not isinstance(all_results[i], Exception):
57
- break
58
-
59
- if retries >= num_retries and isinstance(all_results[i], Exception):
60
- raise all_results[i]
61
-
62
- # Flatten the results because all_results is a list of lists
53
+ result_retried, retries = await self._retry_failed_embedding_call(model_handle, batches[i], dimensions,
54
+ num_retries)
55
+ if (retries >= num_retries and isinstance(result_retried, Exception)) or result_retried is None:
56
+ raise result_retried or ValueError(f"Failed to compute `{model}` embeddings for mini-batch of size {batch_size}.")
57
+
58
+ all_results[i] = result_retried
59
+
60
+ # Flatten the results because `all_results` is a list of lists
63
61
  self.logger.info(f"Successfully computed embeddings from {len(batches)} mini-batches")
64
62
  return [emb for result in all_results for emb in result]
65
63
 
66
- @web_api.post("/v1/embeddings", response_model=EmbeddingResponse)
67
- async def compute_embeddings(self, request: EmbeddingRequest):
64
+ async def _retry_failed_embedding_call(self, model_handle: DeploymentHandle, batch: List[str],
65
+ dimensions: Optional[int] = None, num_retries: Optional[int] = 2) \
66
+ -> Tuple[List[List[float]] | Exception, int]:
67
+
68
+ result_retried, retries = None, 0
69
+ while retries < num_retries:
70
+ try:
71
+ result_retried = await model_handle.remote(batch, dimensions)
72
+ except Exception as e:
73
+ result_retried = e
74
+ self.logger.warning(e)
75
+ finally:
76
+ retries += 1
77
+ if not isinstance(result_retried, Exception) and result_retried is not None:
78
+ break
79
+
80
+ return result_retried, retries
81
+
82
+ @web_api.post("/{path_prefix}/v1/embeddings", response_model=EmbeddingResponse)
83
+ async def compute_embeddings(self, path_prefix: str, request: EmbeddingRequest):
84
+ assert path_prefix in self.path_prefix, f"Invalid path prefix: {path_prefix}"
85
+ assert request.model in self.deployed_models, f"Invalid model: {request.model}"
86
+
68
87
  try:
69
88
  inputs = request.input if isinstance(request.input, list) else [request.input]
70
89
  self.logger.info(f"Computing embeddings for a batch of {len(inputs)} texts using model: {request.model}")
@@ -78,7 +97,8 @@ class ModelRouter:
78
97
  self.logger.error(f"Failed to create embeddings: {e}")
79
98
  raise HTTPException(status_code=500, detail=str(e))
80
99
 
81
- @web_api.get("/v1/models")
82
- async def list_models(self):
100
+ @web_api.get("/{path_prefix}/v1/models")
101
+ async def list_models(self, path_prefix: str):
83
102
  """Returns the list of available models in OpenAI-compatible format."""
84
- return {"object": "list", "data": self.available_models}
103
+ assert path_prefix in self.path_prefix, f"Invalid path prefix: {path_prefix}"
104
+ return {"object": "list", "data": self.available_models}
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ray-embedding
3
- Version: 0.11.8
3
+ Version: 0.12.0
4
4
  Summary: Deploy SentenceTransformers embedding models to a ray cluster
5
5
  Author: Crispin Almodovar
6
6
  Author-email:
@@ -0,0 +1,9 @@
1
+ ray_embedding/__init__.py,sha256=YS5LAZfRIwwVvE3C9g7hsauvjgIkqKtHyxkwMFFfAGY,46
2
+ ray_embedding/deploy.py,sha256=_p8LXLfRP2y9z4Jj1BbuVTuDYkuXZpGI_JkTEj_bMa4,2712
3
+ ray_embedding/dto.py,sha256=NwS8EkeZZcfWDE6RFsLG0WtZtnc7onlr95llRSgnIQc,1432
4
+ ray_embedding/embedding_model.py,sha256=cZe6voJTXYz0OKjjkFskC05V8frm3B-B3-Ae1j9GMKo,3408
5
+ ray_embedding/model_router.py,sha256=04PN_ZptFwEGeSSaDVbCodbDMRMu2i-jeamC1Sb2v24,5145
6
+ ray_embedding-0.12.0.dist-info/METADATA,sha256=jSrtclfqYRIfyd5e1KErc3DvDjXSB2TZEvXSyi-aGqk,1094
7
+ ray_embedding-0.12.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
8
+ ray_embedding-0.12.0.dist-info/top_level.txt,sha256=ziCblpJq1YsrryshFqxTRuRMgNuO1_tgvAAkGShATNA,14
9
+ ray_embedding-0.12.0.dist-info/RECORD,,
@@ -1,9 +0,0 @@
1
- ray_embedding/__init__.py,sha256=YS5LAZfRIwwVvE3C9g7hsauvjgIkqKtHyxkwMFFfAGY,46
2
- ray_embedding/deploy.py,sha256=fHyxSGOcNTD_EFmPC2QYugvR77Ulr92bNU6Xk2Mwwf4,2649
3
- ray_embedding/dto.py,sha256=QlduDoqkFHaeF_KgsFeUKq2XWiPMmrgRPy_QjCTSCRE,1399
4
- ray_embedding/embedding_model.py,sha256=2wLk54BZIhHMCnwx5vneU0z4Y7EQs220BFNeLf-UQh4,3387
5
- ray_embedding/model_router.py,sha256=q7SgfOEyslbzKe-_gbIq02T2KLpUI2DmDivdmPf-_ts,3906
6
- ray_embedding-0.11.8.dist-info/METADATA,sha256=jRwJmh8p85_h7w8zuyLqYvS3nBE1f_YYzaR56rNOmXc,1094
7
- ray_embedding-0.11.8.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
8
- ray_embedding-0.11.8.dist-info/top_level.txt,sha256=ziCblpJq1YsrryshFqxTRuRMgNuO1_tgvAAkGShATNA,14
9
- ray_embedding-0.11.8.dist-info/RECORD,,