rasterix 0.1a1__py3-none-any.whl → 0.1a2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
rasterix/__init__.py CHANGED
@@ -1,4 +1,4 @@
1
- from .raster_index import RasterIndex
1
+ from .raster_index import RasterIndex, assign_index
2
2
 
3
3
 
4
4
  def _get_version():
@@ -12,4 +12,4 @@ def _get_version():
12
12
 
13
13
  __version__ = _get_version()
14
14
 
15
- __all__ = ["RasterIndex"]
15
+ __all__ = ["RasterIndex", "assign_index"]
rasterix/_version.py CHANGED
@@ -1 +1,21 @@
1
- __version__ = "0.1a1"
1
+ # file generated by setuptools-scm
2
+ # don't change, don't track in version control
3
+
4
+ __all__ = ["__version__", "__version_tuple__", "version", "version_tuple"]
5
+
6
+ TYPE_CHECKING = False
7
+ if TYPE_CHECKING:
8
+ from typing import Tuple
9
+ from typing import Union
10
+
11
+ VERSION_TUPLE = Tuple[Union[int, str], ...]
12
+ else:
13
+ VERSION_TUPLE = object
14
+
15
+ version: str
16
+ __version__: str
17
+ __version_tuple__: VERSION_TUPLE
18
+ version_tuple: VERSION_TUPLE
19
+
20
+ __version__ = version = '0.1a2'
21
+ __version_tuple__ = version_tuple = (0, 1, 'a2')
rasterix/raster_index.py CHANGED
@@ -1,17 +1,36 @@
1
+ from __future__ import annotations
2
+
1
3
  import textwrap
2
4
  from collections.abc import Hashable, Mapping
3
- from typing import Any
5
+ from typing import Any, TypeVar
4
6
 
5
7
  import numpy as np
6
8
  import pandas as pd
7
9
  from affine import Affine
8
- from xarray import DataArray, Index, Variable
10
+ from xarray import Coordinates, DataArray, Dataset, Index, Variable
9
11
  from xarray.core.coordinate_transform import CoordinateTransform
10
12
 
11
13
  # TODO: import from public API once it is available
12
14
  from xarray.core.indexes import CoordinateTransformIndex, PandasIndex
13
15
  from xarray.core.indexing import IndexSelResult, merge_sel_results
14
16
 
17
+ from rasterix.rioxarray_compat import guess_dims
18
+
19
+ T_Xarray = TypeVar("T_Xarray", "DataArray", "Dataset")
20
+
21
+
22
+ def assign_index(obj: T_Xarray, *, x_dim: str | None = None, y_dim: str | None = None) -> T_Xarray:
23
+ if x_dim is None or y_dim is None:
24
+ guessed_x, guessed_y = guess_dims(obj)
25
+ x_dim = x_dim or guessed_x
26
+ y_dim = y_dim or guessed_y
27
+
28
+ index = RasterIndex.from_transform(
29
+ obj.rio.transform(), obj.sizes[x_dim], obj.sizes[y_dim], x_dim=x_dim, y_dim=y_dim
30
+ )
31
+ coords = Coordinates.from_xindex(index)
32
+ return obj.assign_coords(coords)
33
+
15
34
 
16
35
  class AffineTransform(CoordinateTransform):
17
36
  """Affine 2D transform wrapper."""
@@ -126,7 +145,7 @@ class AxisAffineTransform(CoordinateTransform):
126
145
  assert dims is None or dims == self.dims
127
146
  return self.forward({self.dim: np.arange(self.size)})
128
147
 
129
- def slice(self, slice: slice) -> "AxisAffineTransform":
148
+ def slice(self, slice: slice) -> AxisAffineTransform:
130
149
  start = max(slice.start or 0, 0)
131
150
  stop = min(slice.stop or self.size, self.size)
132
151
  step = slice.step or 1
@@ -183,7 +202,7 @@ class AxisAffineTransformIndex(CoordinateTransformIndex):
183
202
 
184
203
  def isel( # type: ignore[override]
185
204
  self, indexers: Mapping[Any, int | slice | np.ndarray | Variable]
186
- ) -> "AxisAffineTransformIndex | PandasIndex | None":
205
+ ) -> AxisAffineTransformIndex | PandasIndex | None:
187
206
  idxer = indexers[self.dim]
188
207
 
189
208
  # generate a new index with updated transform if a slice is given
@@ -209,10 +228,13 @@ class AxisAffineTransformIndex(CoordinateTransformIndex):
209
228
  label = labels[coord_name]
210
229
 
211
230
  if isinstance(label, slice):
231
+ if label.start is None:
232
+ label = slice(0, label.stop, label.step)
212
233
  if label.step is None:
213
234
  # continuous interval slice indexing (preserves the index)
214
235
  pos = self.transform.reverse({coord_name: np.array([label.start, label.stop])})
215
- pos = np.round(pos[self.dim]).astype("int")
236
+ # np.round rounds to even, this way we round upwards
237
+ pos = np.floor(pos[self.dim] + 0.5).astype("int")
216
238
  new_start = max(pos[0], 0)
217
239
  new_stop = min(pos[1], self.axis_transform.size)
218
240
  return IndexSelResult({self.dim: slice(new_start, new_stop)})
@@ -240,7 +262,7 @@ class AxisAffineTransformIndex(CoordinateTransformIndex):
240
262
 
241
263
  return result
242
264
 
243
- def to_pandas_index(self) -> "pd.Index":
265
+ def to_pandas_index(self) -> pd.Index:
244
266
  import pandas as pd
245
267
 
246
268
  values = self.transform.generate_coords()
@@ -303,7 +325,7 @@ class RasterIndex(Index):
303
325
  @classmethod
304
326
  def from_transform(
305
327
  cls, affine: Affine, width: int, height: int, x_dim: str = "x", y_dim: str = "y"
306
- ) -> "RasterIndex":
328
+ ) -> RasterIndex:
307
329
  indexes: dict[WrappedIndexCoords, AxisAffineTransformIndex | CoordinateTransformIndex]
308
330
 
309
331
  # pixel centered coordinates
@@ -328,7 +350,7 @@ class RasterIndex(Index):
328
350
  variables: Mapping[Any, Variable],
329
351
  *,
330
352
  options: Mapping[str, Any],
331
- ) -> "RasterIndex":
353
+ ) -> RasterIndex:
332
354
  # TODO: compute bounds, resolution and affine transform from explicit coordinates.
333
355
  raise NotImplementedError("Creating a RasterIndex from existing coordinates is not yet supported.")
334
356
 
@@ -340,7 +362,7 @@ class RasterIndex(Index):
340
362
 
341
363
  return new_variables
342
364
 
343
- def isel(self, indexers: Mapping[Any, int | slice | np.ndarray | Variable]) -> "RasterIndex | None":
365
+ def isel(self, indexers: Mapping[Any, int | slice | np.ndarray | Variable]) -> RasterIndex | None:
344
366
  new_indexes: dict[WrappedIndexCoords, WrappedIndex] = {}
345
367
 
346
368
  for coord_names, index in self._wrapped_indexes.items():
@@ -368,7 +390,7 @@ class RasterIndex(Index):
368
390
  for coord_names, index in self._wrapped_indexes.items():
369
391
  if not isinstance(coord_names, tuple):
370
392
  coord_names = (coord_names,)
371
- index_labels = {k: v for k, v in labels if k in coord_names}
393
+ index_labels = {k: v for k, v in labels.items() if k in coord_names}
372
394
  if index_labels:
373
395
  results.append(index.sel(index_labels, method=method, tolerance=tolerance))
374
396
 
@@ -385,7 +407,7 @@ class RasterIndex(Index):
385
407
  for k, index in self._wrapped_indexes.items()
386
408
  )
387
409
 
388
- def to_pandas_index(self) -> "pd.Index":
410
+ def to_pandas_index(self) -> pd.Index:
389
411
  # conversion is possible only if this raster index encapsulates
390
412
  # exactly one AxisAffineTransformIndex or a PandasIndex associated
391
413
  # to either the x or y axis (1-dimensional) coordinate.
@@ -403,3 +425,14 @@ class RasterIndex(Index):
403
425
  items += [repr(coord_names) + ":", textwrap.indent(repr(index), " ")]
404
426
 
405
427
  return "RasterIndex\n" + "\n".join(items)
428
+
429
+ def transform(self) -> Affine:
430
+ """Returns Affine transform for top-left corners."""
431
+ if len(self._wrapped_indexes) > 1:
432
+ x = self._wrapped_indexes["x"].axis_transform.affine
433
+ y = self._wrapped_indexes["y"].axis_transform.affine
434
+ aff = Affine(x.a, x.b, x.c, y.d, y.e, y.f)
435
+ else:
436
+ index = next(iter(self._wrapped_indexes.values()))
437
+ aff = index.affine
438
+ return aff * Affine.translation(-0.5, -0.5)
File without changes
@@ -0,0 +1,197 @@
1
+ # exactexact wrappers
2
+ from __future__ import annotations
3
+
4
+ from typing import TYPE_CHECKING, Any, Literal
5
+
6
+ import geopandas as gpd
7
+ import numpy as np
8
+ import xarray as xr
9
+ from exactextract import exact_extract
10
+ from exactextract.raster import NumPyRasterSource
11
+
12
+ from .utils import geometries_as_dask_array, is_in_memory
13
+
14
+ if TYPE_CHECKING:
15
+ import dask.array
16
+ import dask_geopandas
17
+
18
+ MIN_CHUNK_SIZE = 2 # exactextract cannot handle arrays of size 1.
19
+
20
+ __all__ = [
21
+ "coverage",
22
+ ]
23
+
24
+
25
+ def get_dtype(coverage_weight, geometries):
26
+ if coverage_weight.lower() == "fraction":
27
+ dtype = "float64"
28
+ elif coverage_weight.lower() == "none":
29
+ dtype = np.min_scalar_type(len(geometries))
30
+ else:
31
+ raise NotImplementedError
32
+ return dtype
33
+
34
+
35
+ def np_coverage(
36
+ x: np.ndarray,
37
+ y: np.ndarray,
38
+ *,
39
+ geometries: gpd.GeoDataFrame,
40
+ coverage_weight: Literal["fraction", "none"] = "fraction",
41
+ ) -> np.ndarray[Any, Any]:
42
+ """
43
+ Parameters
44
+ ----------
45
+
46
+ """
47
+ assert x.ndim == 1
48
+ assert y.ndim == 1
49
+
50
+ dtype = get_dtype(coverage_weight, geometries)
51
+
52
+ xsize = x.size
53
+ ysize = y.size
54
+
55
+ # we need the top left corner, and the bottom right corner
56
+ dx0 = (x[1] - x[0]) / 2
57
+ dx1 = (x[-1] - x[-2]) / 2
58
+ dy0 = np.abs(y[1] - y[0]) / 2
59
+ dy1 = np.abs(y[-1] - y[-2]) / 2
60
+ if y[0] > y[-1]:
61
+ dy0, dy1 = dy1, dy0
62
+
63
+ shape = (ysize, xsize)
64
+ raster = NumPyRasterSource(
65
+ np.broadcast_to([1], shape),
66
+ xmin=x.min() - dx0,
67
+ xmax=x.max() + dx1,
68
+ ymin=y.min() - dy0,
69
+ ymax=y.max() + dy1,
70
+ srs_wkt=geometries.crs.to_wkt(),
71
+ )
72
+ result = exact_extract(
73
+ rast=raster,
74
+ vec=geometries,
75
+ ops=["cell_id", f"coverage(coverage_weight={coverage_weight})"],
76
+ output="pandas",
77
+ # max_cells_in_memory=2*x.size * y.size
78
+ )
79
+ out = np.zeros((len(geometries), *shape), dtype=dtype)
80
+ # TODO: vectorized assignment?
81
+ for i in range(len(geometries)):
82
+ res = result.loc[i]
83
+ # indices = np.unravel_index(res.cell_id, shape=shape)
84
+ # out[(i, *indices)] = offset + i + 1 # 0 is the fill value
85
+ out[i, ...].flat[res.cell_id] = res.coverage
86
+ return out
87
+
88
+
89
+ def coverage_np_dask_wrapper(
90
+ x: np.ndarray, y: np.ndarray, geom_array: np.ndarray, coverage_weight, crs
91
+ ) -> np.ndarray:
92
+ return np_coverage(
93
+ x=x,
94
+ y=y,
95
+ geometries=gpd.GeoDataFrame(geometry=geom_array, crs=crs),
96
+ coverage_weight=coverage_weight,
97
+ )
98
+
99
+
100
+ def dask_coverage(
101
+ x: dask.array.Array,
102
+ y: dask.array.Array,
103
+ *,
104
+ geom_array: dask.array.Array,
105
+ coverage_weight: Literal["fraction", "none"] = "fraction",
106
+ crs: Any,
107
+ ) -> dask.array.Array:
108
+ import dask.array
109
+
110
+ if any(c == 1 for c in x.chunks) or any(c == 1 for c in y.chunks):
111
+ raise ValueError("exactextract does not support a chunksize of 1. Please rechunk to avoid this")
112
+
113
+ return dask.array.blockwise(
114
+ coverage_np_dask_wrapper,
115
+ "gji",
116
+ x,
117
+ "i",
118
+ y,
119
+ "j",
120
+ geom_array,
121
+ "g",
122
+ crs=crs,
123
+ coverage_weight=coverage_weight,
124
+ dtype=get_dtype(coverage_weight, geom_array),
125
+ )
126
+
127
+
128
+ def coverage(
129
+ obj: xr.Dataset | xr.DataArray,
130
+ geometries: gpd.GeoDataFrame | dask_geopandas.GeoDataFrame,
131
+ *,
132
+ xdim="x",
133
+ ydim="y",
134
+ coverage_weight="fraction",
135
+ ) -> xr.DataArray:
136
+ """
137
+ Returns "coverage" fractions for each pixel for each geometry calculated using exactextract.
138
+
139
+ Parameters
140
+ ----------
141
+ obj : xr.DataArray | xr.Dataset
142
+ Xarray object used to extract the grid
143
+ geometries: GeoDataFrame | DaskGeoDataFrame
144
+ Geometries used for to calculate coverage
145
+ xdim: str
146
+ Name of the "x" dimension on ``obj``.
147
+ ydim: str
148
+ Name of the "y" dimension on ``obj``.
149
+ coverage_weight: {"fraction", "none", "area_cartesian", "area_spherical_m2", "area_spherical_km2"}
150
+ Weights to estimate, passed directly to exactextract.
151
+
152
+ Returns
153
+ -------
154
+ DataArray
155
+ 3D dataarray with coverage fraction. The additional dimension is "geometry".
156
+ """
157
+ if "spatial_ref" not in obj.coords:
158
+ raise ValueError("Xarray object must contain the `spatial_ref` variable.")
159
+ # FIXME: assert obj.crs == geometries.crs
160
+ if is_in_memory(obj=obj, geometries=geometries):
161
+ out = np_coverage(
162
+ x=obj[xdim].data,
163
+ y=obj[ydim].data,
164
+ geometries=geometries,
165
+ coverage_weight=coverage_weight,
166
+ )
167
+ geom_array = geometries.to_numpy().squeeze(axis=1)
168
+ else:
169
+ from dask.array import from_array
170
+
171
+ geom_dask_array = geometries_as_dask_array(geometries)
172
+ out = dask_coverage(
173
+ x=from_array(obj[xdim].data, chunks=obj.chunksizes.get(xdim, -1)),
174
+ y=from_array(obj[ydim].data, chunks=obj.chunksizes.get(ydim, -1)),
175
+ geom_array=geom_dask_array,
176
+ crs=geometries.crs,
177
+ coverage_weight=coverage_weight,
178
+ )
179
+ if isinstance(geometries, gpd.GeoDataFrame):
180
+ geom_array = geometries.to_numpy().squeeze(axis=1)
181
+ else:
182
+ geom_array = geom_dask_array
183
+
184
+ coverage = xr.DataArray(
185
+ dims=("geometry", ydim, xdim),
186
+ data=out,
187
+ coords=xr.Coordinates(
188
+ coords={
189
+ xdim: obj.coords[xdim],
190
+ ydim: obj.coords[ydim],
191
+ "spatial_ref": obj.spatial_ref,
192
+ "geometry": geom_array,
193
+ },
194
+ indexes={xdim: obj.xindexes[xdim], ydim: obj.xindexes[ydim]},
195
+ ),
196
+ )
197
+ return coverage
@@ -0,0 +1,335 @@
1
+ # rasterio wrappers
2
+ from __future__ import annotations
3
+
4
+ from collections.abc import Sequence
5
+ from functools import partial
6
+ from typing import TYPE_CHECKING, Any
7
+
8
+ import geopandas as gpd
9
+ import numpy as np
10
+ import odc.geo.xr # noqa
11
+ import rasterio as rio
12
+ import xarray as xr
13
+ from rasterio.features import MergeAlg, geometry_mask
14
+ from rasterio.features import rasterize as rasterize_rio
15
+
16
+ from .utils import is_in_memory, prepare_for_dask
17
+
18
+ if TYPE_CHECKING:
19
+ import dask_geopandas
20
+
21
+
22
+ def dask_rasterize_wrapper(
23
+ geom_array: np.ndarray,
24
+ tile_array: np.ndarray,
25
+ offset_array: np.ndarray,
26
+ *,
27
+ fill: Any,
28
+ all_touched: bool,
29
+ merge_alg: MergeAlg,
30
+ dtype_: np.dtype,
31
+ env: rio.Env | None = None,
32
+ ) -> np.ndarray:
33
+ tile = tile_array.item()
34
+ offset = offset_array.item()
35
+
36
+ return rasterize_geometries(
37
+ geom_array[:, 0, 0].tolist(),
38
+ tile=tile,
39
+ offset=offset,
40
+ all_touched=all_touched,
41
+ merge_alg=merge_alg,
42
+ fill=fill,
43
+ dtype=dtype_,
44
+ env=env,
45
+ )[np.newaxis, :, :]
46
+
47
+
48
+ def rasterize_geometries(
49
+ geometries: Sequence[Any],
50
+ *,
51
+ dtype: np.dtype,
52
+ tile,
53
+ offset,
54
+ env: rio.Env | None = None,
55
+ clear_cache: bool = False,
56
+ **kwargs,
57
+ ):
58
+ # From https://rasterio.readthedocs.io/en/latest/api/rasterio.features.html#rasterio.features.rasterize
59
+ # The out array will be copied and additional temporary raster memory equal to 2x the smaller of out data
60
+ # or GDAL’s max cache size (controlled by GDAL_CACHEMAX, default is 5% of the computer’s physical memory) is required.
61
+ # If GDAL max cache size is smaller than the output data, the array of shapes will be iterated multiple times.
62
+ # Performance is thus a linear function of buffer size. For maximum speed, ensure that GDAL_CACHEMAX
63
+ # is larger than the size of out or out_shape.
64
+ if env is None:
65
+ # out_size = dtype.itemsize * math.prod(tile.shape)
66
+ # env = rio.Env(GDAL_CACHEMAX=1.2 * out_size)
67
+ # FIXME: figure out a good default
68
+ env = rio.Env()
69
+ with env:
70
+ res = rasterize_rio(
71
+ zip(geometries, range(offset, offset + len(geometries)), strict=True),
72
+ out_shape=tile.shape,
73
+ transform=tile.affine,
74
+ **kwargs,
75
+ )
76
+ if clear_cache:
77
+ with rio.Env(GDAL_CACHEMAX=0):
78
+ try:
79
+ from osgeo import gdal
80
+
81
+ # attempt to force-clear the GDAL cache
82
+ assert gdal.GetCacheMax() == 0
83
+ except ImportError:
84
+ pass
85
+ assert res.shape == tile.shape
86
+ return res
87
+
88
+
89
+ def rasterize(
90
+ obj: xr.Dataset | xr.DataArray,
91
+ geometries: gpd.GeoDataFrame | dask_geopandas.GeoDataFrame,
92
+ *,
93
+ xdim="x",
94
+ ydim="y",
95
+ all_touched: bool = False,
96
+ merge_alg: MergeAlg = MergeAlg.replace,
97
+ geoms_rechunk_size: int | None = None,
98
+ env: rio.Env | None = None,
99
+ ) -> xr.DataArray:
100
+ """
101
+ Dask-aware wrapper around ``rasterio.features.rasterize``.
102
+
103
+ Returns a 2D DataArray with integer codes for cells that are within the provided geometries.
104
+
105
+ Parameters
106
+ ----------
107
+ obj: xr.Dataset or xr.DataArray
108
+ Xarray object, whose grid to rasterize
109
+ geometries: GeoDataFrame
110
+ Either a geopandas or dask_geopandas GeoDataFrame
111
+ xdim: str
112
+ Name of the "x" dimension on ``obj``.
113
+ ydim: str
114
+ Name of the "y" dimension on ``obj``.
115
+ all_touched: bool = False
116
+ Passed to ``rasterio.features.rasterize``
117
+ merge_alg: rasterio.MergeAlg
118
+ Passed to ``rasterio.features.rasterize``.
119
+ geoms_rechunk_size: int | None = None
120
+ Size to rechunk the geometry array to *after* conversion from dataframe.
121
+ env: rasterio.Env
122
+ Rasterio Environment configuration. For example, use set ``GDAL_CACHEMAX`
123
+ by passing ``env = rio.Env(GDAL_CACHEMAX=100 * 1e6)``.
124
+
125
+ Returns
126
+ -------
127
+ DataArray
128
+ 2D DataArray with geometries "burned in"
129
+ """
130
+ if xdim not in obj.dims or ydim not in obj.dims:
131
+ raise ValueError(f"Received {xdim=!r}, {ydim=!r} but obj.dims={tuple(obj.dims)}")
132
+ box = obj.odc.geobox
133
+ rasterize_kwargs = dict(all_touched=all_touched, merge_alg=merge_alg)
134
+ # FIXME: box.crs == geometries.crs
135
+ if is_in_memory(obj=obj, geometries=geometries):
136
+ geom_array = geometries.to_numpy().squeeze(axis=1)
137
+ rasterized = rasterize_geometries(
138
+ geom_array.tolist(),
139
+ tile=box,
140
+ offset=0,
141
+ dtype=np.min_scalar_type(len(geometries)),
142
+ fill=len(geometries),
143
+ env=env,
144
+ **rasterize_kwargs,
145
+ )
146
+ else:
147
+ from dask.array import from_array, map_blocks
148
+
149
+ chunks, tiles_array, geom_array = prepare_for_dask(
150
+ obj, geometries, xdim=xdim, ydim=ydim, geoms_rechunk_size=geoms_rechunk_size
151
+ )
152
+ # DaskGeoDataFrame.len() computes!
153
+ num_geoms = geom_array.size
154
+ # with dask, we use 0 as a fill value and replace it later
155
+ dtype = np.min_scalar_type(num_geoms)
156
+ # add 1 to the offset, to account for 0 as fill value
157
+ npoffsets = np.cumsum(np.array([0, *geom_array.chunks[0][:-1]])) + 1
158
+ offsets = from_array(npoffsets, chunks=1)
159
+
160
+ rasterized = map_blocks(
161
+ dask_rasterize_wrapper,
162
+ geom_array[:, np.newaxis, np.newaxis],
163
+ tiles_array[np.newaxis, :, :],
164
+ offsets[:, np.newaxis, np.newaxis],
165
+ chunks=((1,) * geom_array.numblocks[0], chunks[0], chunks[1]),
166
+ meta=np.array([], dtype=dtype),
167
+ fill=0, # good identity value for both sum & replace.
168
+ **rasterize_kwargs,
169
+ dtype_=dtype,
170
+ )
171
+ if merge_alg is MergeAlg.replace:
172
+ rasterized = rasterized.max(axis=0)
173
+ elif merge_alg is MergeAlg.add:
174
+ rasterized = rasterized.sum(axis=0)
175
+
176
+ # and reduce every other value by 1
177
+ rasterized = rasterized.map_blocks(partial(replace_values, to=num_geoms))
178
+
179
+ return xr.DataArray(
180
+ dims=(ydim, xdim),
181
+ data=rasterized,
182
+ coords=xr.Coordinates(
183
+ coords={
184
+ xdim: obj.coords[xdim],
185
+ ydim: obj.coords[ydim],
186
+ "spatial_ref": obj.spatial_ref,
187
+ # TODO: figure out how to propagate geometry array
188
+ # "geometry": geom_array,
189
+ },
190
+ indexes={xdim: obj.xindexes[xdim], ydim: obj.xindexes[ydim]},
191
+ ),
192
+ name="rasterized",
193
+ )
194
+
195
+
196
+ def replace_values(array: np.ndarray, to, *, from_=0) -> np.ndarray:
197
+ mask = array == from_
198
+ array[~mask] -= 1
199
+ array[mask] = to
200
+ return array
201
+
202
+
203
+ # ===========> geometry_mask
204
+
205
+
206
+ def dask_mask_wrapper(
207
+ geom_array: np.ndarray,
208
+ tile_array: np.ndarray,
209
+ *,
210
+ all_touched: bool,
211
+ invert: bool,
212
+ env: rio.Env | None = None,
213
+ ) -> np.ndarray[Any, np.dtype[np.bool_]]:
214
+ tile = tile_array.item()
215
+
216
+ return np_geometry_mask(
217
+ geom_array[:, 0, 0].tolist(),
218
+ tile=tile,
219
+ all_touched=all_touched,
220
+ invert=invert,
221
+ env=env,
222
+ )[np.newaxis, :, :]
223
+
224
+
225
+ def np_geometry_mask(
226
+ geometries: Sequence[Any],
227
+ *,
228
+ tile,
229
+ env: rio.Env | None = None,
230
+ clear_cache: bool = False,
231
+ **kwargs,
232
+ ) -> np.ndarray[Any, np.dtype[np.bool_]]:
233
+ # From https://rasterio.readthedocs.io/en/latest/api/rasterio.features.html#rasterio.features.rasterize
234
+ # The out array will be copied and additional temporary raster memory equal to 2x the smaller of out data
235
+ # or GDAL’s max cache size (controlled by GDAL_CACHEMAX, default is 5% of the computer’s physical memory) is required.
236
+ # If GDAL max cache size is smaller than the output data, the array of shapes will be iterated multiple times.
237
+ # Performance is thus a linear function of buffer size. For maximum speed, ensure that GDAL_CACHEMAX
238
+ # is larger than the size of out or out_shape.
239
+ if env is None:
240
+ # out_size = np.bool_.itemsize * math.prod(tile.shape)
241
+ # env = rio.Env(GDAL_CACHEMAX=1.2 * out_size)
242
+ # FIXME: figure out a good default
243
+ env = rio.Env()
244
+ with env:
245
+ res = geometry_mask(geometries, out_shape=tile.shape, transform=tile.affine, **kwargs)
246
+ if clear_cache:
247
+ with rio.Env(GDAL_CACHEMAX=0):
248
+ try:
249
+ from osgeo import gdal
250
+
251
+ # attempt to force-clear the GDAL cache
252
+ assert gdal.GetCacheMax() == 0
253
+ except ImportError:
254
+ pass
255
+ assert res.shape == tile.shape
256
+ return res
257
+
258
+
259
+ def geometry_clip(
260
+ obj: xr.Dataset | xr.DataArray,
261
+ geometries: gpd.GeoDataFrame | dask_geopandas.GeoDataFrame,
262
+ *,
263
+ xdim="x",
264
+ ydim="y",
265
+ all_touched: bool = False,
266
+ invert: bool = False,
267
+ geoms_rechunk_size: int | None = None,
268
+ env: rio.Env | None = None,
269
+ ) -> xr.DataArray:
270
+ """
271
+ Dask-ified version of rioxarray.clip
272
+
273
+ Parameters
274
+ ----------
275
+ obj : xr.DataArray | xr.Dataset
276
+ Xarray object used to extract the grid
277
+ geometries: GeoDataFrame | DaskGeoDataFrame
278
+ Geometries used for clipping
279
+ xdim: str
280
+ Name of the "x" dimension on ``obj``.
281
+ ydim: str
282
+ Name of the "y" dimension on ``obj``
283
+ all_touched: bool
284
+ Passed to rasterio
285
+ invert: bool
286
+ Whether to preserve values inside the geometry.
287
+ geoms_rechunk_size: int | None = None,
288
+ Chunksize for geometry dimension of the output.
289
+ env: rasterio.Env
290
+ Rasterio Environment configuration. For example, use set ``GDAL_CACHEMAX`
291
+ by passing ``env = rio.Env(GDAL_CACHEMAX=100 * 1e6)``.
292
+
293
+ Returns
294
+ -------
295
+ DataArray
296
+ 3D dataarray with coverage fraction. The additional dimension is "geometry".
297
+ """
298
+ invert = not invert # rioxarray clip convention -> rasterio geometry_mask convention
299
+ if xdim not in obj.dims or ydim not in obj.dims:
300
+ raise ValueError(f"Received {xdim=!r}, {ydim=!r} but obj.dims={tuple(obj.dims)}")
301
+ box = obj.odc.geobox
302
+ geometry_mask_kwargs = dict(all_touched=all_touched, invert=invert)
303
+
304
+ if is_in_memory(obj=obj, geometries=geometries):
305
+ geom_array = geometries.to_numpy().squeeze(axis=1)
306
+ mask = np_geometry_mask(geom_array.tolist(), tile=box, env=env, **geometry_mask_kwargs)
307
+ else:
308
+ from dask.array import map_blocks
309
+
310
+ chunks, tiles_array, geom_array = prepare_for_dask(
311
+ obj, geometries, xdim=xdim, ydim=ydim, geoms_rechunk_size=geoms_rechunk_size
312
+ )
313
+ mask = map_blocks(
314
+ dask_mask_wrapper,
315
+ geom_array[:, np.newaxis, np.newaxis],
316
+ tiles_array[np.newaxis, :, :],
317
+ chunks=((1,) * geom_array.numblocks[0], chunks[0], chunks[1]),
318
+ meta=np.array([], dtype=bool),
319
+ **geometry_mask_kwargs,
320
+ )
321
+ mask = mask.any(axis=0)
322
+
323
+ mask_da = xr.DataArray(
324
+ dims=(ydim, xdim),
325
+ data=mask,
326
+ coords=xr.Coordinates(
327
+ coords={
328
+ xdim: obj.coords[xdim],
329
+ ydim: obj.coords[ydim],
330
+ "spatial_ref": obj.spatial_ref,
331
+ },
332
+ indexes={xdim: obj.xindexes[xdim], ydim: obj.xindexes[ydim]},
333
+ ),
334
+ )
335
+ return obj.where(mask_da)
@@ -0,0 +1,68 @@
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING
4
+
5
+ import geopandas as gpd
6
+ import numpy as np
7
+ import xarray as xr
8
+ from odc.geo.geobox import GeoboxTiles
9
+
10
+ if TYPE_CHECKING:
11
+ import dask.array
12
+ import dask_geopandas
13
+
14
+
15
+ def tiles_to_array(tiles: GeoboxTiles) -> np.ndarray:
16
+ shape = tiles.shape
17
+ array = np.empty(shape=(shape.y, shape.x), dtype=object)
18
+ for i in range(shape.x):
19
+ for j in range(shape.y):
20
+ array[j, i] = tiles[j, i]
21
+
22
+ assert array.shape == tiles.shape
23
+ return array
24
+
25
+
26
+ def is_in_memory(*, obj, geometries) -> bool:
27
+ return not obj.chunks and isinstance(geometries, gpd.GeoDataFrame)
28
+
29
+
30
+ def geometries_as_dask_array(
31
+ geometries: gpd.GeoDataFrame | dask_geopandas.GeoDataFrame,
32
+ ) -> dask.array.Array:
33
+ from dask.array import from_array
34
+
35
+ if isinstance(geometries, gpd.GeoDataFrame):
36
+ return from_array(geometries.geometry.to_numpy(), chunks=-1)
37
+ else:
38
+ divisions = geometries.divisions
39
+ if any(d is None for d in divisions):
40
+ print("computing current divisions, this may be expensive.")
41
+ divisions = geometries.compute_current_divisions()
42
+ chunks = np.diff(divisions).tolist()
43
+ chunks[-1] += 1
44
+ return geometries.to_dask_array(lengths=chunks).squeeze(axis=1)
45
+
46
+
47
+ def prepare_for_dask(
48
+ obj: xr.Dataset | xr.DataArray,
49
+ geometries,
50
+ *,
51
+ xdim: str,
52
+ ydim: str,
53
+ geoms_rechunk_size: int | None,
54
+ ):
55
+ from dask.array import from_array
56
+
57
+ box = obj.odc.geobox
58
+
59
+ chunks = (
60
+ obj.chunksizes.get(ydim, obj.sizes[ydim]),
61
+ obj.chunksizes.get(xdim, obj.sizes[ydim]),
62
+ )
63
+ tiles = GeoboxTiles(box, tile_shape=chunks)
64
+ tiles_array = from_array(tiles_to_array(tiles), chunks=(1, 1))
65
+ geom_array = geometries_as_dask_array(geometries)
66
+ if geoms_rechunk_size is not None:
67
+ geom_array = geom_array.rechunk({0: geoms_rechunk_size})
68
+ return chunks, tiles_array, geom_array
@@ -0,0 +1,224 @@
1
+ # Code adapted from `rioxarray` under the terms of the Apache-2.0 license reproduced below
2
+ # Copyright (c) 2019-2023, Corteva Agriscience™
3
+ # All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ #
17
+ #
18
+ # Apache License
19
+ # Version 2.0, January 2004
20
+ # http://www.apache.org/licenses/
21
+ #
22
+ # TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
23
+ #
24
+ # 1. Definitions.
25
+ #
26
+ # "License" shall mean the terms and conditions for use, reproduction,
27
+ # and distribution as defined by Sections 1 through 9 of this document.
28
+ #
29
+ # "Licensor" shall mean the copyright owner or entity authorized by
30
+ # the copyright owner that is granting the License.
31
+ #
32
+ # "Legal Entity" shall mean the union of the acting entity and all
33
+ # other entities that control, are controlled by, or are under common
34
+ # control with that entity. For the purposes of this definition,
35
+ # "control" means (i) the power, direct or indirect, to cause the
36
+ # direction or management of such entity, whether by contract or
37
+ # otherwise, or (ii) ownership of fifty percent (50%) or more of the
38
+ # outstanding shares, or (iii) beneficial ownership of such entity.
39
+ #
40
+ # "You" (or "Your") shall mean an individual or Legal Entity
41
+ # exercising permissions granted by this License.
42
+ #
43
+ # "Source" form shall mean the preferred form for making modifications,
44
+ # including but not limited to software source code, documentation
45
+ # source, and configuration files.
46
+ #
47
+ # "Object" form shall mean any form resulting from mechanical
48
+ # transformation or translation of a Source form, including but
49
+ # not limited to compiled object code, generated documentation,
50
+ # and conversions to other media types.
51
+ #
52
+ # "Work" shall mean the work of authorship, whether in Source or
53
+ # Object form, made available under the License, as indicated by a
54
+ # copyright notice that is included in or attached to the work
55
+ # (an example is provided in the Appendix below).
56
+ #
57
+ # "Derivative Works" shall mean any work, whether in Source or Object
58
+ # form, that is based on (or derived from) the Work and for which the
59
+ # editorial revisions, annotations, elaborations, or other modifications
60
+ # represent, as a whole, an original work of authorship. For the purposes
61
+ # of this License, Derivative Works shall not include works that remain
62
+ # separable from, or merely link (or bind by name) to the interfaces of,
63
+ # the Work and Derivative Works thereof.
64
+ #
65
+ # "Contribution" shall mean any work of authorship, including
66
+ # the original version of the Work and any modifications or additions
67
+ # to that Work or Derivative Works thereof, that is intentionally
68
+ # submitted to Licensor for inclusion in the Work by the copyright owner
69
+ # or by an individual or Legal Entity authorized to submit on behalf of
70
+ # the copyright owner. For the purposes of this definition, "submitted"
71
+ # means any form of electronic, verbal, or written communication sent
72
+ # to the Licensor or its representatives, including but not limited to
73
+ # communication on electronic mailing lists, source code control systems,
74
+ # and issue tracking systems that are managed by, or on behalf of, the
75
+ # Licensor for the purpose of discussing and improving the Work, but
76
+ # excluding communication that is conspicuously marked or otherwise
77
+ # designated in writing by the copyright owner as "Not a Contribution."
78
+ #
79
+ # "Contributor" shall mean Licensor and any individual or Legal Entity
80
+ # on behalf of whom a Contribution has been received by Licensor and
81
+ # subsequently incorporated within the Work.
82
+ #
83
+ # 2. Grant of Copyright License. Subject to the terms and conditions of
84
+ # this License, each Contributor hereby grants to You a perpetual,
85
+ # worldwide, non-exclusive, no-charge, royalty-free, irrevocable
86
+ # copyright license to reproduce, prepare Derivative Works of,
87
+ # publicly display, publicly perform, sublicense, and distribute the
88
+ # Work and such Derivative Works in Source or Object form.
89
+ #
90
+ # 3. Grant of Patent License. Subject to the terms and conditions of
91
+ # this License, each Contributor hereby grants to You a perpetual,
92
+ # worldwide, non-exclusive, no-charge, royalty-free, irrevocable
93
+ # (except as stated in this section) patent license to make, have made,
94
+ # use, offer to sell, sell, import, and otherwise transfer the Work,
95
+ # where such license applies only to those patent claims licensable
96
+ # by such Contributor that are necessarily infringed by their
97
+ # Contribution(s) alone or by combination of their Contribution(s)
98
+ # with the Work to which such Contribution(s) was submitted. If You
99
+ # institute patent litigation against any entity (including a
100
+ # cross-claim or counterclaim in a lawsuit) alleging that the Work
101
+ # or a Contribution incorporated within the Work constitutes direct
102
+ # or contributory patent infringement, then any patent licenses
103
+ # granted to You under this License for that Work shall terminate
104
+ # as of the date such litigation is filed.
105
+ #
106
+ # 4. Redistribution. You may reproduce and distribute copies of the
107
+ # Work or Derivative Works thereof in any medium, with or without
108
+ # modifications, and in Source or Object form, provided that You
109
+ # meet the following conditions:
110
+ #
111
+ # (a) You must give any other recipients of the Work or
112
+ # Derivative Works a copy of this License; and
113
+ #
114
+ # (b) You must cause any modified files to carry prominent notices
115
+ # stating that You changed the files; and
116
+ #
117
+ # (c) You must retain, in the Source form of any Derivative Works
118
+ # that You distribute, all copyright, patent, trademark, and
119
+ # attribution notices from the Source form of the Work,
120
+ # excluding those notices that do not pertain to any part of
121
+ # the Derivative Works; and
122
+ #
123
+ # (d) If the Work includes a "NOTICE" text file as part of its
124
+ # distribution, then any Derivative Works that You distribute must
125
+ # include a readable copy of the attribution notices contained
126
+ # within such NOTICE file, excluding those notices that do not
127
+ # pertain to any part of the Derivative Works, in at least one
128
+ # of the following places: within a NOTICE text file distributed
129
+ # as part of the Derivative Works; within the Source form or
130
+ # documentation, if provided along with the Derivative Works; or,
131
+ # within a display generated by the Derivative Works, if and
132
+ # wherever such third-party notices normally appear. The contents
133
+ # of the NOTICE file are for informational purposes only and
134
+ # do not modify the License. You may add Your own attribution
135
+ # notices within Derivative Works that You distribute, alongside
136
+ # or as an addendum to the NOTICE text from the Work, provided
137
+ # that such additional attribution notices cannot be construed
138
+ # as modifying the License.
139
+ #
140
+ # You may add Your own copyright statement to Your modifications and
141
+ # may provide additional or different license terms and conditions
142
+ # for use, reproduction, or distribution of Your modifications, or
143
+ # for any such Derivative Works as a whole, provided Your use,
144
+ # reproduction, and distribution of the Work otherwise complies with
145
+ # the conditions stated in this License.
146
+ #
147
+ # 5. Submission of Contributions. Unless You explicitly state otherwise,
148
+ # any Contribution intentionally submitted for inclusion in the Work
149
+ # by You to the Licensor shall be under the terms and conditions of
150
+ # this License, without any additional terms or conditions.
151
+ # Notwithstanding the above, nothing herein shall supersede or modify
152
+ # the terms of any separate license agreement you may have executed
153
+ # with Licensor regarding such Contributions.
154
+ #
155
+ # 6. Trademarks. This License does not grant permission to use the trade
156
+ # names, trademarks, service marks, or product names of the Licensor,
157
+ # except as required for reasonable and customary use in describing the
158
+ # origin of the Work and reproducing the content of the NOTICE file.
159
+ #
160
+ # 7. Disclaimer of Warranty. Unless required by applicable law or
161
+ # agreed to in writing, Licensor provides the Work (and each
162
+ # Contributor provides its Contributions) on an "AS IS" BASIS,
163
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
164
+ # implied, including, without limitation, any warranties or conditions
165
+ # of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
166
+ # PARTICULAR PURPOSE. You are solely responsible for determining the
167
+ # appropriateness of using or redistributing the Work and assume any
168
+ # risks associated with Your exercise of permissions under this License.
169
+ #
170
+ # 8. Limitation of Liability. In no event and under no legal theory,
171
+ # whether in tort (including negligence), contract, or otherwise,
172
+ # unless required by applicable law (such as deliberate and grossly
173
+ # negligent acts) or agreed to in writing, shall any Contributor be
174
+ # liable to You for damages, including any direct, indirect, special,
175
+ # incidental, or consequential damages of any character arising as a
176
+ # result of this License or out of the use or inability to use the
177
+ # Work (including but not limited to damages for loss of goodwill,
178
+ # work stoppage, computer failure or malfunction, or any and all
179
+ # other commercial damages or losses), even if such Contributor
180
+ # has been advised of the possibility of such damages.
181
+ #
182
+ # 9. Accepting Warranty or Additional Liability. While redistributing
183
+ # the Work or Derivative Works thereof, You may choose to offer,
184
+ # and charge a fee for, acceptance of support, warranty, indemnity,
185
+ # or other liability obligations and/or rights consistent with this
186
+ # License. However, in accepting such obligations, You may act only
187
+ # on Your own behalf and on Your sole responsibility, not on behalf
188
+ # of any other Contributor, and only if You agree to indemnify,
189
+ # defend, and hold each Contributor harmless for any liability
190
+ # incurred by, or claims asserted against, such Contributor by reason
191
+ # of your accepting any such warranty or additional liability.
192
+ #
193
+ # END OF TERMS AND CONDITIONS
194
+
195
+ from xarray.core.types import T_Xarray
196
+
197
+
198
+ def guess_dims(obj: T_Xarray) -> tuple[str, str]:
199
+ # Determine the spatial dimensions of the `xarray.DataArray`
200
+ if "x" in obj.dims and "y" in obj.dims:
201
+ x_dim = "x"
202
+ y_dim = "y"
203
+ elif "longitude" in obj.dims and "latitude" in obj.dims:
204
+ x_dim = "longitude"
205
+ y_dim = "latitude"
206
+ else:
207
+ # look for coordinates with CF attributes
208
+ for coord in obj.coords:
209
+ # make sure to only look in 1D coordinates
210
+ # that has the same dimension name as the coordinate
211
+ if obj.coords[coord].dims != (coord,):
212
+ continue
213
+ if (obj.coords[coord].attrs.get("axis", "").upper() == "X") or (
214
+ obj.coords[coord].attrs.get("standard_name", "").lower()
215
+ in ("longitude", "projection_x_coordinate")
216
+ ):
217
+ x_dim = coord
218
+ elif (obj.coords[coord].attrs.get("axis", "").upper() == "Y") or (
219
+ obj.coords[coord].attrs.get("standard_name", "").lower()
220
+ in ("latitude", "projection_y_coordinate")
221
+ ):
222
+ y_dim = coord
223
+
224
+ return x_dim, y_dim
@@ -0,0 +1,81 @@
1
+ Metadata-Version: 2.4
2
+ Name: rasterix
3
+ Version: 0.1a2
4
+ Summary: Raster extensions for Xarray
5
+ License-Expression: Apache-2.0
6
+ License-File: LICENSE
7
+ Keywords: xarray
8
+ Classifier: Development Status :: 4 - Beta
9
+ Classifier: Natural Language :: English
10
+ Classifier: Operating System :: OS Independent
11
+ Classifier: Programming Language :: Python
12
+ Classifier: Programming Language :: Python :: 3.10
13
+ Classifier: Programming Language :: Python :: 3.11
14
+ Classifier: Programming Language :: Python :: 3.12
15
+ Classifier: Programming Language :: Python :: 3.13
16
+ Requires-Python: >=3.10
17
+ Requires-Dist: affine
18
+ Requires-Dist: numpy>=2
19
+ Requires-Dist: pandas>=2
20
+ Requires-Dist: xarray>=2025
21
+ Provides-Extra: dask
22
+ Requires-Dist: dask-geopandas; extra == 'dask'
23
+ Provides-Extra: exactextract
24
+ Requires-Dist: exactextract; extra == 'exactextract'
25
+ Provides-Extra: rasterize
26
+ Requires-Dist: odc-geo; extra == 'rasterize'
27
+ Requires-Dist: rasterio; extra == 'rasterize'
28
+ Requires-Dist: rioxarray; extra == 'rasterize'
29
+ Provides-Extra: test
30
+ Requires-Dist: dask-geopandas; extra == 'test'
31
+ Requires-Dist: exactextract; extra == 'test'
32
+ Requires-Dist: geodatasets; extra == 'test'
33
+ Requires-Dist: netcdf4; extra == 'test'
34
+ Requires-Dist: odc-geo; extra == 'test'
35
+ Requires-Dist: rasterio; extra == 'test'
36
+ Requires-Dist: rioxarray; extra == 'test'
37
+ Description-Content-Type: text/markdown
38
+
39
+ # rasterix: Raster tricks for Xarray
40
+
41
+ <img src="rasterix.png" width="300">
42
+
43
+ This WIP project contains tools to make it easier to analyze raster data with Xarray.
44
+
45
+ The intent is to provide reusable building blocks for the many sub-ecosystems around: e.g. rioxarray, odc-geo, etc.
46
+
47
+ It currently has two pieces.
48
+
49
+ ## 1. RasterIndex
50
+
51
+ See `src/ rasterix/raster_index.py` and `notebooks/raster_index.ipynb` for a brief demo.
52
+
53
+ ## 2. Dask-aware rasterization wrappers
54
+
55
+ See `src/rasterix/rasterize.py` for dask-aware wrappers around [`exactextract`](https://github.com/dcherian/rasterix/blob/ec3f51e60e25aa312e6f48c4b22f91bec70413ed/rasterize.py#L165), [`rasterio.features.rasterize`](https://github.com/dcherian/rasterix/blob/ec3f51e60e25aa312e6f48c4b22f91bec70413ed/rasterize.py#L307), and [`rasterio.features.geometry_mask`](https://github.com/dcherian/rasterix/blob/ec3f51e60e25aa312e6f48c4b22f91bec70413ed/rasterize.py#L472).
56
+
57
+ This code is likely to move elsewhere!
58
+
59
+ ## Trying it out
60
+
61
+ ### PyPI
62
+
63
+ `rasterix` alpha releases are available on pypi
64
+
65
+ ```
66
+ pip install rasterix
67
+ ```
68
+
69
+ ### Installing and testing from source
70
+
71
+ 1. Clone the repo
72
+ ```
73
+ git remote add upstream git@github.com:dcherian/rasterix.git
74
+ cd rasterix
75
+ ```
76
+ 1. [Install hatch](https://hatch.pypa.io/1.12/install/)
77
+ 1. Run the tests
78
+ ```
79
+ hatch env run --env test.py3.13 run-pytest # Run the tests without coverage reports
80
+ hatch env run --env test.py3.13 run-coverage-html # Run the tests with an html coverage report
81
+ ```
@@ -0,0 +1,12 @@
1
+ rasterix/__init__.py,sha256=iSC54A4b-7zgxtKV0CUok0O2-ApGtzVA-6hWG3a5AAA,283
2
+ rasterix/_version.py,sha256=GXl_zMcYDzgVFuUwKX58RZpTAyqqGinrPO2magm0o-c,514
3
+ rasterix/raster_index.py,sha256=5tOG6Sf43Z1DvE_AASxOC4jzkxFCBoIMc97a9qqMqgI,16264
4
+ rasterix/rioxarray_compat.py,sha256=o32UBkWBpNhmC35ar0Ozn2QszpWdPvdDDXif3Mq2ZKg,12428
5
+ rasterix/rasterize/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
+ rasterix/rasterize/exact.py,sha256=Lbl9dfbXInhMqCP_pA91QATt9UywvQstk7sRI7pUqZQ,5623
7
+ rasterix/rasterize/rasterio.py,sha256=TTaS8fJz9mQJ-o_gGs3Cf8NUfTKMTQRbCg8WpSRkWig,11275
8
+ rasterix/rasterize/utils.py,sha256=lzTSraJDBEvfzn7S0jh4o73i6r9VTdQb1dA4hhNceUA,1961
9
+ rasterix-0.1a2.dist-info/METADATA,sha256=9GC9tTVl-4bMnzsctAauJcrXyzHr3GdtcrUkR92ivAc,2830
10
+ rasterix-0.1a2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
11
+ rasterix-0.1a2.dist-info/licenses/LICENSE,sha256=QFnsASMx8_yBNbrS7GVOhJ5CglGsLMj83Rn61uWyMs8,10265
12
+ rasterix-0.1a2.dist-info/RECORD,,
@@ -1,5 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (78.1.0)
2
+ Generator: hatchling 1.27.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
-
@@ -1,26 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: rasterix
3
- Version: 0.1a1
4
- Summary: Raster extensions for Xarray
5
- License-Expression: Apache-2.0
6
- Keywords: xarray
7
- Classifier: Development Status :: 4 - Beta
8
- Classifier: Natural Language :: English
9
- Classifier: Operating System :: OS Independent
10
- Classifier: Programming Language :: Python
11
- Classifier: Programming Language :: Python :: 3.10
12
- Classifier: Programming Language :: Python :: 3.11
13
- Classifier: Programming Language :: Python :: 3.12
14
- Classifier: Programming Language :: Python :: 3.13
15
- Requires-Python: >=3.10
16
- Description-Content-Type: text/markdown
17
- License-File: LICENSE
18
- Requires-Dist: affine
19
- Requires-Dist: pandas>=2
20
- Requires-Dist: numpy>=2
21
- Requires-Dist: xarray>=2025
22
- Dynamic: license-file
23
-
24
- # rasterix: Raster tricks for Xarray
25
-
26
- <img src="rasterix.png" width="400">
@@ -1,8 +0,0 @@
1
- rasterix/__init__.py,sha256=3-ipA2RgFW3FZ_uOr0_CagEw8p8JTMWepIIg3tZCSjY,253
2
- rasterix/_version.py,sha256=oixvE9DVoe4z2vLWfAweh5smrXr9lPfc9uA5ZFJvxvo,21
3
- rasterix/raster_index.py,sha256=Lq-X2F5Zrz5dR2odKvUuG-zYk0nwZ6bBnT-pkRVxJVQ,14976
4
- rasterix-0.1a1.dist-info/licenses/LICENSE,sha256=QFnsASMx8_yBNbrS7GVOhJ5CglGsLMj83Rn61uWyMs8,10265
5
- rasterix-0.1a1.dist-info/METADATA,sha256=0HsuR9lB_sx5wDg7nMWcGcc-ryDajKLGsnAQKQrl8FU,798
6
- rasterix-0.1a1.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
7
- rasterix-0.1a1.dist-info/top_level.txt,sha256=xrxwvEojFP_KT72cB7W-Bax_gPoV4e7Jw_4c41uiaj0,9
8
- rasterix-0.1a1.dist-info/RECORD,,
@@ -1 +0,0 @@
1
- rasterix