ray-embedding 0.11.4__py3-none-any.whl → 0.11.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ray_embedding/deploy.py CHANGED
@@ -6,7 +6,7 @@ from ray_embedding.dto import AppConfig, ModelDeploymentConfig
6
6
  from ray_embedding.embedding_model import EmbeddingModel
7
7
  import torch
8
8
 
9
- from ray_embedding.embedding_service import EmbeddingService
9
+ from ray_embedding.model_router import ModelRouter
10
10
 
11
11
 
12
12
  def build_model(model_config: ModelDeploymentConfig) -> DeploymentHandle:
@@ -42,5 +42,5 @@ def build_app(args: AppConfig) -> Application:
42
42
  assert model_router and models
43
43
 
44
44
  served_models = {model_config.model: build_model(model_config) for model_config in models}
45
- app = EmbeddingService.options(name=model_router.deployment).bind(served_models)
46
- return app
45
+ router = ModelRouter.options(name=model_router.deployment).bind(served_models)
46
+ return router
@@ -12,7 +12,7 @@ web_api = FastAPI(title="Ray Embeddings - OpenAI-compatible API")
12
12
 
13
13
  @serve.deployment
14
14
  @serve.ingress(web_api)
15
- class EmbeddingService:
15
+ class ModelRouter:
16
16
  def __init__(self, served_models: Dict[str, DeployedModel]):
17
17
  assert served_models, "models cannot be empty"
18
18
  logging.basicConfig(level=logging.INFO)
@@ -29,7 +29,9 @@ class EmbeddingService:
29
29
 
30
30
  async def _compute_embeddings_from_resized_batches(self, model: str, inputs: List[str], dimensions: Optional[int] = None):
31
31
  assert model in self.served_models
32
+ self.logger.info(f"Retrieving model handle for: {model} ")
32
33
  model_handle = self.served_models[model].deployment_handle
34
+ self.logger.info(f"Model handle: {model_handle} ")
33
35
  batch_size = self.served_models[model].batch_size
34
36
  num_retries = self.served_models[model].num_retries
35
37
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ray-embedding
3
- Version: 0.11.4
3
+ Version: 0.11.6
4
4
  Summary: Deploy SentenceTransformers embedding models to a ray cluster
5
5
  Author: Crispin Almodovar
6
6
  Author-email:
@@ -0,0 +1,9 @@
1
+ ray_embedding/__init__.py,sha256=YS5LAZfRIwwVvE3C9g7hsauvjgIkqKtHyxkwMFFfAGY,46
2
+ ray_embedding/deploy.py,sha256=r3iKbmAQ0OTx6EgyjjwPs3l7Np1MoCxhHoXP-afUuMY,2183
3
+ ray_embedding/dto.py,sha256=QlduDoqkFHaeF_KgsFeUKq2XWiPMmrgRPy_QjCTSCRE,1399
4
+ ray_embedding/embedding_model.py,sha256=9QPbvcRYrRF5Wi67r2htqPDSL1zh2KMZiH1UVAYsjb8,3387
5
+ ray_embedding/model_router.py,sha256=TArjJ05T9ozRRyhGPn1ZXCT2H_TLksJIN5VM4iZFu1o,3973
6
+ ray_embedding-0.11.6.dist-info/METADATA,sha256=iAimygAZ-TTw_Sf55TdPN_WbLkMxCX_4JLD1CZ451mc,1094
7
+ ray_embedding-0.11.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
8
+ ray_embedding-0.11.6.dist-info/top_level.txt,sha256=ziCblpJq1YsrryshFqxTRuRMgNuO1_tgvAAkGShATNA,14
9
+ ray_embedding-0.11.6.dist-info/RECORD,,
@@ -1,9 +0,0 @@
1
- ray_embedding/__init__.py,sha256=YS5LAZfRIwwVvE3C9g7hsauvjgIkqKtHyxkwMFFfAGY,46
2
- ray_embedding/deploy.py,sha256=YRTh6jj6fbJhS3NQg34YbE59zwzFwp_39fDF71H5Ixw,2190
3
- ray_embedding/dto.py,sha256=QlduDoqkFHaeF_KgsFeUKq2XWiPMmrgRPy_QjCTSCRE,1399
4
- ray_embedding/embedding_model.py,sha256=9QPbvcRYrRF5Wi67r2htqPDSL1zh2KMZiH1UVAYsjb8,3387
5
- ray_embedding/embedding_service.py,sha256=ixqyCSdCy1ykRifMf0c3JBeLBqhQAmhUEALyBleq1fg,3852
6
- ray_embedding-0.11.4.dist-info/METADATA,sha256=eNawM5DjPYTE9WIQpa6sw5J5e7qLP6fDy5svivyIs34,1094
7
- ray_embedding-0.11.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
8
- ray_embedding-0.11.4.dist-info/top_level.txt,sha256=ziCblpJq1YsrryshFqxTRuRMgNuO1_tgvAAkGShATNA,14
9
- ray_embedding-0.11.4.dist-info/RECORD,,