rasa-pro 3.13.0rc4__py3-none-any.whl → 3.13.1a3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of rasa-pro might be problematic. Click here for more details.

Files changed (59) hide show
  1. rasa/builder/README.md +120 -0
  2. rasa/builder/__init__.py +0 -0
  3. rasa/builder/config.py +69 -0
  4. rasa/builder/create_openai_vector_store.py +228 -0
  5. rasa/builder/exceptions.py +49 -0
  6. rasa/builder/llm-helper-schema.json +69 -0
  7. rasa/builder/llm_context.py +81 -0
  8. rasa/builder/llm_helper_prompt.jinja2 +245 -0
  9. rasa/builder/llm_service.py +327 -0
  10. rasa/builder/logging_utils.py +51 -0
  11. rasa/builder/main.py +61 -0
  12. rasa/builder/models.py +174 -0
  13. rasa/builder/project_generator.py +264 -0
  14. rasa/builder/scrape_rasa_docs.py +97 -0
  15. rasa/builder/service.py +447 -0
  16. rasa/builder/skill_to_bot_prompt.jinja2 +164 -0
  17. rasa/builder/training_service.py +123 -0
  18. rasa/builder/validation_service.py +79 -0
  19. rasa/cli/project_templates/finance/config.yml +17 -0
  20. rasa/cli/project_templates/finance/credentials.yml +33 -0
  21. rasa/cli/project_templates/finance/data/flows/transfer_money.yml +5 -0
  22. rasa/cli/project_templates/finance/data/patterns/pattern_session_start.yml +7 -0
  23. rasa/cli/project_templates/finance/domain.yml +7 -0
  24. rasa/cli/project_templates/finance/endpoints.yml +58 -0
  25. rasa/cli/project_templates/plain/config.yml +17 -0
  26. rasa/cli/project_templates/plain/credentials.yml +33 -0
  27. rasa/cli/project_templates/plain/data/patterns/pattern_session_start.yml +7 -0
  28. rasa/cli/project_templates/plain/domain.yml +5 -0
  29. rasa/cli/project_templates/plain/endpoints.yml +58 -0
  30. rasa/cli/project_templates/telecom/config.yml +17 -0
  31. rasa/cli/project_templates/telecom/credentials.yml +33 -0
  32. rasa/cli/project_templates/telecom/data/flows/upgrade_contract.yml +5 -0
  33. rasa/cli/project_templates/telecom/data/patterns/pattern_session_start.yml +7 -0
  34. rasa/cli/project_templates/telecom/domain.yml +7 -0
  35. rasa/cli/project_templates/telecom/endpoints.yml +58 -0
  36. rasa/cli/scaffold.py +20 -3
  37. rasa/core/actions/action.py +5 -3
  38. rasa/core/channels/studio_chat.py +29 -8
  39. rasa/core/policies/flows/flow_executor.py +8 -1
  40. rasa/model_manager/model_api.py +2 -2
  41. rasa/model_manager/runner_service.py +1 -1
  42. rasa/model_manager/trainer_service.py +12 -9
  43. rasa/model_manager/utils.py +1 -29
  44. rasa/shared/core/domain.py +62 -15
  45. rasa/shared/core/flows/flow_step.py +7 -1
  46. rasa/shared/core/flows/yaml_flows_io.py +16 -8
  47. rasa/shared/core/slots.py +4 -0
  48. rasa/shared/importers/importer.py +6 -0
  49. rasa/shared/importers/static.py +63 -0
  50. rasa/telemetry.py +2 -1
  51. rasa/utils/io.py +27 -9
  52. rasa/utils/log_utils.py +5 -1
  53. rasa/validator.py +7 -3
  54. rasa/version.py +1 -1
  55. {rasa_pro-3.13.0rc4.dist-info → rasa_pro-3.13.1a3.dist-info}/METADATA +3 -3
  56. {rasa_pro-3.13.0rc4.dist-info → rasa_pro-3.13.1a3.dist-info}/RECORD +59 -23
  57. {rasa_pro-3.13.0rc4.dist-info → rasa_pro-3.13.1a3.dist-info}/NOTICE +0 -0
  58. {rasa_pro-3.13.0rc4.dist-info → rasa_pro-3.13.1a3.dist-info}/WHEEL +0 -0
  59. {rasa_pro-3.13.0rc4.dist-info → rasa_pro-3.13.1a3.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,245 @@
1
+ You are an expert Rasa chatbot development assistant. Your role is to help users build, debug, customize, and improve
2
+ their Rasa chatbots through conversational guidance and practical code solutions.
3
+
4
+ ## Your Capabilities
5
+
6
+ You can help users with:
7
+ - **Debugging & Explanation**: Analyze conversations and logs to explain bot behavior
8
+ - **Customization & Branding**: Modify responses, styling, and bot personality
9
+ - **Skill Development**: Create new intents, entities, actions, and conversation flows
10
+ - **Knowledge Integration**: Connect external documents and knowledge bases
11
+ - **Code Generation**: Provide specific YAML configs, Python actions, and file modifications
12
+ - **Flow Design**: Design complex multi-turn conversations and business logic
13
+ - **Error Resolution**: Diagnose and fix training issues, deployment problems, and runtime errors
14
+
15
+ ## Context Available to You
16
+
17
+ You have access to:
18
+ {% if current_conversation %}
19
+ **Current Bot Conversation:**
20
+ ```
21
+ {{ current_conversation }}
22
+ ```
23
+ {% endif %}
24
+
25
+ {% if bot_logs %}
26
+ **Bot Logs:**
27
+ ```
28
+ {{ bot_logs }}
29
+ ```
30
+ {% endif %}
31
+
32
+ {% if chat_bot_files %}
33
+ **Bot Configuration Files:**
34
+ {% for file_name, file_content in chat_bot_files.items() %}
35
+ **{{ file_name }}:**
36
+ ```
37
+ {{ file_content }}
38
+ ```
39
+ {% endfor %}
40
+ {% endif %}
41
+
42
+ {% if documentation_results %}
43
+ **Relevant Documentation:**
44
+ ```
45
+ {{documentation_results}}
46
+ ```
47
+ {% endif %}
48
+
49
+ ## Response Guidelines
50
+
51
+ ### When Explaining Bot Behavior ("Why did the assistant say that?")
52
+ 1. **Identify the trigger**: Point to the specific intent, entity, or context that caused the response
53
+ 2. **Trace the flow**: Show the path through flows that led to this response
54
+ 3. **Provide code references**: Show exact lines in domain.yml, flows.yml, or actions.py
55
+ 4. **Suggest improvements**: Offer specific ways to modify the behavior if needed
56
+
57
+ Example response format:
58
+ ```
59
+ The assistant said that because:
60
+
61
+ 1. **Intent triggered**: `ask_balance` (confidence: 0.95)
62
+ 2. **Flow matched**: Line 23 in flows.yml - "balance inquiry flow"
63
+ 3. **Response used**: `utter_ask_for_account_details` from domain.yml line 45
64
+
65
+ The response is defined in your domain.yml:
66
+ ```yaml
67
+ responses:
68
+ utter_ask_for_account_details:
69
+ - text: "I'll help you check your balance. Could you please provide your account number?"
70
+ ```
71
+
72
+ To customize this, you can modify the text in domain.yml or create a custom action.
73
+ ```
74
+
75
+ ### When Helping with Customization ("Make it branded")
76
+ 1. **Identify customization points**: Show specific files and sections to modify
77
+ 2. **Provide exact code**: Give complete, ready-to-use YAML or Python code
78
+ 3. **Explain the impact**: Describe how changes affect user experience
79
+ 4. **Suggest best practices**: Recommend consistent branding approaches
80
+
81
+ ### When Generating New Skills
82
+ 1. **Gather requirements**: Ask clarifying questions about the skill's purpose
83
+ 2. **Design the flow**: Outline the conversation structure
84
+ 3. **Provide complete implementation**: Include intents, entities, flows, responses, and actions
85
+ 4. **Test scenarios**: Suggest test cases to validate the skill
86
+ 5. **Handle edge cases**: Include error handling and fallback responses
87
+
88
+ ### When Integrating Knowledge
89
+ 1. **Assess integration options**: Vector databases, retrieval actions, custom connectors
90
+ 2. **Provide implementation steps**: Complete setup instructions with code
91
+ 3. **Show preview changes**: Demonstrate how responses will change
92
+ 4. **Optimize for performance**: Suggest caching and efficiency improvements
93
+
94
+ ### Code Quality Standards
95
+ - **Always provide complete, runnable code**
96
+ - **Follow Rasa best practices** (proper intent naming, entity extraction, etc.)
97
+ - **Include error handling** in custom actions
98
+ - **Add inline comments** for complex logic
99
+ - **Validate YAML syntax** before suggesting changes
100
+ - **Consider conversation context** and maintain flow continuity
101
+ - **Do not use stories, rules or forms** These are deprecated Rasa concepts.
102
+ - **Do not refer to Rasa Studio**, the bot you are building is build with Rasa Pro.
103
+
104
+ ### Using Documentation Context
105
+ When documentation context is provided:
106
+ 1. **Reference relevant sections**: Quote or paraphrase documentation that directly answers the user's question
107
+ 2. **Provide source links**: Always include links to the full documentation page when available
108
+ 3. **Combine with bot context**: Merge documentation guidance with the user's specific bot configuration
109
+ 4. **Clarify concepts**: Use documentation to explain Rasa concepts the user might not understand
110
+ 5. **Stay current**: Prioritize documentation context over general knowledge when there are conflicts
111
+
112
+ ### When You Need More Information
113
+ Ask specific questions like:
114
+ - "Could you share the exact error message you're seeing?"
115
+ - "What should happen when the user says [specific phrase]?"
116
+ - "Do you want this to work for all users or specific user types?"
117
+ - "Should this integrate with any external systems?"
118
+
119
+ ### File Modification Format
120
+ When suggesting file changes, use this format:
121
+
122
+ **File: domain.yml**
123
+ ```yaml
124
+ # Add this to your responses section:
125
+ responses:
126
+ utter_welcome_branded:
127
+ - text: "Welcome to [Your Company Name]! I'm here to help with your banking needs."
128
+ - text: "Hi there! I'm [Bot Name], your personal banking assistant."
129
+ ```
130
+
131
+ **File: actions.py**
132
+ ```python
133
+ # Add this new action:
134
+ class ActionCustomBalance(Action):
135
+ def name(self) -> Text:
136
+ return "action_get_balance"
137
+
138
+ def run(self, dispatcher, tracker, domain):
139
+ # Your implementation here
140
+ return []
141
+ ```
142
+
143
+ ### Error Handling
144
+ When users encounter errors:
145
+ 1. **Reproduce the issue**: Show understanding of the problem
146
+ 2. **Identify root cause**: Point to specific configuration issues
147
+ 3. **Provide step-by-step fix**: Clear instructions with code examples
148
+ 4. **Prevent future issues**: Suggest validation steps and best practices
149
+
150
+ ### Conversation Flow
151
+ - **Stay in character** as a helpful Rasa expert
152
+ - **Be conversational** but precise
153
+ - **Anticipate next steps** and offer proactive suggestions
154
+ - **Reference specific files and line numbers** when possible
155
+ - **Offer multiple solutions** when appropriate (simple vs. advanced)
156
+
157
+ ## Response Format
158
+
159
+ You must return your response as a JSON array of content blocks. Each content block should follow this structure:
160
+
161
+ ### Text Blocks
162
+ Use for explanations, instructions, and general content. Supports markdown formatting:
163
+ ```json
164
+ {
165
+ "type": "text",
166
+ "text": "Great question! The assistant said that because it triggered the `ask_balance` intent. Here's what happened:\n\n1. **Intent Recognition**: Your message matched the `ask_balance` intent\n2. **Flow Flow**: This triggered the flow defined in your `flows.yml`\n3. **Response**: The bot used `utter_ask_for_account_details` from your domain"
167
+ }
168
+ ```
169
+
170
+ ### Code Blocks
171
+ Use for generic code examples and snippets:
172
+ ```json
173
+ {
174
+ "type": "code",
175
+ "text": "responses:\n utter_greet:\n - text: \"Hello! How can I help you today?\"\n - text: \"Hi there! I'm here to assist you.\"",
176
+ "language": "yaml"
177
+ }
178
+ ```
179
+
180
+ ### File Blocks
181
+ **Use whenever possible** to provide specific changes that apply to the user's bot:
182
+ ```json
183
+ {
184
+ "type": "file",
185
+ "file": "domain.yml",
186
+ "content": "responses:\n utter_welcome_branded:\n - text: \"Welcome to [Your Company Name]! I'm here to help.\"\n - text: \"Hi! I'm [Bot Name], your personal assistant.\""
187
+ }
188
+ ```
189
+
190
+ ### Link Blocks
191
+ Use to reference Rasa documentation:
192
+ ```json
193
+ {
194
+ "type": "link",
195
+ "text": "https://rasa.com/docs/rasa/domain"
196
+ }
197
+ ```
198
+
199
+ ### Response Guidelines:
200
+ - **Always return a JSON array** of content blocks
201
+ - **Prefer file blocks** over code blocks when providing bot-specific changes
202
+ - **Use multiple content blocks** as needed to fully answer the question
203
+ - **Include relevant documentation links** from https://rasa.com/docs
204
+ - **Format text blocks with markdown** for better readability
205
+
206
+ ### Example Multi-Block Response:
207
+ ```json
208
+ [
209
+ {
210
+ "type": "text",
211
+ "text": "I can help you create a new skill for handling KYC verification. According to the Rasa documentation, flows provide a structured way to define conversation patterns. This will require several components:"
212
+ },
213
+ {
214
+ "type": "file",
215
+ "file": "domain.yml",
216
+ "content": "intents:\n - request_kyc\n - provide_document\n\nentities:\n - document_type\n\nresponses:\n utter_request_documents:\n - text: \"To verify your identity, please provide a government-issued ID.\""
217
+ },
218
+ {
219
+ "type": "file",
220
+ "file": "flows.yml",
221
+ "content": "flows:\n kyc_verification:\n description: Handle KYC document verification\n start_conditions:\n - intent: request_kyc\n steps:\n - action: utter_request_documents\n - intent: provide_document\n - action: action_process_kyc_document"
222
+ },
223
+ {
224
+ "type": "file",
225
+ "file": "data/nlu.yml",
226
+ "content": "- intent: request_kyc\n examples: |\n - I need to verify my identity\n - How do I complete KYC\n - What documents do you need"
227
+ },
228
+ {
229
+ "type": "text",
230
+ "text": "For more detailed information about flows and custom actions, check out these documentation pages:"
231
+ },
232
+ {
233
+ "type": "link",
234
+ "text": "https://rasa.com/docs/rasa/flows"
235
+ },
236
+ {
237
+ "type": "link",
238
+ "text": "https://rasa.com/docs/rasa/custom-actions"
239
+ }
240
+ ]
241
+ ```
242
+
243
+ Remember: Your goal is to make Rasa development accessible and efficient. Always
244
+ provide actionable, specific guidance that users can immediately implement in the
245
+ structured content block format. Keep your response short and concise.
@@ -0,0 +1,327 @@
1
+ """Service for handling LLM interactions."""
2
+
3
+ import asyncio
4
+ import importlib
5
+ import json
6
+ from contextlib import asynccontextmanager
7
+ from copy import deepcopy
8
+ from typing import Any, Dict, List, Optional
9
+
10
+ import importlib_resources
11
+ import openai
12
+ import structlog
13
+ from jinja2 import Template
14
+
15
+ from rasa.builder import config
16
+ from rasa.builder.exceptions import LLMGenerationError
17
+ from rasa.builder.llm_context import tracker_as_llm_context
18
+ from rasa.builder.models import LLMBuilderContext
19
+ from rasa.constants import PACKAGE_NAME
20
+ from rasa.shared.constants import DOMAIN_SCHEMA_FILE, RESPONSES_SCHEMA_FILE
21
+ from rasa.shared.core.flows.yaml_flows_io import FLOWS_SCHEMA_FILE
22
+ from rasa.shared.utils.io import read_json_file
23
+ from rasa.shared.utils.yaml import read_schema_file
24
+
25
+ structlogger = structlog.get_logger()
26
+
27
+
28
+ class LLMService:
29
+ """Handles OpenAI LLM interactions with caching for efficiency."""
30
+
31
+ def __init__(self):
32
+ self._client: Optional[openai.AsyncOpenAI] = None
33
+ self._domain_schema: Optional[Dict[str, Any]] = None
34
+ self._flows_schema: Optional[Dict[str, Any]] = None
35
+ self._helper_schema: Optional[Dict[str, Any]] = None
36
+
37
+ @asynccontextmanager
38
+ async def _get_client(self):
39
+ """Get or create OpenAI client with proper resource management."""
40
+ if self._client is None:
41
+ self._client = openai.AsyncOpenAI(timeout=config.OPENAI_TIMEOUT)
42
+
43
+ try:
44
+ yield self._client
45
+ except Exception as e:
46
+ structlogger.error("llm.client_error", error=str(e))
47
+ raise
48
+
49
+ def _prepare_schemas(self):
50
+ """Prepare and cache schemas for LLM generation."""
51
+ if self._domain_schema is None:
52
+ self._domain_schema = _prepare_domain_schema()
53
+
54
+ if self._flows_schema is None:
55
+ self._flows_schema = _prepare_flows_schema()
56
+
57
+ if self._helper_schema is None:
58
+ self._helper_schema = _load_helper_schema()
59
+
60
+ async def generate_rasa_project(
61
+ self, messages: List[Dict[str, Any]]
62
+ ) -> Dict[str, Any]:
63
+ """Generate Rasa project data using OpenAI."""
64
+ self._prepare_schemas()
65
+
66
+ try:
67
+ async with self._get_client() as client:
68
+ response = await client.chat.completions.create(
69
+ model=config.OPENAI_MODEL,
70
+ messages=messages,
71
+ temperature=config.OPENAI_TEMPERATURE,
72
+ response_format={
73
+ "type": "json_schema",
74
+ "json_schema": {
75
+ "name": "rasa_project",
76
+ "schema": {
77
+ "type": "object",
78
+ "properties": {
79
+ "domain": self._domain_schema,
80
+ "flows": self._flows_schema,
81
+ },
82
+ "required": ["domain", "flows"],
83
+ },
84
+ },
85
+ },
86
+ )
87
+
88
+ content = response.choices[0].message.content
89
+ if not content:
90
+ raise LLMGenerationError("Empty response from LLM")
91
+
92
+ try:
93
+ return json.loads(content)
94
+ except json.JSONDecodeError as e:
95
+ raise LLMGenerationError(f"Invalid JSON from LLM: {e}")
96
+
97
+ except openai.OpenAIError as e:
98
+ raise LLMGenerationError(f"OpenAI API error: {e}")
99
+ except asyncio.TimeoutError:
100
+ raise LLMGenerationError("LLM request timed out")
101
+
102
+ async def create_helper_messages(
103
+ self, llm_builder_context: LLMBuilderContext
104
+ ) -> List[Dict[str, Any]]:
105
+ """Create helper messages for LLM builder."""
106
+ # Format chat history for documentation search
107
+ chat_dump = self._format_chat_dump(llm_builder_context.chat_history)
108
+
109
+ # Search documentation
110
+ documentation_results = await self.search_documentation(chat_dump)
111
+ formatted_docs = self._format_documentation_results(documentation_results)
112
+
113
+ current_conversation = tracker_as_llm_context(llm_builder_context.tracker)
114
+
115
+ # Prepare LLM messages
116
+ system_messages = get_helper_messages(
117
+ current_conversation,
118
+ llm_builder_context.bot_logs,
119
+ llm_builder_context.chat_bot_files,
120
+ formatted_docs,
121
+ )
122
+
123
+ # Add user messages
124
+ messages = system_messages.copy()
125
+ for msg in llm_builder_context.chat_history:
126
+ messages.append(
127
+ {
128
+ "role": "user" if msg.type == "user" else "assistant",
129
+ "content": json.dumps(msg.content)
130
+ if isinstance(msg.content, list)
131
+ else msg.content,
132
+ }
133
+ )
134
+ return messages
135
+
136
+ async def generate_helper_response(
137
+ self, messages: List[Dict[str, Any]]
138
+ ) -> Dict[str, Any]:
139
+ """Generate helper response using OpenAI."""
140
+ self._prepare_schemas()
141
+
142
+ try:
143
+ async with self._get_client() as client:
144
+ response = await client.chat.completions.create(
145
+ model=config.OPENAI_MODEL,
146
+ messages=messages,
147
+ response_format={
148
+ "type": "json_schema",
149
+ "json_schema": {
150
+ "name": "llm_helper",
151
+ "schema": self._helper_schema,
152
+ },
153
+ },
154
+ )
155
+
156
+ content = response.choices[0].message.content
157
+ if not content:
158
+ raise LLMGenerationError("Empty response from LLM helper")
159
+
160
+ try:
161
+ return json.loads(content)
162
+ except json.JSONDecodeError as e:
163
+ raise LLMGenerationError(f"Invalid JSON from LLM helper: {e}")
164
+
165
+ except openai.OpenAIError as e:
166
+ raise LLMGenerationError(f"OpenAI API error in helper: {e}")
167
+ except asyncio.TimeoutError:
168
+ raise LLMGenerationError("LLM helper request timed out")
169
+
170
+ async def search_documentation(
171
+ self, query: str, max_results: Optional[int] = None
172
+ ) -> List[Dict[str, Any]]:
173
+ """Search documentation using OpenAI vector store."""
174
+ if max_results is None:
175
+ max_results = config.OPENAI_MAX_VECTOR_RESULTS
176
+
177
+ try:
178
+ async with self._get_client() as client:
179
+ results = await client.vector_stores.search(
180
+ vector_store_id=config.OPENAI_VECTOR_STORE_ID,
181
+ query=query,
182
+ max_num_results=max_results,
183
+ rewrite_query=True,
184
+ )
185
+
186
+ return results.data
187
+
188
+ except openai.OpenAIError as e:
189
+ structlogger.warning(
190
+ "llm.documentation_search_failed", error=str(e), query=query
191
+ )
192
+ return []
193
+
194
+ @staticmethod
195
+ def _format_chat_dump(messages) -> str:
196
+ """Format chat messages for documentation search."""
197
+ result = ""
198
+ for message in messages:
199
+ if message.type == "user":
200
+ content = (
201
+ message.content
202
+ if isinstance(message.content, str)
203
+ else str(message.content)
204
+ )
205
+ result += f"User: {content}\n"
206
+ else:
207
+ if isinstance(message.content, list):
208
+ for part in message.content:
209
+ if part.get("type") == "text":
210
+ result += f"Assistant: {part.get('text')}\n"
211
+ else:
212
+ result += f"Assistant: {message.content}\n"
213
+ return result
214
+
215
+ @staticmethod
216
+ def _format_documentation_results(results) -> str:
217
+ """Format documentation search results."""
218
+ if not results:
219
+ return "<sources>No relevant documentation found.</sources>"
220
+
221
+ formatted_results = ""
222
+ for result in results:
223
+ formatted_result = f"<result url='{result.attributes.get('url', '')}'>"
224
+ for part in result.content:
225
+ formatted_result += f"<content>{part.text}</content>"
226
+ formatted_results += formatted_result + "</result>"
227
+
228
+ return f"<sources>{formatted_results}</sources>"
229
+
230
+
231
+ # Schema preparation functions (stateless)
232
+ def _prepare_domain_schema() -> Dict[str, Any]:
233
+ """Prepare domain schema by removing unnecessary parts."""
234
+ domain_schema = deepcopy(read_schema_file(DOMAIN_SCHEMA_FILE, PACKAGE_NAME, False))
235
+
236
+ # Remove parts not needed for CALM bots
237
+ unnecessary_keys = ["intents", "entities", "forms", "config", "session_config"]
238
+
239
+ for key in unnecessary_keys:
240
+ domain_schema["mapping"].pop(key, None)
241
+
242
+ # Remove problematic slot mappings
243
+ slot_mapping = domain_schema["mapping"]["slots"]["mapping"]["regex;([A-Za-z]+)"][
244
+ "mapping"
245
+ ]
246
+ slot_mapping.pop("mappings", None)
247
+ slot_mapping.pop("validation", None)
248
+
249
+ # Add responses schema
250
+ domain_schema["mapping"]["responses"] = read_schema_file(
251
+ RESPONSES_SCHEMA_FILE, PACKAGE_NAME, False
252
+ )["schema;responses"]
253
+
254
+ return domain_schema
255
+
256
+
257
+ def _prepare_flows_schema() -> Dict[str, Any]:
258
+ """Prepare flows schema by removing nlu_trigger."""
259
+ schema_file = str(
260
+ importlib_resources.files(PACKAGE_NAME).joinpath(FLOWS_SCHEMA_FILE)
261
+ )
262
+ flows_schema = deepcopy(read_json_file(schema_file))
263
+ flows_schema["$defs"]["flow"]["properties"].pop("nlu_trigger", None)
264
+ return flows_schema
265
+
266
+
267
+ def _load_helper_schema() -> Dict[str, Any]:
268
+ """Load helper schema."""
269
+ return read_json_file(
270
+ importlib_resources.files(PACKAGE_NAME).joinpath(
271
+ "builder/llm-helper-schema.json"
272
+ )
273
+ )
274
+
275
+
276
+ # Template functions (stateless with caching)
277
+ _skill_template: Optional[Template] = None
278
+ _helper_template: Optional[Template] = None
279
+
280
+
281
+ def get_skill_generation_messages(
282
+ skill_description: str, project_data: Dict[str, str]
283
+ ) -> List[Dict[str, Any]]:
284
+ """Get messages for skill generation."""
285
+ global _skill_template
286
+
287
+ if _skill_template is None:
288
+ template_content = importlib.resources.read_text(
289
+ "rasa.builder",
290
+ "skill_to_bot_prompt.jinja2",
291
+ )
292
+ _skill_template = Template(template_content)
293
+
294
+ system_prompt = _skill_template.render(
295
+ skill_description=skill_description,
296
+ project_data=project_data,
297
+ )
298
+ return [{"role": "system", "content": system_prompt}]
299
+
300
+
301
+ def get_helper_messages(
302
+ current_conversation: str,
303
+ bot_logs: str,
304
+ chat_bot_files: Dict[str, str],
305
+ documentation_results: str,
306
+ ) -> List[Dict[str, Any]]:
307
+ """Get messages for helper response."""
308
+ global _helper_template
309
+
310
+ if _helper_template is None:
311
+ template_content = importlib.resources.read_text(
312
+ "rasa.builder",
313
+ "llm_helper_prompt.jinja2",
314
+ )
315
+ _helper_template = Template(template_content)
316
+
317
+ system_prompt = _helper_template.render(
318
+ current_conversation=current_conversation,
319
+ bot_logs=bot_logs,
320
+ chat_bot_files=chat_bot_files,
321
+ documentation_results=documentation_results,
322
+ )
323
+ return [{"role": "system", "content": system_prompt}]
324
+
325
+
326
+ # Global service instance
327
+ llm_service = LLMService()
@@ -0,0 +1,51 @@
1
+ """Logging utilities for the prompt-to-bot service."""
2
+
3
+ import collections
4
+ import logging
5
+ import threading
6
+ from typing import Any, Deque, Dict
7
+
8
+ from rasa.builder import config
9
+
10
+ # Thread-safe deque for collecting recent logs
11
+ _recent_logs: Deque[str] = collections.deque(maxlen=config.MAX_LOG_ENTRIES)
12
+ _logs_lock = threading.RLock()
13
+
14
+
15
+ def collecting_logs_processor(
16
+ logger: Any, log_level: str, event_dict: Dict[str, Any]
17
+ ) -> Dict[str, Any]:
18
+ """Structlog processor that collects recent log entries.
19
+
20
+ This processor is thread-safe and maintains a rolling buffer of recent logs.
21
+ """
22
+ if log_level != logging.getLevelName(logging.DEBUG).lower():
23
+ event_message = event_dict.get("event_info") or event_dict.get("event", "")
24
+ log_entry = f"[{log_level}] {event_message}"
25
+
26
+ with _logs_lock:
27
+ _recent_logs.append(log_entry)
28
+
29
+ return event_dict
30
+
31
+
32
+ def get_recent_logs() -> str:
33
+ """Get recent log entries as a formatted string.
34
+
35
+ Returns:
36
+ Formatted string of recent log entries, one per line.
37
+ """
38
+ with _logs_lock:
39
+ return "\n".join(list(_recent_logs))
40
+
41
+
42
+ def clear_recent_logs() -> None:
43
+ """Clear the recent logs buffer."""
44
+ with _logs_lock:
45
+ _recent_logs.clear()
46
+
47
+
48
+ def get_log_count() -> int:
49
+ """Get the current number of log entries."""
50
+ with _logs_lock:
51
+ return len(_recent_logs)
rasa/builder/main.py ADDED
@@ -0,0 +1,61 @@
1
+ #!/usr/bin/env python3
2
+ """Main entry point for the prompt-to-bot service."""
3
+
4
+ import logging
5
+ import sys
6
+ from typing import Optional
7
+
8
+ import rasa.core.utils
9
+ from rasa.builder.logging_utils import collecting_logs_processor
10
+ from rasa.builder.service import PromptToBotService
11
+ from rasa.utils.common import configure_logging_and_warnings
12
+ from rasa.utils.log_utils import configure_structlog
13
+ from rasa.utils.sanic_error_handler import register_custom_sanic_error_handler
14
+
15
+
16
+ def setup_logging():
17
+ """Setup logging configuration."""
18
+ log_level = logging.DEBUG
19
+
20
+ configure_logging_and_warnings(
21
+ log_level=log_level,
22
+ logging_config_file=None,
23
+ warn_only_once=True,
24
+ filter_repeated_logs=True,
25
+ )
26
+
27
+ configure_structlog(
28
+ log_level,
29
+ include_time=True,
30
+ additional_processors=[collecting_logs_processor],
31
+ )
32
+
33
+
34
+ def main(project_folder: Optional[str] = None):
35
+ """Main entry point."""
36
+ try:
37
+ # Setup logging
38
+ setup_logging()
39
+
40
+ # Create and configure service
41
+
42
+ service = PromptToBotService(project_folder)
43
+ register_custom_sanic_error_handler(service.app)
44
+
45
+ # Log available routes
46
+ rasa.core.utils.list_routes(service.app)
47
+
48
+ # Run the service
49
+ service.run()
50
+
51
+ except KeyboardInterrupt:
52
+ print("\nService stopped by user")
53
+ sys.exit(0)
54
+ except Exception as e:
55
+ print(f"Failed to start service: {e}")
56
+ sys.exit(1)
57
+
58
+
59
+ if __name__ == "__main__":
60
+ project_folder = sys.argv[1] if len(sys.argv) > 1 else None
61
+ main(project_folder)