rasa-pro 3.8.17__py3-none-any.whl → 3.8.18__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of rasa-pro might be problematic. Click here for more details.

@@ -0,0 +1,370 @@
1
+ from typing import Dict, Any, List, Tuple, Optional, Union
2
+
3
+ import numpy as np
4
+ import scipy.sparse
5
+ from safetensors.numpy import load_file
6
+ from safetensors.numpy import save_file
7
+
8
+ import rasa.shared.utils.io
9
+
10
+
11
+ def _recursive_serialize(
12
+ array: Any, prefix: str, data_dict: Dict[str, Any], metadata: List[Dict[str, Any]]
13
+ ) -> None:
14
+ """Recursively serialize arrays and matrices for high dimensional data."""
15
+ if isinstance(array, np.ndarray) and array.ndim <= 2:
16
+ data_key = f"{prefix}_array"
17
+ data_dict[data_key] = array
18
+ metadata.append({"type": "dense", "key": data_key, "shape": array.shape})
19
+
20
+ elif isinstance(array, list) and all([isinstance(v, float) for v in array]):
21
+ data_key = f"{prefix}_list"
22
+ data_dict[data_key] = np.array(array, dtype=np.float32)
23
+ metadata.append({"type": "list", "key": data_key})
24
+
25
+ elif isinstance(array, list) and all([isinstance(v, int) for v in array]):
26
+ data_key = f"{prefix}_list"
27
+ data_dict[data_key] = np.array(array, dtype=np.int64)
28
+ metadata.append({"type": "list", "key": data_key})
29
+
30
+ elif isinstance(array, scipy.sparse.spmatrix):
31
+ data_key_data = f"{prefix}_data"
32
+ data_key_row = f"{prefix}_row"
33
+ data_key_col = f"{prefix}_col"
34
+ array = array.tocoo()
35
+ data_dict.update(
36
+ {
37
+ data_key_data: array.data,
38
+ data_key_row: array.row,
39
+ data_key_col: array.col,
40
+ }
41
+ )
42
+ metadata.append({"type": "sparse", "key": prefix, "shape": array.shape})
43
+
44
+ elif isinstance(array, list) or isinstance(array, np.ndarray):
45
+ group_metadata = {"type": "group", "subcomponents": []}
46
+ for idx, item in enumerate(array):
47
+ new_prefix = f"{prefix}_{idx}"
48
+ _recursive_serialize(
49
+ item, new_prefix, data_dict, group_metadata["subcomponents"]
50
+ )
51
+ metadata.append(group_metadata)
52
+
53
+
54
+ def _serialize_nested_data(
55
+ nested_data: Dict[str, Dict[str, List["FeatureArray"]]],
56
+ prefix: str,
57
+ data_dict: Dict[str, np.ndarray],
58
+ metadata: List[Dict[str, Union[str, List]]],
59
+ ) -> None:
60
+ """Handle serialization across dictionary and list levels."""
61
+ for outer_key, inner_dict in nested_data.items():
62
+ inner_metadata = {"key": outer_key, "components": []}
63
+
64
+ for inner_key, feature_arrays in inner_dict.items():
65
+ array_metadata = {
66
+ "key": inner_key,
67
+ "number_of_dimensions": feature_arrays[0].number_of_dimensions,
68
+ "features": [],
69
+ }
70
+
71
+ for idx, feature_array in enumerate(feature_arrays):
72
+ feature_prefix = f"{prefix}_{outer_key}_{inner_key}_{idx}"
73
+ _recursive_serialize(
74
+ feature_array.tolist(),
75
+ feature_prefix,
76
+ data_dict,
77
+ array_metadata["features"],
78
+ )
79
+
80
+ inner_metadata["components"].append( # type:ignore[attr-defined]
81
+ array_metadata
82
+ )
83
+
84
+ metadata.append(inner_metadata)
85
+
86
+
87
+ def serialize_nested_feature_arrays(
88
+ nested_feature_array: Dict[str, Dict[str, List["FeatureArray"]]],
89
+ data_filename: str,
90
+ metadata_filename: str,
91
+ ) -> None:
92
+ data_dict: Dict[str, np.ndarray] = {}
93
+ metadata: List[Dict[str, Union[str, List]]] = []
94
+
95
+ _serialize_nested_data(nested_feature_array, "component", data_dict, metadata)
96
+
97
+ # Save serialized data and metadata
98
+ save_file(data_dict, data_filename)
99
+ rasa.shared.utils.io.dump_obj_as_json_to_file(metadata_filename, metadata)
100
+
101
+
102
+ def _recursive_deserialize(
103
+ metadata: List[Dict[str, Any]], data: Dict[str, Any]
104
+ ) -> List[Any]:
105
+ """Recursively deserialize arrays and matrices for high dimensional data."""
106
+ result = []
107
+
108
+ for item in metadata:
109
+ if item["type"] == "dense":
110
+ key = item["key"]
111
+ array = np.asarray(data[key]).reshape(item["shape"])
112
+ result.append(array)
113
+
114
+ elif item["type"] == "list":
115
+ key = item["key"]
116
+ result.append(list(data[key]))
117
+
118
+ elif item["type"] == "sparse":
119
+ data_vals = data[f"{item['key']}_data"]
120
+ row_vals = data[f"{item['key']}_row"]
121
+ col_vals = data[f"{item['key']}_col"]
122
+ sparse_matrix = scipy.sparse.coo_matrix(
123
+ (data_vals, (row_vals, col_vals)), shape=item["shape"]
124
+ )
125
+ result.append(sparse_matrix)
126
+ elif item["type"] == "group":
127
+ sublist = _recursive_deserialize(item["subcomponents"], data)
128
+ result.append(sublist)
129
+
130
+ return result
131
+
132
+
133
+ def _deserialize_nested_data(
134
+ metadata: List[Dict[str, Any]], data_dict: Dict[str, Any]
135
+ ) -> Dict[str, Dict[str, List["FeatureArray"]]]:
136
+ """Handle deserialization across all dictionary and list levels."""
137
+ result: Dict[str, Dict[str, List["FeatureArray"]]] = {}
138
+
139
+ for outer_item in metadata:
140
+ outer_key = outer_item["key"]
141
+ result[outer_key] = {}
142
+
143
+ for inner_item in outer_item["components"]:
144
+ inner_key = inner_item["key"]
145
+ feature_arrays = []
146
+
147
+ # Reconstruct the list of FeatureArrays
148
+ for feature_item in inner_item["features"]:
149
+ # Reconstruct the list of FeatureArrays
150
+ feature_array_data = _recursive_deserialize([feature_item], data_dict)
151
+ # Prepare the input for the FeatureArray;
152
+ # ensure it is np.ndarray compatible
153
+ input_array = np.array(feature_array_data[0], dtype=object)
154
+ feature_array = FeatureArray(
155
+ input_array, inner_item["number_of_dimensions"]
156
+ )
157
+ feature_arrays.append(feature_array)
158
+
159
+ result[outer_key][inner_key] = feature_arrays
160
+
161
+ return result
162
+
163
+
164
+ def deserialize_nested_feature_arrays(
165
+ data_filename: str, metadata_filename: str
166
+ ) -> Dict[str, Dict[str, List["FeatureArray"]]]:
167
+ metadata = rasa.shared.utils.io.read_json_file(metadata_filename)
168
+ data_dict = load_file(data_filename)
169
+
170
+ return _deserialize_nested_data(metadata, data_dict)
171
+
172
+
173
+ class FeatureArray(np.ndarray):
174
+ """Stores any kind of features ready to be used by a RasaModel.
175
+
176
+ Next to the input numpy array of features, it also received the number of
177
+ dimensions of the features.
178
+ As our features can have 1 to 4 dimensions we might have different number of numpy
179
+ arrays stacked. The number of dimensions helps us to figure out how to handle this
180
+ particular feature array. Also, it is automatically determined whether the feature
181
+ array is sparse or not and the number of units is determined as well.
182
+
183
+ Subclassing np.array: https://numpy.org/doc/stable/user/basics.subclassing.html
184
+ """
185
+
186
+ def __new__(
187
+ cls, input_array: np.ndarray, number_of_dimensions: int
188
+ ) -> "FeatureArray":
189
+ """Create and return a new object. See help(type) for accurate signature."""
190
+ FeatureArray._validate_number_of_dimensions(number_of_dimensions, input_array)
191
+
192
+ feature_array = np.asarray(input_array).view(cls)
193
+
194
+ if number_of_dimensions <= 2:
195
+ feature_array.units = input_array.shape[-1]
196
+ feature_array.is_sparse = isinstance(input_array[0], scipy.sparse.spmatrix)
197
+ elif number_of_dimensions == 3:
198
+ feature_array.units = input_array[0].shape[-1]
199
+ feature_array.is_sparse = isinstance(input_array[0], scipy.sparse.spmatrix)
200
+ elif number_of_dimensions == 4:
201
+ feature_array.units = input_array[0][0].shape[-1]
202
+ feature_array.is_sparse = isinstance(
203
+ input_array[0][0], scipy.sparse.spmatrix
204
+ )
205
+ else:
206
+ raise ValueError(
207
+ f"Number of dimensions '{number_of_dimensions}' currently not "
208
+ f"supported."
209
+ )
210
+
211
+ feature_array.number_of_dimensions = number_of_dimensions
212
+
213
+ return feature_array
214
+
215
+ def __init__(
216
+ self, input_array: Any, number_of_dimensions: int, **kwargs: Any
217
+ ) -> None:
218
+ """Initialize. FeatureArray.
219
+
220
+ Needed in order to avoid 'Invalid keyword argument number_of_dimensions
221
+ to function FeatureArray.__init__ '
222
+ Args:
223
+ input_array: the array that contains features
224
+ number_of_dimensions: number of dimensions in input_array
225
+ """
226
+ super().__init__(**kwargs)
227
+ self.number_of_dimensions = number_of_dimensions
228
+
229
+ def __array_finalize__(self, obj: Optional[np.ndarray]) -> None:
230
+ """This method is called when the system allocates a new array from obj.
231
+
232
+ Args:
233
+ obj: A subclass (subtype) of ndarray.
234
+ """
235
+ if obj is None:
236
+ return
237
+
238
+ self.units = getattr(obj, "units", None)
239
+ self.number_of_dimensions = getattr( # type:ignore[assignment]
240
+ obj, "number_of_dimensions", None
241
+ )
242
+ self.is_sparse = getattr(obj, "is_sparse", None)
243
+
244
+ default_attributes = {
245
+ "units": self.units,
246
+ "number_of_dimensions": self.number_of_dimensions,
247
+ "is_spare": self.is_sparse,
248
+ }
249
+ self.__dict__.update(default_attributes)
250
+
251
+ # pytype: disable=attribute-error
252
+ def __array_ufunc__(
253
+ self, ufunc: Any, method: str, *inputs: Any, **kwargs: Any
254
+ ) -> Any:
255
+ """Overwrite this method as we are subclassing numpy array.
256
+
257
+ Args:
258
+ ufunc: The ufunc object that was called.
259
+ method: A string indicating which Ufunc method was called
260
+ (one of "__call__", "reduce", "reduceat", "accumulate", "outer",
261
+ "inner").
262
+ *inputs: A tuple of the input arguments to the ufunc.
263
+ **kwargs: Any additional arguments
264
+
265
+ Returns:
266
+ The result of the operation.
267
+ """
268
+ f = {
269
+ "reduce": ufunc.reduce,
270
+ "accumulate": ufunc.accumulate,
271
+ "reduceat": ufunc.reduceat,
272
+ "outer": ufunc.outer,
273
+ "at": ufunc.at,
274
+ "__call__": ufunc,
275
+ }
276
+ # convert the inputs to np.ndarray to prevent recursion, call the function,
277
+ # then cast it back as FeatureArray
278
+ output = FeatureArray(
279
+ f[method](*(i.view(np.ndarray) for i in inputs), **kwargs),
280
+ number_of_dimensions=kwargs["number_of_dimensions"],
281
+ )
282
+ output.__dict__ = self.__dict__ # carry forward attributes
283
+ return output
284
+
285
+ def __reduce__(self) -> Tuple[Any, Any, Any]:
286
+ """Needed in order to pickle this object.
287
+
288
+ Returns:
289
+ A tuple.
290
+ """
291
+ pickled_state = super(FeatureArray, self).__reduce__()
292
+ if isinstance(pickled_state, str):
293
+ raise TypeError("np array __reduce__ returned string instead of tuple.")
294
+ new_state = pickled_state[2] + (
295
+ self.number_of_dimensions,
296
+ self.is_sparse,
297
+ self.units,
298
+ )
299
+ return pickled_state[0], pickled_state[1], new_state
300
+
301
+ def __setstate__(self, state: Any, **kwargs: Any) -> None:
302
+ """Sets the state.
303
+
304
+ Args:
305
+ state: The state argument must be a sequence that contains the following
306
+ elements version, shape, dtype, isFortan, rawdata.
307
+ **kwargs: Any additional parameter
308
+ """
309
+ # Needed in order to load the object
310
+ self.number_of_dimensions = state[-3]
311
+ self.is_sparse = state[-2]
312
+ self.units = state[-1]
313
+ super(FeatureArray, self).__setstate__(state[0:-3], **kwargs)
314
+
315
+ # pytype: enable=attribute-error
316
+
317
+ @staticmethod
318
+ def _validate_number_of_dimensions(
319
+ number_of_dimensions: int, input_array: np.ndarray
320
+ ) -> None:
321
+ """Validates if the input array has given number of dimensions.
322
+
323
+ Args:
324
+ number_of_dimensions: number of dimensions
325
+ input_array: input array
326
+
327
+ Raises: ValueError in case the dimensions do not match
328
+ """
329
+ # when loading the feature arrays from disk, the shape represents
330
+ # the correct number of dimensions
331
+ if len(input_array.shape) == number_of_dimensions:
332
+ return
333
+
334
+ _sub_array = input_array
335
+ dim = 0
336
+ # Go number_of_dimensions into the given input_array
337
+ for i in range(1, number_of_dimensions + 1):
338
+ _sub_array = _sub_array[0]
339
+ if isinstance(_sub_array, scipy.sparse.spmatrix):
340
+ dim = i
341
+ break
342
+ if isinstance(_sub_array, np.ndarray) and _sub_array.shape[0] == 0:
343
+ # sequence dimension is 0, we are dealing with "fake" features
344
+ dim = i
345
+ break
346
+
347
+ # If the resulting sub_array is sparse, the remaining number of dimensions
348
+ # should be at least 2
349
+ if isinstance(_sub_array, scipy.sparse.spmatrix):
350
+ if dim > 2:
351
+ raise ValueError(
352
+ f"Given number of dimensions '{number_of_dimensions}' does not "
353
+ f"match dimensions of given input array: {input_array}."
354
+ )
355
+ elif isinstance(_sub_array, np.ndarray) and _sub_array.shape[0] == 0:
356
+ # sequence dimension is 0, we are dealing with "fake" features,
357
+ # but they should be of dim 2
358
+ if dim > 2:
359
+ raise ValueError(
360
+ f"Given number of dimensions '{number_of_dimensions}' does not "
361
+ f"match dimensions of given input array: {input_array}."
362
+ )
363
+ # If the resulting sub_array is dense, the sub_array should be a single number
364
+ elif not np.issubdtype(type(_sub_array), np.integer) and not isinstance(
365
+ _sub_array, (np.float32, np.float64)
366
+ ):
367
+ raise ValueError(
368
+ f"Given number of dimensions '{number_of_dimensions}' does not match "
369
+ f"dimensions of given input array: {input_array}."
370
+ )
@@ -20,6 +20,8 @@ import numpy as np
20
20
  import scipy.sparse
21
21
  from sklearn.model_selection import train_test_split
22
22
 
23
+ from rasa.utils.tensorflow.feature_array import FeatureArray
24
+
23
25
  logger = logging.getLogger(__name__)
24
26
 
25
27
 
@@ -37,199 +39,6 @@ def ragged_array_to_ndarray(ragged_array: Iterable[np.ndarray]) -> np.ndarray:
37
39
  return np.array(ragged_array, dtype=object)
38
40
 
39
41
 
40
- class FeatureArray(np.ndarray):
41
- """Stores any kind of features ready to be used by a RasaModel.
42
-
43
- Next to the input numpy array of features, it also received the number of
44
- dimensions of the features.
45
- As our features can have 1 to 4 dimensions we might have different number of numpy
46
- arrays stacked. The number of dimensions helps us to figure out how to handle this
47
- particular feature array. Also, it is automatically determined whether the feature
48
- array is sparse or not and the number of units is determined as well.
49
-
50
- Subclassing np.array: https://numpy.org/doc/stable/user/basics.subclassing.html
51
- """
52
-
53
- def __new__(
54
- cls, input_array: np.ndarray, number_of_dimensions: int
55
- ) -> "FeatureArray":
56
- """Create and return a new object. See help(type) for accurate signature."""
57
- FeatureArray._validate_number_of_dimensions(number_of_dimensions, input_array)
58
-
59
- feature_array = np.asarray(input_array).view(cls)
60
-
61
- if number_of_dimensions <= 2:
62
- feature_array.units = input_array.shape[-1]
63
- feature_array.is_sparse = isinstance(input_array[0], scipy.sparse.spmatrix)
64
- elif number_of_dimensions == 3:
65
- feature_array.units = input_array[0].shape[-1]
66
- feature_array.is_sparse = isinstance(input_array[0], scipy.sparse.spmatrix)
67
- elif number_of_dimensions == 4:
68
- feature_array.units = input_array[0][0].shape[-1]
69
- feature_array.is_sparse = isinstance(
70
- input_array[0][0], scipy.sparse.spmatrix
71
- )
72
- else:
73
- raise ValueError(
74
- f"Number of dimensions '{number_of_dimensions}' currently not "
75
- f"supported."
76
- )
77
-
78
- feature_array.number_of_dimensions = number_of_dimensions
79
-
80
- return feature_array
81
-
82
- def __init__(
83
- self, input_array: Any, number_of_dimensions: int, **kwargs: Any
84
- ) -> None:
85
- """Initialize. FeatureArray.
86
-
87
- Needed in order to avoid 'Invalid keyword argument number_of_dimensions
88
- to function FeatureArray.__init__ '
89
- Args:
90
- input_array: the array that contains features
91
- number_of_dimensions: number of dimensions in input_array
92
- """
93
- super().__init__(**kwargs)
94
- self.number_of_dimensions = number_of_dimensions
95
-
96
- def __array_finalize__(self, obj: Optional[np.ndarray]) -> None:
97
- """This method is called when the system allocates a new array from obj.
98
-
99
- Args:
100
- obj: A subclass (subtype) of ndarray.
101
- """
102
- if obj is None:
103
- return
104
-
105
- self.units = getattr(obj, "units", None)
106
- self.number_of_dimensions = getattr(obj, "number_of_dimensions", None) # type: ignore[assignment] # noqa:E501
107
- self.is_sparse = getattr(obj, "is_sparse", None)
108
-
109
- default_attributes = {
110
- "units": self.units,
111
- "number_of_dimensions": self.number_of_dimensions,
112
- "is_spare": self.is_sparse,
113
- }
114
- self.__dict__.update(default_attributes)
115
-
116
- # pytype: disable=attribute-error
117
- def __array_ufunc__(
118
- self, ufunc: Any, method: Text, *inputs: Any, **kwargs: Any
119
- ) -> Any:
120
- """Overwrite this method as we are subclassing numpy array.
121
-
122
- Args:
123
- ufunc: The ufunc object that was called.
124
- method: A string indicating which Ufunc method was called
125
- (one of "__call__", "reduce", "reduceat", "accumulate", "outer",
126
- "inner").
127
- *inputs: A tuple of the input arguments to the ufunc.
128
- **kwargs: Any additional arguments
129
-
130
- Returns:
131
- The result of the operation.
132
- """
133
- f = {
134
- "reduce": ufunc.reduce,
135
- "accumulate": ufunc.accumulate,
136
- "reduceat": ufunc.reduceat,
137
- "outer": ufunc.outer,
138
- "at": ufunc.at,
139
- "__call__": ufunc,
140
- }
141
- # convert the inputs to np.ndarray to prevent recursion, call the function,
142
- # then cast it back as FeatureArray
143
- output = FeatureArray(
144
- f[method](*(i.view(np.ndarray) for i in inputs), **kwargs),
145
- number_of_dimensions=kwargs["number_of_dimensions"],
146
- )
147
- output.__dict__ = self.__dict__ # carry forward attributes
148
- return output
149
-
150
- def __reduce__(self) -> Tuple[Any, Any, Any]:
151
- """Needed in order to pickle this object.
152
-
153
- Returns:
154
- A tuple.
155
- """
156
- pickled_state = super(FeatureArray, self).__reduce__()
157
- if isinstance(pickled_state, str):
158
- raise TypeError("np array __reduce__ returned string instead of tuple.")
159
- new_state = pickled_state[2] + (
160
- self.number_of_dimensions,
161
- self.is_sparse,
162
- self.units,
163
- )
164
- return pickled_state[0], pickled_state[1], new_state
165
-
166
- def __setstate__(self, state: Any, **kwargs: Any) -> None:
167
- """Sets the state.
168
-
169
- Args:
170
- state: The state argument must be a sequence that contains the following
171
- elements version, shape, dtype, isFortan, rawdata.
172
- **kwargs: Any additional parameter
173
- """
174
- # Needed in order to load the object
175
- self.number_of_dimensions = state[-3]
176
- self.is_sparse = state[-2]
177
- self.units = state[-1]
178
- super(FeatureArray, self).__setstate__(state[0:-3], **kwargs)
179
-
180
- # pytype: enable=attribute-error
181
-
182
- @staticmethod
183
- def _validate_number_of_dimensions(
184
- number_of_dimensions: int, input_array: np.ndarray
185
- ) -> None:
186
- """Validates if the the input array has given number of dimensions.
187
-
188
- Args:
189
- number_of_dimensions: number of dimensions
190
- input_array: input array
191
-
192
- Raises: ValueError in case the dimensions do not match
193
- """
194
- _sub_array = input_array
195
- dim = 0
196
- # Go number_of_dimensions into the given input_array
197
- for i in range(1, number_of_dimensions + 1):
198
- _sub_array = _sub_array[0]
199
- if isinstance(_sub_array, scipy.sparse.spmatrix):
200
- dim = i
201
- break
202
- if isinstance(_sub_array, np.ndarray) and _sub_array.shape[0] == 0:
203
- # sequence dimension is 0, we are dealing with "fake" features
204
- dim = i
205
- break
206
-
207
- # If the resulting sub_array is sparse, the remaining number of dimensions
208
- # should be at least 2
209
- if isinstance(_sub_array, scipy.sparse.spmatrix):
210
- if dim > 2:
211
- raise ValueError(
212
- f"Given number of dimensions '{number_of_dimensions}' does not "
213
- f"match dimensions of given input array: {input_array}."
214
- )
215
- elif isinstance(_sub_array, np.ndarray) and _sub_array.shape[0] == 0:
216
- # sequence dimension is 0, we are dealing with "fake" features,
217
- # but they should be of dim 2
218
- if dim > 2:
219
- raise ValueError(
220
- f"Given number of dimensions '{number_of_dimensions}' does not "
221
- f"match dimensions of given input array: {input_array}."
222
- )
223
- # If the resulting sub_array is dense, the sub_array should be a single number
224
- elif not np.issubdtype(type(_sub_array), np.integer) and not isinstance(
225
- _sub_array, (np.float32, np.float64)
226
- ):
227
- raise ValueError(
228
- f"Given number of dimensions '{number_of_dimensions}' does not match "
229
- f"dimensions of given input array: {input_array}."
230
- )
231
-
232
-
233
42
  class FeatureSignature(NamedTuple):
234
43
  """Signature of feature arrays.
235
44
 
rasa/version.py CHANGED
@@ -1,3 +1,3 @@
1
1
  # this file will automatically be changed,
2
2
  # do not add anything but the version number here!
3
- __version__ = "3.8.17"
3
+ __version__ = "3.8.18"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: rasa-pro
3
- Version: 3.8.17
3
+ Version: 3.8.18
4
4
  Summary: State-of-the-art open-core Conversational AI framework for Enterprises that natively leverages generative AI for effortless assistant development.
5
5
  Home-page: https://rasa.com
6
6
  Keywords: nlp,machine-learning,machine-learning-library,bot,bots,botkit,rasa conversational-agents,conversational-ai,chatbot,chatbot-framework,bot-framework
@@ -33,7 +33,6 @@ Requires-Dist: attrs (>=23.1,<23.2)
33
33
  Requires-Dist: azure-storage-blob (>=12.16.0,<12.17.0)
34
34
  Requires-Dist: boto3 (>=1.27.1,<2.0.0)
35
35
  Requires-Dist: certifi (>=2023.7.22)
36
- Requires-Dist: cloudpickle (>=2.2.1,<3.1)
37
36
  Requires-Dist: colorama (>=0.4.6,<0.5.0) ; sys_platform == "win32"
38
37
  Requires-Dist: colorclass (>=2.2,<2.3)
39
38
  Requires-Dist: coloredlogs (>=15,<16)
@@ -54,7 +53,6 @@ Requires-Dist: importlib-metadata (>=6.8.0,<7.0.0)
54
53
  Requires-Dist: importlib-resources (>=6.1.1,<7.0.0)
55
54
  Requires-Dist: jieba (>=0.42.1,<0.43) ; extra == "jieba" or extra == "full"
56
55
  Requires-Dist: jinja2 (>=3.1.4,<4.0.0)
57
- Requires-Dist: joblib (>=1.2.0,<1.3.0)
58
56
  Requires-Dist: jsonpatch (>=1.33,<2.0)
59
57
  Requires-Dist: jsonpickle (>=3.0,<3.1)
60
58
  Requires-Dist: jsonschema (>=4.20,<4.21)
@@ -103,6 +101,7 @@ Requires-Dist: requests (>=2.31.0,<2.32.0)
103
101
  Requires-Dist: rich (>=13.4.2,<14.0.0)
104
102
  Requires-Dist: rocketchat_API (>=1.30.0,<1.31.0)
105
103
  Requires-Dist: ruamel.yaml (>=0.17.21,<0.17.22)
104
+ Requires-Dist: safetensors (>=0.4.5,<0.5.0)
106
105
  Requires-Dist: sanic (>=21.12.2,<21.13.0)
107
106
  Requires-Dist: sanic-cors (>=2.0.1,<2.1.0)
108
107
  Requires-Dist: sanic-jwt (>=1.8.0,<2.0.0)
@@ -113,6 +112,7 @@ Requires-Dist: sentencepiece[sentencepiece] (>=0.1.99,<0.2.0) ; extra == "transf
113
112
  Requires-Dist: sentry-sdk (>=1.14.0,<1.15.0)
114
113
  Requires-Dist: setuptools (>=70.0.0,<70.1.0)
115
114
  Requires-Dist: sklearn-crfsuite (>=0.3.6,<0.4.0)
115
+ Requires-Dist: skops (>=0.10.0,<0.11.0)
116
116
  Requires-Dist: slack-sdk (>=3.21.3,<4.0.0)
117
117
  Requires-Dist: spacy (>=3.5.4,<4.0.0) ; extra == "spacy" or extra == "full"
118
118
  Requires-Dist: structlog (>=23.1.0,<23.2.0)
@@ -383,6 +383,39 @@ To check the types execute
383
383
  make types
384
384
  ```
385
385
 
386
+ ### Backporting
387
+
388
+ In order to port changes to `main` and across release branches, we use the `backport` workflow located at
389
+ the `.github/workflows/backport.yml` path.
390
+ This workflow is triggered by the `backport-to-<release-branch>` label applied to a PR, for example `backport-to-3.8.x`.
391
+ Current available target branches are `main` and maintained release branches.
392
+
393
+ When a PR gets labelled `backport-to-<release-branch>`, a PR is opened by the `backport-github-action` as soon as the
394
+ source PR gets closed (by merging). If you want to close the PR without merging changes, make sure to remove the `backport-to-<release-branch>` label.
395
+
396
+ The PR author which the action assigns to the backporting PR has to resolve any conflicts before approving and merging.
397
+ Release PRs should also be labelled with `backport-to-main` to backport the `CHANGELOG.md` updates to `main`.
398
+ Backporting version updates should be accepted to the `main` branch from the latest release branch only.
399
+
400
+ Here are some guidelines to follow when backporting changes and resolving conflicts:
401
+
402
+ a) for conflicts in `version.py`: accept only the version from the latest release branch. Do not merge version changes
403
+ from earlier release branches into `main` because this could cause issues when trying to make the next minor release.
404
+
405
+ b) for conflicts in `pyproject.toml`: if related to the `rasa-pro` version, accept only the latest release branch;
406
+ if related to other dependencies, accept `main` or whichever is the higher upgrade (main usually has the updated
407
+ dependencies because we only do housekeeping on `main`, apart from vulnerability updates). Be mindful of dependencies that
408
+ are removed from `main` but still exist in former release branches (for example `langchain`).
409
+
410
+ c) for conflicts in `poetry.lock`: accept changes which were already present on the target branch, then run
411
+ `poetry lock --no-update` so that the lock file contains your changes from `pyproject.toml` too.
412
+
413
+ d) for conflicts in `CHANGELOG.md`: Manually place the changelog in their allocated section (e.g. 3.8.10 will go under the
414
+ 3.8 section with the other releases, rather than go at the top of the file)
415
+
416
+ If the backporting workflow fails, you are encouraged to cherry-pick the commits manually and create a PR to
417
+ the target branch. Alternatively, you can install the backporting CLI tool as described [here](https://github.com/sorenlouv/backport?tab=readme-ov-file#install).
418
+
386
419
  ## Releases
387
420
  Rasa has implemented robust policies governing version naming, as well as release pace for major, minor, and patch releases.
388
421
 
@@ -465,9 +498,12 @@ Releasing a new version is quite simple, as the packages are build and distribut
465
498
  9. If however an error occurs in the build, then we should see a failure message automatically posted in the company's Slack (`dev-tribe` channel) like this [one](https://rasa-hq.slack.com/archives/C01M5TAHDHA/p1701444735622919)
466
499
  (In this case do the following checks):
467
500
  - Check the workflows in [Github Actions](https://github.com/RasaHQ/rasa-private/actions) and make sure that the merged PR of the current release is completed successfully. To easily find your PR you can use the filters `event: push` and `branch: <version number>` (example on release 2.4 you can see [here](https://github.com/RasaHQ/rasa/actions/runs/643344876))
468
- - If the workflow is not completed, then try to re run the workflow in case that solves the problem
501
+ - If the workflow is not completed, then try to re-run the workflow in case that solves the problem
469
502
  - If the problem persists, check also the log files and try to find the root cause of the issue
470
503
  - If you still cannot resolve the error, contact the infrastructure team by providing any helpful information from your investigation
504
+ 10. If the release is successful, add the newly created release branch to the backporting configuration in the `.backportrc.json` file to
505
+ the `targetBranchesChoices` list. This is necessary for the backporting workflow to work correctly with new release branches.
506
+
471
507
 
472
508
  ### Cutting a Patch release
473
509