rasa-pro 3.11.0a4.dev3__py3-none-any.whl → 3.11.0rc1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of rasa-pro might be problematic. Click here for more details.
- rasa/__main__.py +22 -12
- rasa/api.py +1 -1
- rasa/cli/arguments/default_arguments.py +1 -2
- rasa/cli/arguments/shell.py +5 -1
- rasa/cli/e2e_test.py +1 -1
- rasa/cli/evaluate.py +8 -8
- rasa/cli/inspect.py +4 -4
- rasa/cli/llm_fine_tuning.py +1 -1
- rasa/cli/project_templates/calm/config.yml +5 -7
- rasa/cli/project_templates/calm/endpoints.yml +8 -0
- rasa/cli/project_templates/tutorial/config.yml +8 -5
- rasa/cli/project_templates/tutorial/data/flows.yml +1 -1
- rasa/cli/project_templates/tutorial/data/patterns.yml +5 -0
- rasa/cli/project_templates/tutorial/domain.yml +14 -0
- rasa/cli/project_templates/tutorial/endpoints.yml +7 -7
- rasa/cli/run.py +1 -1
- rasa/cli/scaffold.py +4 -2
- rasa/cli/utils.py +5 -0
- rasa/cli/x.py +8 -8
- rasa/constants.py +1 -1
- rasa/core/channels/channel.py +3 -0
- rasa/core/channels/inspector/dist/assets/{arc-6852c607.js → arc-bc141fb2.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{c4Diagram-d0fbc5ce-acc952b2.js → c4Diagram-d0fbc5ce-be2db283.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{classDiagram-936ed81e-848a7597.js → classDiagram-936ed81e-55366915.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{classDiagram-v2-c3cb15f1-a73d3e68.js → classDiagram-v2-c3cb15f1-bb529518.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{createText-62fc7601-e5ee049d.js → createText-62fc7601-b0ec81d6.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{edges-f2ad444c-771e517e.js → edges-f2ad444c-6166330c.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{erDiagram-9d236eb7-aa347178.js → erDiagram-9d236eb7-5ccc6a8e.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{flowDb-1972c806-651fc57d.js → flowDb-1972c806-fca3bfe4.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{flowDiagram-7ea5b25a-ca67804f.js → flowDiagram-7ea5b25a-4739080f.js} +1 -1
- rasa/core/channels/inspector/dist/assets/flowDiagram-v2-855bc5b3-736177bf.js +1 -0
- rasa/core/channels/inspector/dist/assets/{flowchart-elk-definition-abe16c3d-2dbc568d.js → flowchart-elk-definition-abe16c3d-7c1b0e0f.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{ganttDiagram-9b5ea136-25a65bd8.js → ganttDiagram-9b5ea136-772fd050.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{gitGraphDiagram-99d0ae7c-fdc7378d.js → gitGraphDiagram-99d0ae7c-8eae1dc9.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{index-2c4b9a3b-6f1fd606.js → index-2c4b9a3b-f55afcdf.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{index-efdd30c1.js → index-e7cef9de.js} +68 -68
- rasa/core/channels/inspector/dist/assets/{infoDiagram-736b4530-cb1a041a.js → infoDiagram-736b4530-124d4a14.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{journeyDiagram-df861f2b-14609879.js → journeyDiagram-df861f2b-7c4fae44.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{layout-2490f52b.js → layout-b9885fb6.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{line-40186f1f.js → line-7c59abb6.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{linear-08814e93.js → linear-4776f780.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{mindmap-definition-beec6740-1a534584.js → mindmap-definition-beec6740-2332c46c.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{pieDiagram-dbbf0591-72397b61.js → pieDiagram-dbbf0591-8fb39303.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{quadrantDiagram-4d7f4fd6-3bb0b6a3.js → quadrantDiagram-4d7f4fd6-3c7180a2.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{requirementDiagram-6fc4c22a-57334f61.js → requirementDiagram-6fc4c22a-e910bcb8.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{sankeyDiagram-8f13d901-111e1297.js → sankeyDiagram-8f13d901-ead16c89.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{sequenceDiagram-b655622a-10bcfe62.js → sequenceDiagram-b655622a-29a02a19.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{stateDiagram-59f0c015-acaf7513.js → stateDiagram-59f0c015-042b3137.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{stateDiagram-v2-2b26beab-3ec2a235.js → stateDiagram-v2-2b26beab-2178c0f3.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{styles-080da4f6-62730289.js → styles-080da4f6-23ffa4fc.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{styles-3dcbcfbf-5284ee76.js → styles-3dcbcfbf-94f59763.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{styles-9c745c82-642435e3.js → styles-9c745c82-78a6bebc.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{svgDrawCommon-4835440b-b250a350.js → svgDrawCommon-4835440b-eae2a6f6.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{timeline-definition-5b62e21b-c2b147ed.js → timeline-definition-5b62e21b-5c968d92.js} +1 -1
- rasa/core/channels/inspector/dist/assets/{xychartDiagram-2b33534f-f92cfea9.js → xychartDiagram-2b33534f-fd3db0d5.js} +1 -1
- rasa/core/channels/inspector/dist/index.html +1 -1
- rasa/core/channels/inspector/src/App.tsx +1 -1
- rasa/core/channels/inspector/src/helpers/audiostream.ts +77 -16
- rasa/core/channels/socketio.py +2 -1
- rasa/core/channels/telegram.py +1 -1
- rasa/core/channels/twilio.py +1 -1
- rasa/core/channels/voice_ready/jambonz.py +2 -2
- rasa/core/channels/voice_stream/asr/asr_event.py +5 -0
- rasa/core/channels/voice_stream/asr/azure.py +122 -0
- rasa/core/channels/voice_stream/asr/deepgram.py +16 -6
- rasa/core/channels/voice_stream/audio_bytes.py +1 -0
- rasa/core/channels/voice_stream/browser_audio.py +31 -8
- rasa/core/channels/voice_stream/call_state.py +23 -0
- rasa/core/channels/voice_stream/tts/azure.py +6 -2
- rasa/core/channels/voice_stream/tts/cartesia.py +10 -6
- rasa/core/channels/voice_stream/tts/tts_engine.py +1 -0
- rasa/core/channels/voice_stream/twilio_media_streams.py +27 -18
- rasa/core/channels/voice_stream/util.py +4 -4
- rasa/core/channels/voice_stream/voice_channel.py +177 -39
- rasa/core/featurizers/single_state_featurizer.py +22 -1
- rasa/core/featurizers/tracker_featurizers.py +115 -18
- rasa/core/nlg/contextual_response_rephraser.py +16 -22
- rasa/core/persistor.py +86 -39
- rasa/core/policies/enterprise_search_policy.py +159 -60
- rasa/core/policies/flows/flow_executor.py +7 -4
- rasa/core/policies/intentless_policy.py +120 -22
- rasa/core/policies/ted_policy.py +58 -33
- rasa/core/policies/unexpected_intent_policy.py +15 -7
- rasa/core/processor.py +25 -0
- rasa/core/training/interactive.py +34 -35
- rasa/core/utils.py +8 -3
- rasa/dialogue_understanding/coexistence/llm_based_router.py +58 -16
- rasa/dialogue_understanding/commands/change_flow_command.py +6 -0
- rasa/dialogue_understanding/commands/user_silence_command.py +59 -0
- rasa/dialogue_understanding/commands/utils.py +5 -0
- rasa/dialogue_understanding/generator/constants.py +4 -0
- rasa/dialogue_understanding/generator/flow_retrieval.py +65 -3
- rasa/dialogue_understanding/generator/llm_based_command_generator.py +68 -26
- rasa/dialogue_understanding/generator/multi_step/multi_step_llm_command_generator.py +57 -8
- rasa/dialogue_understanding/generator/single_step/single_step_llm_command_generator.py +64 -7
- rasa/dialogue_understanding/patterns/default_flows_for_patterns.yml +39 -0
- rasa/dialogue_understanding/patterns/user_silence.py +37 -0
- rasa/e2e_test/e2e_test_runner.py +4 -2
- rasa/e2e_test/utils/io.py +1 -1
- rasa/engine/validation.py +297 -7
- rasa/model_manager/config.py +15 -3
- rasa/model_manager/model_api.py +15 -7
- rasa/model_manager/runner_service.py +8 -6
- rasa/model_manager/socket_bridge.py +6 -3
- rasa/model_manager/trainer_service.py +7 -5
- rasa/model_manager/utils.py +28 -7
- rasa/model_service.py +6 -2
- rasa/model_training.py +2 -0
- rasa/nlu/classifiers/diet_classifier.py +38 -25
- rasa/nlu/classifiers/logistic_regression_classifier.py +22 -9
- rasa/nlu/classifiers/sklearn_intent_classifier.py +37 -16
- rasa/nlu/extractors/crf_entity_extractor.py +93 -50
- rasa/nlu/featurizers/sparse_featurizer/count_vectors_featurizer.py +45 -16
- rasa/nlu/featurizers/sparse_featurizer/lexical_syntactic_featurizer.py +52 -17
- rasa/nlu/featurizers/sparse_featurizer/regex_featurizer.py +5 -3
- rasa/shared/constants.py +36 -3
- rasa/shared/core/constants.py +7 -0
- rasa/shared/core/domain.py +26 -0
- rasa/shared/core/flows/flow.py +5 -0
- rasa/shared/core/flows/flows_yaml_schema.json +10 -0
- rasa/shared/core/flows/utils.py +39 -0
- rasa/shared/core/flows/validation.py +96 -0
- rasa/shared/core/slots.py +5 -0
- rasa/shared/nlu/training_data/features.py +120 -2
- rasa/shared/providers/_configs/azure_openai_client_config.py +5 -3
- rasa/shared/providers/_configs/litellm_router_client_config.py +200 -0
- rasa/shared/providers/_configs/model_group_config.py +167 -0
- rasa/shared/providers/_configs/openai_client_config.py +1 -1
- rasa/shared/providers/_configs/rasa_llm_client_config.py +73 -0
- rasa/shared/providers/_configs/self_hosted_llm_client_config.py +1 -0
- rasa/shared/providers/_configs/utils.py +16 -0
- rasa/shared/providers/embedding/_base_litellm_embedding_client.py +12 -15
- rasa/shared/providers/embedding/azure_openai_embedding_client.py +54 -21
- rasa/shared/providers/embedding/litellm_router_embedding_client.py +135 -0
- rasa/shared/providers/llm/_base_litellm_client.py +31 -30
- rasa/shared/providers/llm/azure_openai_llm_client.py +50 -29
- rasa/shared/providers/llm/litellm_router_llm_client.py +127 -0
- rasa/shared/providers/llm/rasa_llm_client.py +112 -0
- rasa/shared/providers/llm/self_hosted_llm_client.py +1 -1
- rasa/shared/providers/mappings.py +19 -0
- rasa/shared/providers/router/__init__.py +0 -0
- rasa/shared/providers/router/_base_litellm_router_client.py +149 -0
- rasa/shared/providers/router/router_client.py +73 -0
- rasa/shared/utils/common.py +8 -0
- rasa/shared/utils/health_check.py +533 -0
- rasa/shared/utils/io.py +28 -6
- rasa/shared/utils/llm.py +350 -46
- rasa/shared/utils/yaml.py +11 -13
- rasa/studio/upload.py +64 -20
- rasa/telemetry.py +80 -17
- rasa/tracing/instrumentation/attribute_extractors.py +74 -17
- rasa/utils/io.py +0 -66
- rasa/utils/log_utils.py +9 -2
- rasa/utils/tensorflow/feature_array.py +366 -0
- rasa/utils/tensorflow/model_data.py +2 -193
- rasa/validator.py +70 -0
- rasa/version.py +1 -1
- {rasa_pro-3.11.0a4.dev3.dist-info → rasa_pro-3.11.0rc1.dist-info}/METADATA +10 -10
- {rasa_pro-3.11.0a4.dev3.dist-info → rasa_pro-3.11.0rc1.dist-info}/RECORD +162 -146
- rasa/core/channels/inspector/dist/assets/flowDiagram-v2-855bc5b3-587d82d8.js +0 -1
- {rasa_pro-3.11.0a4.dev3.dist-info → rasa_pro-3.11.0rc1.dist-info}/NOTICE +0 -0
- {rasa_pro-3.11.0a4.dev3.dist-info → rasa_pro-3.11.0rc1.dist-info}/WHEEL +0 -0
- {rasa_pro-3.11.0a4.dev3.dist-info → rasa_pro-3.11.0rc1.dist-info}/entry_points.txt +0 -0
|
@@ -0,0 +1,366 @@
|
|
|
1
|
+
from typing import Dict, Any, List, Tuple, Optional, Union
|
|
2
|
+
|
|
3
|
+
from safetensors.numpy import save_file
|
|
4
|
+
import numpy as np
|
|
5
|
+
from safetensors.numpy import load_file
|
|
6
|
+
import scipy.sparse
|
|
7
|
+
|
|
8
|
+
import rasa.shared.utils.io
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def _recursive_serialize(
|
|
12
|
+
array: Any, prefix: str, data_dict: Dict[str, Any], metadata: List[Dict[str, Any]]
|
|
13
|
+
) -> None:
|
|
14
|
+
"""Recursively serialize arrays and matrices for high dimensional data."""
|
|
15
|
+
if isinstance(array, np.ndarray) and array.ndim <= 2:
|
|
16
|
+
data_key = f"{prefix}_array"
|
|
17
|
+
data_dict[data_key] = array
|
|
18
|
+
metadata.append({"type": "dense", "key": data_key, "shape": array.shape})
|
|
19
|
+
|
|
20
|
+
elif isinstance(array, list) and all([isinstance(v, float) for v in array]):
|
|
21
|
+
data_key = f"{prefix}_list"
|
|
22
|
+
data_dict[data_key] = np.array(array, dtype=np.float32)
|
|
23
|
+
metadata.append({"type": "list", "key": data_key})
|
|
24
|
+
|
|
25
|
+
elif isinstance(array, list) and all([isinstance(v, int) for v in array]):
|
|
26
|
+
data_key = f"{prefix}_list"
|
|
27
|
+
data_dict[data_key] = np.array(array, dtype=np.int64)
|
|
28
|
+
metadata.append({"type": "list", "key": data_key})
|
|
29
|
+
|
|
30
|
+
elif isinstance(array, scipy.sparse.spmatrix):
|
|
31
|
+
data_key_data = f"{prefix}_data"
|
|
32
|
+
data_key_row = f"{prefix}_row"
|
|
33
|
+
data_key_col = f"{prefix}_col"
|
|
34
|
+
array = array.tocoo()
|
|
35
|
+
data_dict.update(
|
|
36
|
+
{
|
|
37
|
+
data_key_data: array.data,
|
|
38
|
+
data_key_row: array.row,
|
|
39
|
+
data_key_col: array.col,
|
|
40
|
+
}
|
|
41
|
+
)
|
|
42
|
+
metadata.append({"type": "sparse", "key": prefix, "shape": array.shape})
|
|
43
|
+
|
|
44
|
+
elif isinstance(array, list) or isinstance(array, np.ndarray):
|
|
45
|
+
group_metadata = {"type": "group", "subcomponents": []}
|
|
46
|
+
for idx, item in enumerate(array):
|
|
47
|
+
new_prefix = f"{prefix}_{idx}"
|
|
48
|
+
_recursive_serialize(
|
|
49
|
+
item, new_prefix, data_dict, group_metadata["subcomponents"]
|
|
50
|
+
)
|
|
51
|
+
metadata.append(group_metadata)
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def _serialize_nested_data(
|
|
55
|
+
nested_data: Dict[str, Dict[str, List["FeatureArray"]]],
|
|
56
|
+
prefix: str,
|
|
57
|
+
data_dict: Dict[str, np.ndarray],
|
|
58
|
+
metadata: List[Dict[str, Union[str, List]]],
|
|
59
|
+
) -> None:
|
|
60
|
+
"""Handle serialization across dictionary and list levels."""
|
|
61
|
+
for outer_key, inner_dict in nested_data.items():
|
|
62
|
+
inner_metadata = {"key": outer_key, "components": []}
|
|
63
|
+
|
|
64
|
+
for inner_key, feature_arrays in inner_dict.items():
|
|
65
|
+
array_metadata = {
|
|
66
|
+
"key": inner_key,
|
|
67
|
+
"number_of_dimensions": feature_arrays[0].number_of_dimensions,
|
|
68
|
+
"features": [],
|
|
69
|
+
}
|
|
70
|
+
|
|
71
|
+
for idx, feature_array in enumerate(feature_arrays):
|
|
72
|
+
feature_prefix = f"{prefix}_{outer_key}_{inner_key}_{idx}"
|
|
73
|
+
_recursive_serialize(
|
|
74
|
+
feature_array.tolist(),
|
|
75
|
+
feature_prefix,
|
|
76
|
+
data_dict,
|
|
77
|
+
array_metadata["features"],
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
inner_metadata["components"].append(array_metadata) # type:ignore[attr-defined]
|
|
81
|
+
|
|
82
|
+
metadata.append(inner_metadata)
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
def serialize_nested_feature_arrays(
|
|
86
|
+
nested_feature_array: Dict[str, Dict[str, List["FeatureArray"]]],
|
|
87
|
+
data_filename: str,
|
|
88
|
+
metadata_filename: str,
|
|
89
|
+
) -> None:
|
|
90
|
+
data_dict: Dict[str, np.ndarray] = {}
|
|
91
|
+
metadata: List[Dict[str, Union[str, List]]] = []
|
|
92
|
+
|
|
93
|
+
_serialize_nested_data(nested_feature_array, "component", data_dict, metadata)
|
|
94
|
+
|
|
95
|
+
# Save serialized data and metadata
|
|
96
|
+
save_file(data_dict, data_filename)
|
|
97
|
+
rasa.shared.utils.io.dump_obj_as_json_to_file(metadata_filename, metadata)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
def _recursive_deserialize(
|
|
101
|
+
metadata: List[Dict[str, Any]], data: Dict[str, Any]
|
|
102
|
+
) -> List[Any]:
|
|
103
|
+
"""Recursively deserialize arrays and matrices for high dimensional data."""
|
|
104
|
+
result = []
|
|
105
|
+
|
|
106
|
+
for item in metadata:
|
|
107
|
+
if item["type"] == "dense":
|
|
108
|
+
key = item["key"]
|
|
109
|
+
array = np.asarray(data[key]).reshape(item["shape"])
|
|
110
|
+
result.append(array)
|
|
111
|
+
|
|
112
|
+
elif item["type"] == "list":
|
|
113
|
+
key = item["key"]
|
|
114
|
+
result.append(list(data[key]))
|
|
115
|
+
|
|
116
|
+
elif item["type"] == "sparse":
|
|
117
|
+
data_vals = data[f"{item['key']}_data"]
|
|
118
|
+
row_vals = data[f"{item['key']}_row"]
|
|
119
|
+
col_vals = data[f"{item['key']}_col"]
|
|
120
|
+
sparse_matrix = scipy.sparse.coo_matrix(
|
|
121
|
+
(data_vals, (row_vals, col_vals)), shape=item["shape"]
|
|
122
|
+
)
|
|
123
|
+
result.append(sparse_matrix)
|
|
124
|
+
elif item["type"] == "group":
|
|
125
|
+
sublist = _recursive_deserialize(item["subcomponents"], data)
|
|
126
|
+
result.append(sublist)
|
|
127
|
+
|
|
128
|
+
return result
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
def _deserialize_nested_data(
|
|
132
|
+
metadata: List[Dict[str, Any]], data_dict: Dict[str, Any]
|
|
133
|
+
) -> Dict[str, Dict[str, List["FeatureArray"]]]:
|
|
134
|
+
"""Handle deserialization across all dictionary and list levels."""
|
|
135
|
+
result: Dict[str, Dict[str, List["FeatureArray"]]] = {}
|
|
136
|
+
|
|
137
|
+
for outer_item in metadata:
|
|
138
|
+
outer_key = outer_item["key"]
|
|
139
|
+
result[outer_key] = {}
|
|
140
|
+
|
|
141
|
+
for inner_item in outer_item["components"]:
|
|
142
|
+
inner_key = inner_item["key"]
|
|
143
|
+
feature_arrays = []
|
|
144
|
+
|
|
145
|
+
# Reconstruct the list of FeatureArrays
|
|
146
|
+
for feature_item in inner_item["features"]:
|
|
147
|
+
# Reconstruct the list of FeatureArrays
|
|
148
|
+
feature_array_data = _recursive_deserialize([feature_item], data_dict)
|
|
149
|
+
# Prepare the input for the FeatureArray;
|
|
150
|
+
# ensure it is np.ndarray compatible
|
|
151
|
+
input_array = np.array(feature_array_data[0], dtype=object)
|
|
152
|
+
feature_array = FeatureArray(
|
|
153
|
+
input_array, inner_item["number_of_dimensions"]
|
|
154
|
+
)
|
|
155
|
+
feature_arrays.append(feature_array)
|
|
156
|
+
|
|
157
|
+
result[outer_key][inner_key] = feature_arrays
|
|
158
|
+
|
|
159
|
+
return result
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
def deserialize_nested_feature_arrays(
|
|
163
|
+
data_filename: str, metadata_filename: str
|
|
164
|
+
) -> Dict[str, Dict[str, List["FeatureArray"]]]:
|
|
165
|
+
metadata = rasa.shared.utils.io.read_json_file(metadata_filename)
|
|
166
|
+
data_dict = load_file(data_filename)
|
|
167
|
+
|
|
168
|
+
return _deserialize_nested_data(metadata, data_dict)
|
|
169
|
+
|
|
170
|
+
|
|
171
|
+
class FeatureArray(np.ndarray):
|
|
172
|
+
"""Stores any kind of features ready to be used by a RasaModel.
|
|
173
|
+
|
|
174
|
+
Next to the input numpy array of features, it also received the number of
|
|
175
|
+
dimensions of the features.
|
|
176
|
+
As our features can have 1 to 4 dimensions we might have different number of numpy
|
|
177
|
+
arrays stacked. The number of dimensions helps us to figure out how to handle this
|
|
178
|
+
particular feature array. Also, it is automatically determined whether the feature
|
|
179
|
+
array is sparse or not and the number of units is determined as well.
|
|
180
|
+
|
|
181
|
+
Subclassing np.array: https://numpy.org/doc/stable/user/basics.subclassing.html
|
|
182
|
+
"""
|
|
183
|
+
|
|
184
|
+
def __new__(
|
|
185
|
+
cls, input_array: np.ndarray, number_of_dimensions: int
|
|
186
|
+
) -> "FeatureArray":
|
|
187
|
+
"""Create and return a new object. See help(type) for accurate signature."""
|
|
188
|
+
FeatureArray._validate_number_of_dimensions(number_of_dimensions, input_array)
|
|
189
|
+
|
|
190
|
+
feature_array = np.asarray(input_array).view(cls)
|
|
191
|
+
|
|
192
|
+
if number_of_dimensions <= 2:
|
|
193
|
+
feature_array.units = input_array.shape[-1]
|
|
194
|
+
feature_array.is_sparse = isinstance(input_array[0], scipy.sparse.spmatrix)
|
|
195
|
+
elif number_of_dimensions == 3:
|
|
196
|
+
feature_array.units = input_array[0].shape[-1]
|
|
197
|
+
feature_array.is_sparse = isinstance(input_array[0], scipy.sparse.spmatrix)
|
|
198
|
+
elif number_of_dimensions == 4:
|
|
199
|
+
feature_array.units = input_array[0][0].shape[-1]
|
|
200
|
+
feature_array.is_sparse = isinstance(
|
|
201
|
+
input_array[0][0], scipy.sparse.spmatrix
|
|
202
|
+
)
|
|
203
|
+
else:
|
|
204
|
+
raise ValueError(
|
|
205
|
+
f"Number of dimensions '{number_of_dimensions}' currently not "
|
|
206
|
+
f"supported."
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
feature_array.number_of_dimensions = number_of_dimensions
|
|
210
|
+
|
|
211
|
+
return feature_array
|
|
212
|
+
|
|
213
|
+
def __init__(
|
|
214
|
+
self, input_array: Any, number_of_dimensions: int, **kwargs: Any
|
|
215
|
+
) -> None:
|
|
216
|
+
"""Initialize. FeatureArray.
|
|
217
|
+
|
|
218
|
+
Needed in order to avoid 'Invalid keyword argument number_of_dimensions
|
|
219
|
+
to function FeatureArray.__init__ '
|
|
220
|
+
Args:
|
|
221
|
+
input_array: the array that contains features
|
|
222
|
+
number_of_dimensions: number of dimensions in input_array
|
|
223
|
+
"""
|
|
224
|
+
super().__init__(**kwargs)
|
|
225
|
+
self.number_of_dimensions = number_of_dimensions
|
|
226
|
+
|
|
227
|
+
def __array_finalize__(self, obj: Optional[np.ndarray]) -> None:
|
|
228
|
+
"""This method is called when the system allocates a new array from obj.
|
|
229
|
+
|
|
230
|
+
Args:
|
|
231
|
+
obj: A subclass (subtype) of ndarray.
|
|
232
|
+
"""
|
|
233
|
+
if obj is None:
|
|
234
|
+
return
|
|
235
|
+
|
|
236
|
+
self.units = getattr(obj, "units", None)
|
|
237
|
+
self.number_of_dimensions = getattr(obj, "number_of_dimensions", None) # type: ignore[assignment]
|
|
238
|
+
self.is_sparse = getattr(obj, "is_sparse", None)
|
|
239
|
+
|
|
240
|
+
default_attributes = {
|
|
241
|
+
"units": self.units,
|
|
242
|
+
"number_of_dimensions": self.number_of_dimensions,
|
|
243
|
+
"is_spare": self.is_sparse,
|
|
244
|
+
}
|
|
245
|
+
self.__dict__.update(default_attributes)
|
|
246
|
+
|
|
247
|
+
# pytype: disable=attribute-error
|
|
248
|
+
def __array_ufunc__(
|
|
249
|
+
self, ufunc: Any, method: str, *inputs: Any, **kwargs: Any
|
|
250
|
+
) -> Any:
|
|
251
|
+
"""Overwrite this method as we are subclassing numpy array.
|
|
252
|
+
|
|
253
|
+
Args:
|
|
254
|
+
ufunc: The ufunc object that was called.
|
|
255
|
+
method: A string indicating which Ufunc method was called
|
|
256
|
+
(one of "__call__", "reduce", "reduceat", "accumulate", "outer",
|
|
257
|
+
"inner").
|
|
258
|
+
*inputs: A tuple of the input arguments to the ufunc.
|
|
259
|
+
**kwargs: Any additional arguments
|
|
260
|
+
|
|
261
|
+
Returns:
|
|
262
|
+
The result of the operation.
|
|
263
|
+
"""
|
|
264
|
+
f = {
|
|
265
|
+
"reduce": ufunc.reduce,
|
|
266
|
+
"accumulate": ufunc.accumulate,
|
|
267
|
+
"reduceat": ufunc.reduceat,
|
|
268
|
+
"outer": ufunc.outer,
|
|
269
|
+
"at": ufunc.at,
|
|
270
|
+
"__call__": ufunc,
|
|
271
|
+
}
|
|
272
|
+
# convert the inputs to np.ndarray to prevent recursion, call the function,
|
|
273
|
+
# then cast it back as FeatureArray
|
|
274
|
+
output = FeatureArray(
|
|
275
|
+
f[method](*(i.view(np.ndarray) for i in inputs), **kwargs),
|
|
276
|
+
number_of_dimensions=kwargs["number_of_dimensions"],
|
|
277
|
+
)
|
|
278
|
+
output.__dict__ = self.__dict__ # carry forward attributes
|
|
279
|
+
return output
|
|
280
|
+
|
|
281
|
+
def __reduce__(self) -> Tuple[Any, Any, Any]:
|
|
282
|
+
"""Needed in order to pickle this object.
|
|
283
|
+
|
|
284
|
+
Returns:
|
|
285
|
+
A tuple.
|
|
286
|
+
"""
|
|
287
|
+
pickled_state = super(FeatureArray, self).__reduce__()
|
|
288
|
+
if isinstance(pickled_state, str):
|
|
289
|
+
raise TypeError("np array __reduce__ returned string instead of tuple.")
|
|
290
|
+
new_state = pickled_state[2] + (
|
|
291
|
+
self.number_of_dimensions,
|
|
292
|
+
self.is_sparse,
|
|
293
|
+
self.units,
|
|
294
|
+
)
|
|
295
|
+
return pickled_state[0], pickled_state[1], new_state
|
|
296
|
+
|
|
297
|
+
def __setstate__(self, state: Any, **kwargs: Any) -> None:
|
|
298
|
+
"""Sets the state.
|
|
299
|
+
|
|
300
|
+
Args:
|
|
301
|
+
state: The state argument must be a sequence that contains the following
|
|
302
|
+
elements version, shape, dtype, isFortan, rawdata.
|
|
303
|
+
**kwargs: Any additional parameter
|
|
304
|
+
"""
|
|
305
|
+
# Needed in order to load the object
|
|
306
|
+
self.number_of_dimensions = state[-3]
|
|
307
|
+
self.is_sparse = state[-2]
|
|
308
|
+
self.units = state[-1]
|
|
309
|
+
super(FeatureArray, self).__setstate__(state[0:-3], **kwargs)
|
|
310
|
+
|
|
311
|
+
# pytype: enable=attribute-error
|
|
312
|
+
|
|
313
|
+
@staticmethod
|
|
314
|
+
def _validate_number_of_dimensions(
|
|
315
|
+
number_of_dimensions: int, input_array: np.ndarray
|
|
316
|
+
) -> None:
|
|
317
|
+
"""Validates if the input array has given number of dimensions.
|
|
318
|
+
|
|
319
|
+
Args:
|
|
320
|
+
number_of_dimensions: number of dimensions
|
|
321
|
+
input_array: input array
|
|
322
|
+
|
|
323
|
+
Raises: ValueError in case the dimensions do not match
|
|
324
|
+
"""
|
|
325
|
+
# when loading the feature arrays from disk, the shape represents
|
|
326
|
+
# the correct number of dimensions
|
|
327
|
+
if len(input_array.shape) == number_of_dimensions:
|
|
328
|
+
return
|
|
329
|
+
|
|
330
|
+
_sub_array = input_array
|
|
331
|
+
dim = 0
|
|
332
|
+
# Go number_of_dimensions into the given input_array
|
|
333
|
+
for i in range(1, number_of_dimensions + 1):
|
|
334
|
+
_sub_array = _sub_array[0]
|
|
335
|
+
if isinstance(_sub_array, scipy.sparse.spmatrix):
|
|
336
|
+
dim = i
|
|
337
|
+
break
|
|
338
|
+
if isinstance(_sub_array, np.ndarray) and _sub_array.shape[0] == 0:
|
|
339
|
+
# sequence dimension is 0, we are dealing with "fake" features
|
|
340
|
+
dim = i
|
|
341
|
+
break
|
|
342
|
+
|
|
343
|
+
# If the resulting sub_array is sparse, the remaining number of dimensions
|
|
344
|
+
# should be at least 2
|
|
345
|
+
if isinstance(_sub_array, scipy.sparse.spmatrix):
|
|
346
|
+
if dim > 2:
|
|
347
|
+
raise ValueError(
|
|
348
|
+
f"Given number of dimensions '{number_of_dimensions}' does not "
|
|
349
|
+
f"match dimensions of given input array: {input_array}."
|
|
350
|
+
)
|
|
351
|
+
elif isinstance(_sub_array, np.ndarray) and _sub_array.shape[0] == 0:
|
|
352
|
+
# sequence dimension is 0, we are dealing with "fake" features,
|
|
353
|
+
# but they should be of dim 2
|
|
354
|
+
if dim > 2:
|
|
355
|
+
raise ValueError(
|
|
356
|
+
f"Given number of dimensions '{number_of_dimensions}' does not "
|
|
357
|
+
f"match dimensions of given input array: {input_array}."
|
|
358
|
+
)
|
|
359
|
+
# If the resulting sub_array is dense, the sub_array should be a single number
|
|
360
|
+
elif not np.issubdtype(type(_sub_array), np.integer) and not isinstance(
|
|
361
|
+
_sub_array, (np.float32, np.float64)
|
|
362
|
+
):
|
|
363
|
+
raise ValueError(
|
|
364
|
+
f"Given number of dimensions '{number_of_dimensions}' does not match "
|
|
365
|
+
f"dimensions of given input array: {input_array}."
|
|
366
|
+
)
|
|
@@ -20,6 +20,8 @@ import numpy as np
|
|
|
20
20
|
import scipy.sparse
|
|
21
21
|
from sklearn.model_selection import train_test_split
|
|
22
22
|
|
|
23
|
+
from rasa.utils.tensorflow.feature_array import FeatureArray
|
|
24
|
+
|
|
23
25
|
logger = logging.getLogger(__name__)
|
|
24
26
|
|
|
25
27
|
|
|
@@ -37,199 +39,6 @@ def ragged_array_to_ndarray(ragged_array: Iterable[np.ndarray]) -> np.ndarray:
|
|
|
37
39
|
return np.array(ragged_array, dtype=object)
|
|
38
40
|
|
|
39
41
|
|
|
40
|
-
class FeatureArray(np.ndarray):
|
|
41
|
-
"""Stores any kind of features ready to be used by a RasaModel.
|
|
42
|
-
|
|
43
|
-
Next to the input numpy array of features, it also received the number of
|
|
44
|
-
dimensions of the features.
|
|
45
|
-
As our features can have 1 to 4 dimensions we might have different number of numpy
|
|
46
|
-
arrays stacked. The number of dimensions helps us to figure out how to handle this
|
|
47
|
-
particular feature array. Also, it is automatically determined whether the feature
|
|
48
|
-
array is sparse or not and the number of units is determined as well.
|
|
49
|
-
|
|
50
|
-
Subclassing np.array: https://numpy.org/doc/stable/user/basics.subclassing.html
|
|
51
|
-
"""
|
|
52
|
-
|
|
53
|
-
def __new__(
|
|
54
|
-
cls, input_array: np.ndarray, number_of_dimensions: int
|
|
55
|
-
) -> "FeatureArray":
|
|
56
|
-
"""Create and return a new object. See help(type) for accurate signature."""
|
|
57
|
-
FeatureArray._validate_number_of_dimensions(number_of_dimensions, input_array)
|
|
58
|
-
|
|
59
|
-
feature_array = np.asarray(input_array).view(cls)
|
|
60
|
-
|
|
61
|
-
if number_of_dimensions <= 2:
|
|
62
|
-
feature_array.units = input_array.shape[-1]
|
|
63
|
-
feature_array.is_sparse = isinstance(input_array[0], scipy.sparse.spmatrix)
|
|
64
|
-
elif number_of_dimensions == 3:
|
|
65
|
-
feature_array.units = input_array[0].shape[-1]
|
|
66
|
-
feature_array.is_sparse = isinstance(input_array[0], scipy.sparse.spmatrix)
|
|
67
|
-
elif number_of_dimensions == 4:
|
|
68
|
-
feature_array.units = input_array[0][0].shape[-1]
|
|
69
|
-
feature_array.is_sparse = isinstance(
|
|
70
|
-
input_array[0][0], scipy.sparse.spmatrix
|
|
71
|
-
)
|
|
72
|
-
else:
|
|
73
|
-
raise ValueError(
|
|
74
|
-
f"Number of dimensions '{number_of_dimensions}' currently not "
|
|
75
|
-
f"supported."
|
|
76
|
-
)
|
|
77
|
-
|
|
78
|
-
feature_array.number_of_dimensions = number_of_dimensions
|
|
79
|
-
|
|
80
|
-
return feature_array
|
|
81
|
-
|
|
82
|
-
def __init__(
|
|
83
|
-
self, input_array: Any, number_of_dimensions: int, **kwargs: Any
|
|
84
|
-
) -> None:
|
|
85
|
-
"""Initialize. FeatureArray.
|
|
86
|
-
|
|
87
|
-
Needed in order to avoid 'Invalid keyword argument number_of_dimensions
|
|
88
|
-
to function FeatureArray.__init__ '
|
|
89
|
-
Args:
|
|
90
|
-
input_array: the array that contains features
|
|
91
|
-
number_of_dimensions: number of dimensions in input_array
|
|
92
|
-
"""
|
|
93
|
-
super().__init__(**kwargs)
|
|
94
|
-
self.number_of_dimensions = number_of_dimensions
|
|
95
|
-
|
|
96
|
-
def __array_finalize__(self, obj: Optional[np.ndarray]) -> None:
|
|
97
|
-
"""This method is called when the system allocates a new array from obj.
|
|
98
|
-
|
|
99
|
-
Args:
|
|
100
|
-
obj: A subclass (subtype) of ndarray.
|
|
101
|
-
"""
|
|
102
|
-
if obj is None:
|
|
103
|
-
return
|
|
104
|
-
|
|
105
|
-
self.units = getattr(obj, "units", None)
|
|
106
|
-
self.number_of_dimensions = getattr(obj, "number_of_dimensions", None) # type: ignore[assignment]
|
|
107
|
-
self.is_sparse = getattr(obj, "is_sparse", None)
|
|
108
|
-
|
|
109
|
-
default_attributes = {
|
|
110
|
-
"units": self.units,
|
|
111
|
-
"number_of_dimensions": self.number_of_dimensions,
|
|
112
|
-
"is_spare": self.is_sparse,
|
|
113
|
-
}
|
|
114
|
-
self.__dict__.update(default_attributes)
|
|
115
|
-
|
|
116
|
-
# pytype: disable=attribute-error
|
|
117
|
-
def __array_ufunc__(
|
|
118
|
-
self, ufunc: Any, method: Text, *inputs: Any, **kwargs: Any
|
|
119
|
-
) -> Any:
|
|
120
|
-
"""Overwrite this method as we are subclassing numpy array.
|
|
121
|
-
|
|
122
|
-
Args:
|
|
123
|
-
ufunc: The ufunc object that was called.
|
|
124
|
-
method: A string indicating which Ufunc method was called
|
|
125
|
-
(one of "__call__", "reduce", "reduceat", "accumulate", "outer",
|
|
126
|
-
"inner").
|
|
127
|
-
*inputs: A tuple of the input arguments to the ufunc.
|
|
128
|
-
**kwargs: Any additional arguments
|
|
129
|
-
|
|
130
|
-
Returns:
|
|
131
|
-
The result of the operation.
|
|
132
|
-
"""
|
|
133
|
-
f = {
|
|
134
|
-
"reduce": ufunc.reduce,
|
|
135
|
-
"accumulate": ufunc.accumulate,
|
|
136
|
-
"reduceat": ufunc.reduceat,
|
|
137
|
-
"outer": ufunc.outer,
|
|
138
|
-
"at": ufunc.at,
|
|
139
|
-
"__call__": ufunc,
|
|
140
|
-
}
|
|
141
|
-
# convert the inputs to np.ndarray to prevent recursion, call the function,
|
|
142
|
-
# then cast it back as FeatureArray
|
|
143
|
-
output = FeatureArray(
|
|
144
|
-
f[method](*(i.view(np.ndarray) for i in inputs), **kwargs),
|
|
145
|
-
number_of_dimensions=kwargs["number_of_dimensions"],
|
|
146
|
-
)
|
|
147
|
-
output.__dict__ = self.__dict__ # carry forward attributes
|
|
148
|
-
return output
|
|
149
|
-
|
|
150
|
-
def __reduce__(self) -> Tuple[Any, Any, Any]:
|
|
151
|
-
"""Needed in order to pickle this object.
|
|
152
|
-
|
|
153
|
-
Returns:
|
|
154
|
-
A tuple.
|
|
155
|
-
"""
|
|
156
|
-
pickled_state = super(FeatureArray, self).__reduce__()
|
|
157
|
-
if isinstance(pickled_state, str):
|
|
158
|
-
raise TypeError("np array __reduce__ returned string instead of tuple.")
|
|
159
|
-
new_state = pickled_state[2] + (
|
|
160
|
-
self.number_of_dimensions,
|
|
161
|
-
self.is_sparse,
|
|
162
|
-
self.units,
|
|
163
|
-
)
|
|
164
|
-
return pickled_state[0], pickled_state[1], new_state
|
|
165
|
-
|
|
166
|
-
def __setstate__(self, state: Any, **kwargs: Any) -> None:
|
|
167
|
-
"""Sets the state.
|
|
168
|
-
|
|
169
|
-
Args:
|
|
170
|
-
state: The state argument must be a sequence that contains the following
|
|
171
|
-
elements version, shape, dtype, isFortan, rawdata.
|
|
172
|
-
**kwargs: Any additional parameter
|
|
173
|
-
"""
|
|
174
|
-
# Needed in order to load the object
|
|
175
|
-
self.number_of_dimensions = state[-3]
|
|
176
|
-
self.is_sparse = state[-2]
|
|
177
|
-
self.units = state[-1]
|
|
178
|
-
super(FeatureArray, self).__setstate__(state[0:-3], **kwargs)
|
|
179
|
-
|
|
180
|
-
# pytype: enable=attribute-error
|
|
181
|
-
|
|
182
|
-
@staticmethod
|
|
183
|
-
def _validate_number_of_dimensions(
|
|
184
|
-
number_of_dimensions: int, input_array: np.ndarray
|
|
185
|
-
) -> None:
|
|
186
|
-
"""Validates if the the input array has given number of dimensions.
|
|
187
|
-
|
|
188
|
-
Args:
|
|
189
|
-
number_of_dimensions: number of dimensions
|
|
190
|
-
input_array: input array
|
|
191
|
-
|
|
192
|
-
Raises: ValueError in case the dimensions do not match
|
|
193
|
-
"""
|
|
194
|
-
_sub_array = input_array
|
|
195
|
-
dim = 0
|
|
196
|
-
# Go number_of_dimensions into the given input_array
|
|
197
|
-
for i in range(1, number_of_dimensions + 1):
|
|
198
|
-
_sub_array = _sub_array[0]
|
|
199
|
-
if isinstance(_sub_array, scipy.sparse.spmatrix):
|
|
200
|
-
dim = i
|
|
201
|
-
break
|
|
202
|
-
if isinstance(_sub_array, np.ndarray) and _sub_array.shape[0] == 0:
|
|
203
|
-
# sequence dimension is 0, we are dealing with "fake" features
|
|
204
|
-
dim = i
|
|
205
|
-
break
|
|
206
|
-
|
|
207
|
-
# If the resulting sub_array is sparse, the remaining number of dimensions
|
|
208
|
-
# should be at least 2
|
|
209
|
-
if isinstance(_sub_array, scipy.sparse.spmatrix):
|
|
210
|
-
if dim > 2:
|
|
211
|
-
raise ValueError(
|
|
212
|
-
f"Given number of dimensions '{number_of_dimensions}' does not "
|
|
213
|
-
f"match dimensions of given input array: {input_array}."
|
|
214
|
-
)
|
|
215
|
-
elif isinstance(_sub_array, np.ndarray) and _sub_array.shape[0] == 0:
|
|
216
|
-
# sequence dimension is 0, we are dealing with "fake" features,
|
|
217
|
-
# but they should be of dim 2
|
|
218
|
-
if dim > 2:
|
|
219
|
-
raise ValueError(
|
|
220
|
-
f"Given number of dimensions '{number_of_dimensions}' does not "
|
|
221
|
-
f"match dimensions of given input array: {input_array}."
|
|
222
|
-
)
|
|
223
|
-
# If the resulting sub_array is dense, the sub_array should be a single number
|
|
224
|
-
elif not np.issubdtype(type(_sub_array), np.integer) and not isinstance(
|
|
225
|
-
_sub_array, (np.float32, np.float64)
|
|
226
|
-
):
|
|
227
|
-
raise ValueError(
|
|
228
|
-
f"Given number of dimensions '{number_of_dimensions}' does not match "
|
|
229
|
-
f"dimensions of given input array: {input_array}."
|
|
230
|
-
)
|
|
231
|
-
|
|
232
|
-
|
|
233
42
|
class FeatureSignature(NamedTuple):
|
|
234
43
|
"""Signature of feature arrays.
|
|
235
44
|
|
rasa/validator.py
CHANGED
|
@@ -22,6 +22,11 @@ from rasa.shared.core.flows.steps.collect import CollectInformationFlowStep
|
|
|
22
22
|
from rasa.shared.core.flows.steps.action import ActionFlowStep
|
|
23
23
|
from rasa.shared.core.flows.steps.link import LinkFlowStep
|
|
24
24
|
from rasa.shared.core.flows import FlowsList
|
|
25
|
+
from rasa.shared.core.flows.utils import (
|
|
26
|
+
warn_deprecated_collect_step_config,
|
|
27
|
+
get_duplicate_slot_persistence_config_error_message,
|
|
28
|
+
get_invalid_slot_persistence_config_error_message,
|
|
29
|
+
)
|
|
25
30
|
import rasa.shared.nlu.constants
|
|
26
31
|
from rasa.shared.constants import (
|
|
27
32
|
ASSISTANT_ID_DEFAULT_VALUE,
|
|
@@ -55,6 +60,7 @@ from rasa.shared.importers.importer import TrainingDataImporter
|
|
|
55
60
|
from rasa.shared.nlu.constants import COMMANDS
|
|
56
61
|
from rasa.shared.nlu.training_data.message import Message
|
|
57
62
|
from rasa.shared.nlu.training_data.training_data import TrainingData
|
|
63
|
+
|
|
58
64
|
import rasa.shared.utils.cli
|
|
59
65
|
import rasa.shared.utils.io
|
|
60
66
|
|
|
@@ -1237,6 +1243,7 @@ class Validator:
|
|
|
1237
1243
|
self.verify_flows_steps_against_domain(),
|
|
1238
1244
|
self.verify_unique_flows(),
|
|
1239
1245
|
self.verify_predicates(),
|
|
1246
|
+
self.verify_slot_persistence_configuration(),
|
|
1240
1247
|
]
|
|
1241
1248
|
|
|
1242
1249
|
all_good = all(flow_validation_conditions)
|
|
@@ -1533,3 +1540,66 @@ class Validator:
|
|
|
1533
1540
|
),
|
|
1534
1541
|
)
|
|
1535
1542
|
return False
|
|
1543
|
+
|
|
1544
|
+
def verify_slot_persistence_configuration(self) -> bool:
|
|
1545
|
+
"""Verifies the validity of slot persistence after flow ends configuration.
|
|
1546
|
+
|
|
1547
|
+
Only slots used in either a collect step or a set_slot step can be persisted and
|
|
1548
|
+
the configuration can either set at the flow level or the collect step level,
|
|
1549
|
+
but not both.
|
|
1550
|
+
|
|
1551
|
+
Returns:
|
|
1552
|
+
bool: True if all slot persistence configuration is valid, False otherwise.
|
|
1553
|
+
|
|
1554
|
+
Raises:
|
|
1555
|
+
DeprecationWarning: If reset_after_flow_ends is used in collect steps.
|
|
1556
|
+
"""
|
|
1557
|
+
all_good = True
|
|
1558
|
+
|
|
1559
|
+
for flow in self.flows.underlying_flows:
|
|
1560
|
+
flow_id = flow.id
|
|
1561
|
+
persist_slots = flow.persisted_slots
|
|
1562
|
+
has_flow_level_persistence = True if persist_slots else False
|
|
1563
|
+
flow_slots = set()
|
|
1564
|
+
|
|
1565
|
+
for step in flow.steps_with_calls_resolved:
|
|
1566
|
+
if isinstance(step, SetSlotsFlowStep):
|
|
1567
|
+
flow_slots.update([slot["key"] for slot in step.slots])
|
|
1568
|
+
|
|
1569
|
+
elif isinstance(step, CollectInformationFlowStep):
|
|
1570
|
+
collect_step = step.collect
|
|
1571
|
+
flow_slots.add(collect_step)
|
|
1572
|
+
if not step.reset_after_flow_ends:
|
|
1573
|
+
warn_deprecated_collect_step_config(flow_id, collect_step)
|
|
1574
|
+
|
|
1575
|
+
if has_flow_level_persistence:
|
|
1576
|
+
structlogger.error(
|
|
1577
|
+
"validator.verify_slot_persistence_configuration.duplicate_config",
|
|
1578
|
+
flow=flow_id,
|
|
1579
|
+
collect_step=collect_step,
|
|
1580
|
+
event_info=get_duplicate_slot_persistence_config_error_message(
|
|
1581
|
+
flow_id, collect_step
|
|
1582
|
+
),
|
|
1583
|
+
)
|
|
1584
|
+
all_good = False
|
|
1585
|
+
|
|
1586
|
+
if has_flow_level_persistence:
|
|
1587
|
+
if not self._is_persist_slots_valid(persist_slots, flow_slots, flow_id):
|
|
1588
|
+
all_good = False
|
|
1589
|
+
return all_good
|
|
1590
|
+
|
|
1591
|
+
def _is_persist_slots_valid(
|
|
1592
|
+
self, persist_slots: List[str], flow_slots: Set[str], flow_id: str
|
|
1593
|
+
) -> bool:
|
|
1594
|
+
invalid_slots = set(persist_slots) - flow_slots
|
|
1595
|
+
is_valid = False if invalid_slots else True
|
|
1596
|
+
|
|
1597
|
+
if invalid_slots:
|
|
1598
|
+
structlogger.error(
|
|
1599
|
+
"validator.verify_slot_persistence_configuration.invalid_persist_slot",
|
|
1600
|
+
flow=flow_id,
|
|
1601
|
+
event_info=get_invalid_slot_persistence_config_error_message(
|
|
1602
|
+
flow_id, invalid_slots
|
|
1603
|
+
),
|
|
1604
|
+
)
|
|
1605
|
+
return is_valid
|
rasa/version.py
CHANGED