rasa-pro 3.10.9__py3-none-any.whl → 3.10.9.dev1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of rasa-pro might be problematic. Click here for more details.
- rasa/constants.py +1 -1
- rasa/core/featurizers/single_state_featurizer.py +22 -1
- rasa/core/featurizers/tracker_featurizers.py +115 -18
- rasa/core/policies/ted_policy.py +58 -33
- rasa/core/policies/unexpected_intent_policy.py +15 -7
- rasa/nlu/classifiers/diet_classifier.py +38 -25
- rasa/nlu/classifiers/logistic_regression_classifier.py +22 -9
- rasa/nlu/classifiers/sklearn_intent_classifier.py +37 -16
- rasa/nlu/extractors/crf_entity_extractor.py +93 -50
- rasa/nlu/featurizers/sparse_featurizer/count_vectors_featurizer.py +45 -16
- rasa/nlu/featurizers/sparse_featurizer/lexical_syntactic_featurizer.py +52 -17
- rasa/nlu/featurizers/sparse_featurizer/regex_featurizer.py +5 -3
- rasa/shared/nlu/training_data/features.py +120 -2
- rasa/shared/utils/io.py +1 -0
- rasa/utils/io.py +0 -66
- rasa/utils/tensorflow/feature_array.py +366 -0
- rasa/utils/tensorflow/model_data.py +2 -193
- rasa/version.py +1 -1
- {rasa_pro-3.10.9.dist-info → rasa_pro-3.10.9.dev1.dist-info}/METADATA +5 -5
- {rasa_pro-3.10.9.dist-info → rasa_pro-3.10.9.dev1.dist-info}/RECORD +23 -22
- {rasa_pro-3.10.9.dist-info → rasa_pro-3.10.9.dev1.dist-info}/WHEEL +1 -1
- {rasa_pro-3.10.9.dist-info → rasa_pro-3.10.9.dev1.dist-info}/NOTICE +0 -0
- {rasa_pro-3.10.9.dist-info → rasa_pro-3.10.9.dev1.dist-info}/entry_points.txt +0 -0
|
@@ -20,6 +20,8 @@ import numpy as np
|
|
|
20
20
|
import scipy.sparse
|
|
21
21
|
from sklearn.model_selection import train_test_split
|
|
22
22
|
|
|
23
|
+
from rasa.utils.tensorflow.feature_array import FeatureArray
|
|
24
|
+
|
|
23
25
|
logger = logging.getLogger(__name__)
|
|
24
26
|
|
|
25
27
|
|
|
@@ -37,199 +39,6 @@ def ragged_array_to_ndarray(ragged_array: Iterable[np.ndarray]) -> np.ndarray:
|
|
|
37
39
|
return np.array(ragged_array, dtype=object)
|
|
38
40
|
|
|
39
41
|
|
|
40
|
-
class FeatureArray(np.ndarray):
|
|
41
|
-
"""Stores any kind of features ready to be used by a RasaModel.
|
|
42
|
-
|
|
43
|
-
Next to the input numpy array of features, it also received the number of
|
|
44
|
-
dimensions of the features.
|
|
45
|
-
As our features can have 1 to 4 dimensions we might have different number of numpy
|
|
46
|
-
arrays stacked. The number of dimensions helps us to figure out how to handle this
|
|
47
|
-
particular feature array. Also, it is automatically determined whether the feature
|
|
48
|
-
array is sparse or not and the number of units is determined as well.
|
|
49
|
-
|
|
50
|
-
Subclassing np.array: https://numpy.org/doc/stable/user/basics.subclassing.html
|
|
51
|
-
"""
|
|
52
|
-
|
|
53
|
-
def __new__(
|
|
54
|
-
cls, input_array: np.ndarray, number_of_dimensions: int
|
|
55
|
-
) -> "FeatureArray":
|
|
56
|
-
"""Create and return a new object. See help(type) for accurate signature."""
|
|
57
|
-
FeatureArray._validate_number_of_dimensions(number_of_dimensions, input_array)
|
|
58
|
-
|
|
59
|
-
feature_array = np.asarray(input_array).view(cls)
|
|
60
|
-
|
|
61
|
-
if number_of_dimensions <= 2:
|
|
62
|
-
feature_array.units = input_array.shape[-1]
|
|
63
|
-
feature_array.is_sparse = isinstance(input_array[0], scipy.sparse.spmatrix)
|
|
64
|
-
elif number_of_dimensions == 3:
|
|
65
|
-
feature_array.units = input_array[0].shape[-1]
|
|
66
|
-
feature_array.is_sparse = isinstance(input_array[0], scipy.sparse.spmatrix)
|
|
67
|
-
elif number_of_dimensions == 4:
|
|
68
|
-
feature_array.units = input_array[0][0].shape[-1]
|
|
69
|
-
feature_array.is_sparse = isinstance(
|
|
70
|
-
input_array[0][0], scipy.sparse.spmatrix
|
|
71
|
-
)
|
|
72
|
-
else:
|
|
73
|
-
raise ValueError(
|
|
74
|
-
f"Number of dimensions '{number_of_dimensions}' currently not "
|
|
75
|
-
f"supported."
|
|
76
|
-
)
|
|
77
|
-
|
|
78
|
-
feature_array.number_of_dimensions = number_of_dimensions
|
|
79
|
-
|
|
80
|
-
return feature_array
|
|
81
|
-
|
|
82
|
-
def __init__(
|
|
83
|
-
self, input_array: Any, number_of_dimensions: int, **kwargs: Any
|
|
84
|
-
) -> None:
|
|
85
|
-
"""Initialize. FeatureArray.
|
|
86
|
-
|
|
87
|
-
Needed in order to avoid 'Invalid keyword argument number_of_dimensions
|
|
88
|
-
to function FeatureArray.__init__ '
|
|
89
|
-
Args:
|
|
90
|
-
input_array: the array that contains features
|
|
91
|
-
number_of_dimensions: number of dimensions in input_array
|
|
92
|
-
"""
|
|
93
|
-
super().__init__(**kwargs)
|
|
94
|
-
self.number_of_dimensions = number_of_dimensions
|
|
95
|
-
|
|
96
|
-
def __array_finalize__(self, obj: Optional[np.ndarray]) -> None:
|
|
97
|
-
"""This method is called when the system allocates a new array from obj.
|
|
98
|
-
|
|
99
|
-
Args:
|
|
100
|
-
obj: A subclass (subtype) of ndarray.
|
|
101
|
-
"""
|
|
102
|
-
if obj is None:
|
|
103
|
-
return
|
|
104
|
-
|
|
105
|
-
self.units = getattr(obj, "units", None)
|
|
106
|
-
self.number_of_dimensions = getattr(obj, "number_of_dimensions", None) # type: ignore[assignment]
|
|
107
|
-
self.is_sparse = getattr(obj, "is_sparse", None)
|
|
108
|
-
|
|
109
|
-
default_attributes = {
|
|
110
|
-
"units": self.units,
|
|
111
|
-
"number_of_dimensions": self.number_of_dimensions,
|
|
112
|
-
"is_spare": self.is_sparse,
|
|
113
|
-
}
|
|
114
|
-
self.__dict__.update(default_attributes)
|
|
115
|
-
|
|
116
|
-
# pytype: disable=attribute-error
|
|
117
|
-
def __array_ufunc__(
|
|
118
|
-
self, ufunc: Any, method: Text, *inputs: Any, **kwargs: Any
|
|
119
|
-
) -> Any:
|
|
120
|
-
"""Overwrite this method as we are subclassing numpy array.
|
|
121
|
-
|
|
122
|
-
Args:
|
|
123
|
-
ufunc: The ufunc object that was called.
|
|
124
|
-
method: A string indicating which Ufunc method was called
|
|
125
|
-
(one of "__call__", "reduce", "reduceat", "accumulate", "outer",
|
|
126
|
-
"inner").
|
|
127
|
-
*inputs: A tuple of the input arguments to the ufunc.
|
|
128
|
-
**kwargs: Any additional arguments
|
|
129
|
-
|
|
130
|
-
Returns:
|
|
131
|
-
The result of the operation.
|
|
132
|
-
"""
|
|
133
|
-
f = {
|
|
134
|
-
"reduce": ufunc.reduce,
|
|
135
|
-
"accumulate": ufunc.accumulate,
|
|
136
|
-
"reduceat": ufunc.reduceat,
|
|
137
|
-
"outer": ufunc.outer,
|
|
138
|
-
"at": ufunc.at,
|
|
139
|
-
"__call__": ufunc,
|
|
140
|
-
}
|
|
141
|
-
# convert the inputs to np.ndarray to prevent recursion, call the function,
|
|
142
|
-
# then cast it back as FeatureArray
|
|
143
|
-
output = FeatureArray(
|
|
144
|
-
f[method](*(i.view(np.ndarray) for i in inputs), **kwargs),
|
|
145
|
-
number_of_dimensions=kwargs["number_of_dimensions"],
|
|
146
|
-
)
|
|
147
|
-
output.__dict__ = self.__dict__ # carry forward attributes
|
|
148
|
-
return output
|
|
149
|
-
|
|
150
|
-
def __reduce__(self) -> Tuple[Any, Any, Any]:
|
|
151
|
-
"""Needed in order to pickle this object.
|
|
152
|
-
|
|
153
|
-
Returns:
|
|
154
|
-
A tuple.
|
|
155
|
-
"""
|
|
156
|
-
pickled_state = super(FeatureArray, self).__reduce__()
|
|
157
|
-
if isinstance(pickled_state, str):
|
|
158
|
-
raise TypeError("np array __reduce__ returned string instead of tuple.")
|
|
159
|
-
new_state = pickled_state[2] + (
|
|
160
|
-
self.number_of_dimensions,
|
|
161
|
-
self.is_sparse,
|
|
162
|
-
self.units,
|
|
163
|
-
)
|
|
164
|
-
return pickled_state[0], pickled_state[1], new_state
|
|
165
|
-
|
|
166
|
-
def __setstate__(self, state: Any, **kwargs: Any) -> None:
|
|
167
|
-
"""Sets the state.
|
|
168
|
-
|
|
169
|
-
Args:
|
|
170
|
-
state: The state argument must be a sequence that contains the following
|
|
171
|
-
elements version, shape, dtype, isFortan, rawdata.
|
|
172
|
-
**kwargs: Any additional parameter
|
|
173
|
-
"""
|
|
174
|
-
# Needed in order to load the object
|
|
175
|
-
self.number_of_dimensions = state[-3]
|
|
176
|
-
self.is_sparse = state[-2]
|
|
177
|
-
self.units = state[-1]
|
|
178
|
-
super(FeatureArray, self).__setstate__(state[0:-3], **kwargs)
|
|
179
|
-
|
|
180
|
-
# pytype: enable=attribute-error
|
|
181
|
-
|
|
182
|
-
@staticmethod
|
|
183
|
-
def _validate_number_of_dimensions(
|
|
184
|
-
number_of_dimensions: int, input_array: np.ndarray
|
|
185
|
-
) -> None:
|
|
186
|
-
"""Validates if the the input array has given number of dimensions.
|
|
187
|
-
|
|
188
|
-
Args:
|
|
189
|
-
number_of_dimensions: number of dimensions
|
|
190
|
-
input_array: input array
|
|
191
|
-
|
|
192
|
-
Raises: ValueError in case the dimensions do not match
|
|
193
|
-
"""
|
|
194
|
-
_sub_array = input_array
|
|
195
|
-
dim = 0
|
|
196
|
-
# Go number_of_dimensions into the given input_array
|
|
197
|
-
for i in range(1, number_of_dimensions + 1):
|
|
198
|
-
_sub_array = _sub_array[0]
|
|
199
|
-
if isinstance(_sub_array, scipy.sparse.spmatrix):
|
|
200
|
-
dim = i
|
|
201
|
-
break
|
|
202
|
-
if isinstance(_sub_array, np.ndarray) and _sub_array.shape[0] == 0:
|
|
203
|
-
# sequence dimension is 0, we are dealing with "fake" features
|
|
204
|
-
dim = i
|
|
205
|
-
break
|
|
206
|
-
|
|
207
|
-
# If the resulting sub_array is sparse, the remaining number of dimensions
|
|
208
|
-
# should be at least 2
|
|
209
|
-
if isinstance(_sub_array, scipy.sparse.spmatrix):
|
|
210
|
-
if dim > 2:
|
|
211
|
-
raise ValueError(
|
|
212
|
-
f"Given number of dimensions '{number_of_dimensions}' does not "
|
|
213
|
-
f"match dimensions of given input array: {input_array}."
|
|
214
|
-
)
|
|
215
|
-
elif isinstance(_sub_array, np.ndarray) and _sub_array.shape[0] == 0:
|
|
216
|
-
# sequence dimension is 0, we are dealing with "fake" features,
|
|
217
|
-
# but they should be of dim 2
|
|
218
|
-
if dim > 2:
|
|
219
|
-
raise ValueError(
|
|
220
|
-
f"Given number of dimensions '{number_of_dimensions}' does not "
|
|
221
|
-
f"match dimensions of given input array: {input_array}."
|
|
222
|
-
)
|
|
223
|
-
# If the resulting sub_array is dense, the sub_array should be a single number
|
|
224
|
-
elif not np.issubdtype(type(_sub_array), np.integer) and not isinstance(
|
|
225
|
-
_sub_array, (np.float32, np.float64)
|
|
226
|
-
):
|
|
227
|
-
raise ValueError(
|
|
228
|
-
f"Given number of dimensions '{number_of_dimensions}' does not match "
|
|
229
|
-
f"dimensions of given input array: {input_array}."
|
|
230
|
-
)
|
|
231
|
-
|
|
232
|
-
|
|
233
42
|
class FeatureSignature(NamedTuple):
|
|
234
43
|
"""Signature of feature arrays.
|
|
235
44
|
|
rasa/version.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: rasa-pro
|
|
3
|
-
Version: 3.10.9
|
|
3
|
+
Version: 3.10.9.dev1
|
|
4
4
|
Summary: State-of-the-art open-core Conversational AI framework for Enterprises that natively leverages generative AI for effortless assistant development.
|
|
5
5
|
Home-page: https://rasa.com
|
|
6
6
|
Keywords: nlp,machine-learning,machine-learning-library,bot,bots,botkit,rasa conversational-agents,conversational-ai,chatbot,chatbot-framework,bot-framework
|
|
@@ -34,7 +34,6 @@ Requires-Dist: attrs (>=23.1,<23.2)
|
|
|
34
34
|
Requires-Dist: azure-storage-blob (>=12.16.0,<12.17.0)
|
|
35
35
|
Requires-Dist: boto3 (>=1.35.5,<1.36.0)
|
|
36
36
|
Requires-Dist: certifi (>=2024.07.04)
|
|
37
|
-
Requires-Dist: cloudpickle (>=2.2.1,<3.1)
|
|
38
37
|
Requires-Dist: colorama (>=0.4.6,<0.5.0) ; sys_platform == "win32"
|
|
39
38
|
Requires-Dist: colorclass (>=2.2,<2.3)
|
|
40
39
|
Requires-Dist: coloredlogs (>=15,<16)
|
|
@@ -57,20 +56,19 @@ Requires-Dist: importlib-metadata (>=8.5.0,<8.6.0)
|
|
|
57
56
|
Requires-Dist: importlib-resources (==6.1.3)
|
|
58
57
|
Requires-Dist: jieba (>=0.42.1,<0.43) ; extra == "jieba" or extra == "full"
|
|
59
58
|
Requires-Dist: jinja2 (>=3.1.4,<4.0.0)
|
|
60
|
-
Requires-Dist: joblib (>=1.2.0,<1.3.0)
|
|
61
59
|
Requires-Dist: jsonpatch (>=1.33,<2.0)
|
|
62
60
|
Requires-Dist: jsonpickle (>=3.0,<3.1)
|
|
63
61
|
Requires-Dist: jsonschema (>=4.22)
|
|
64
62
|
Requires-Dist: keras (==2.14.0)
|
|
65
63
|
Requires-Dist: langchain (>=0.2.0,<0.3.0)
|
|
66
64
|
Requires-Dist: langchain-community (>=0.2.0,<0.3.0)
|
|
67
|
-
Requires-Dist: litellm (>=1.
|
|
65
|
+
Requires-Dist: litellm (>=1.50.0,<1.51.0)
|
|
68
66
|
Requires-Dist: matplotlib (>=3.7,<3.8)
|
|
69
67
|
Requires-Dist: mattermostwrapper (>=2.2,<2.3)
|
|
70
68
|
Requires-Dist: mlflow (>=2.15.1,<3.0.0) ; extra == "mlflow"
|
|
71
69
|
Requires-Dist: networkx (>=3.1,<3.2)
|
|
72
70
|
Requires-Dist: numpy (>=1.23.5,<1.25.0) ; python_version >= "3.9" and python_version < "3.11"
|
|
73
|
-
Requires-Dist: openai (>=1.
|
|
71
|
+
Requires-Dist: openai (>=1.52.0,<1.53.0)
|
|
74
72
|
Requires-Dist: openpyxl (>=3.1.5,<4.0.0)
|
|
75
73
|
Requires-Dist: opentelemetry-api (>=1.16.0,<1.17.0)
|
|
76
74
|
Requires-Dist: opentelemetry-exporter-jaeger (>=1.16.0,<1.17.0)
|
|
@@ -110,6 +108,7 @@ Requires-Dist: requests (>=2.31.0,<2.32.0)
|
|
|
110
108
|
Requires-Dist: rich (>=13.4.2,<14.0.0)
|
|
111
109
|
Requires-Dist: rocketchat_API (>=1.30.0,<1.31.0)
|
|
112
110
|
Requires-Dist: ruamel.yaml (>=0.17.21,<0.17.22)
|
|
111
|
+
Requires-Dist: safetensors (>=0.4.5,<0.5.0)
|
|
113
112
|
Requires-Dist: sanic (>=22.12,<22.13)
|
|
114
113
|
Requires-Dist: sanic-cors (>=2.2.0,<2.3.0)
|
|
115
114
|
Requires-Dist: sanic-jwt (>=1.8.0,<2.0.0)
|
|
@@ -120,6 +119,7 @@ Requires-Dist: sentencepiece[sentencepiece] (>=0.1.99,<0.2.0) ; extra == "transf
|
|
|
120
119
|
Requires-Dist: sentry-sdk (>=1.14.0,<1.15.0)
|
|
121
120
|
Requires-Dist: setuptools (>=70.0.0,<70.1.0)
|
|
122
121
|
Requires-Dist: sklearn-crfsuite (>=0.3.6,<0.4.0)
|
|
122
|
+
Requires-Dist: skops (>=0.10.0,<0.11.0)
|
|
123
123
|
Requires-Dist: slack-sdk (>=3.27.1,<4.0.0)
|
|
124
124
|
Requires-Dist: spacy (>=3.5.4,<4.0.0) ; extra == "spacy" or extra == "full"
|
|
125
125
|
Requires-Dist: structlog (>=23.1.0,<23.2.0)
|
|
@@ -89,7 +89,7 @@ rasa/cli/train.py,sha256=X4q-ub66Jto8K2vW6g_AOk06SdC-DXC_Mnf6gMiR7lc,8514
|
|
|
89
89
|
rasa/cli/utils.py,sha256=9VKC04qX9hJiMvQG9BWWJCH1Sb4jVNO0N_zE7oyUz1Y,15660
|
|
90
90
|
rasa/cli/visualize.py,sha256=YmRAATAfxHpgE8_PknGyM-oIujwICNzVftTzz6iLNNc,1256
|
|
91
91
|
rasa/cli/x.py,sha256=1w-H6kb_3OG3zVPJ1isX67BTb_T-x2MJo4OGffCD4Vc,6827
|
|
92
|
-
rasa/constants.py,sha256=
|
|
92
|
+
rasa/constants.py,sha256=zFvPAkk6B17QAx0ofo9K220w0gwsdSrJ7xvhr03ukjQ,1313
|
|
93
93
|
rasa/core/__init__.py,sha256=DYHLve7F1yQBVOZTA63efVIwLiULMuihOfdpzw1j0os,457
|
|
94
94
|
rasa/core/actions/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
95
95
|
rasa/core/actions/action.py,sha256=fzGdE-zhpul6dipV0t5_KtJomVsqfXw4bZ6IX1P1h5Y,43818
|
|
@@ -273,8 +273,8 @@ rasa/core/exceptions.py,sha256=0ZyxnGz6V02K24ybMbIwGx2bPh86X0u7As5wImcgrOk,901
|
|
|
273
273
|
rasa/core/exporter.py,sha256=Jshzp7gqf7iC0z7uxHM5wALP4MXyDM-fs2Gf_tIgj2Y,10479
|
|
274
274
|
rasa/core/featurizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
275
275
|
rasa/core/featurizers/precomputation.py,sha256=LWhx7Gm_n1aVvguGkTrHcHt-menRP6gj9OObbSKiReA,18006
|
|
276
|
-
rasa/core/featurizers/single_state_featurizer.py,sha256=
|
|
277
|
-
rasa/core/featurizers/tracker_featurizers.py,sha256=
|
|
276
|
+
rasa/core/featurizers/single_state_featurizer.py,sha256=byEldbHPhUiFHN6oCy_IPislWwtM_6cG4AhR3vH3pJM,16088
|
|
277
|
+
rasa/core/featurizers/tracker_featurizers.py,sha256=micA9TuSFnsj1aTZDQTGPR44jIDbDg0oNadkv86nSUk,46756
|
|
278
278
|
rasa/core/http_interpreter.py,sha256=zstMlaBK_K_DSpxMuR_Wn-AbYwFplLaG8jiWofa16Eg,3033
|
|
279
279
|
rasa/core/information_retrieval/__init__.py,sha256=bop2jgd0f16j-SbVGsvAI3F7znb23qQ-Gydy-AG-dNI,218
|
|
280
280
|
rasa/core/information_retrieval/faiss.py,sha256=gytyxSAPo4FoL23CwJZyEdF7gfQwEHKgX1MUPIqwV3Y,4192
|
|
@@ -307,8 +307,8 @@ rasa/core/policies/intentless_prompt_template.jinja2,sha256=KhIL3cruMmkxhrs5oVbq
|
|
|
307
307
|
rasa/core/policies/memoization.py,sha256=XoRxUdYUGRfO47tAEyc5k5pUgt38a4fipO336EU5Vdc,19466
|
|
308
308
|
rasa/core/policies/policy.py,sha256=HeVtIaV0dA1QcAG3vjdn-4g7-oUEJPL4u01ETJt78YA,27464
|
|
309
309
|
rasa/core/policies/rule_policy.py,sha256=YNDPZUZkpKFCvZwKe1kSfP6LQnDL9CQ6JU69JRwdmWw,50729
|
|
310
|
-
rasa/core/policies/ted_policy.py,sha256=
|
|
311
|
-
rasa/core/policies/unexpected_intent_policy.py,sha256=
|
|
310
|
+
rasa/core/policies/ted_policy.py,sha256=_DHiDH5Upx1yFNzMXBA3SGdHBRfsitTLlr7howUHPoo,87750
|
|
311
|
+
rasa/core/policies/unexpected_intent_policy.py,sha256=5pGe9EMS-NLHIDDhqY6KCH_Kv7_TGMzSbe_GsjuKH1w,39649
|
|
312
312
|
rasa/core/processor.py,sha256=-Jf2WliPA7lUZ8DCNt4r7fdU7qLNQf4g-IhoGZIswN0,54434
|
|
313
313
|
rasa/core/run.py,sha256=s32pZE3B1uKIs20xIbSty0HxeQ9One63_8NeCODwpQE,11050
|
|
314
314
|
rasa/core/secrets_manager/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -487,13 +487,13 @@ rasa/model_training.py,sha256=5NNOr5IJ6WMTx5ok0tL8EocByXpfaXUHJOXyxlm_TXQ,20339
|
|
|
487
487
|
rasa/nlu/__init__.py,sha256=D0IYuTK_ZQ_F_9xsy0bXxVCAtU62Fzvp8S7J9tmfI_c,123
|
|
488
488
|
rasa/nlu/classifiers/__init__.py,sha256=Qvrf7_rfiMxm2Vt2fClb56R3QFExf7WPdFdL-AOvgsk,118
|
|
489
489
|
rasa/nlu/classifiers/classifier.py,sha256=9fm1mORuFf1vowYIXmqE9yLRKdSC4nGQW7UqNZQipKY,133
|
|
490
|
-
rasa/nlu/classifiers/diet_classifier.py,sha256=
|
|
490
|
+
rasa/nlu/classifiers/diet_classifier.py,sha256=jhzvTqC_Ln-eFCrE1o3uQf1JRR7d6mCPn5ZRewePUas,72565
|
|
491
491
|
rasa/nlu/classifiers/fallback_classifier.py,sha256=FYOgM7bLG3HlasVWRozanz-MmDozygTlTIFcPHJWJoo,7150
|
|
492
492
|
rasa/nlu/classifiers/keyword_intent_classifier.py,sha256=dxDzCK7YzYKslZiXYkBD1Al1y_yZWdZYkBBl7FLyPm8,7581
|
|
493
|
-
rasa/nlu/classifiers/logistic_regression_classifier.py,sha256=
|
|
493
|
+
rasa/nlu/classifiers/logistic_regression_classifier.py,sha256=C7GkIaVNC5MHu5xOaqKzRiV1LTu_19I5vk_Oa9BIDDU,9589
|
|
494
494
|
rasa/nlu/classifiers/mitie_intent_classifier.py,sha256=_hf0aKWjcjZ8NdH61gbutgY5vAjMmpYDhCpO3dwIrDk,5559
|
|
495
495
|
rasa/nlu/classifiers/regex_message_handler.py,sha256=r6Z-uFJvqFZjpI1rUeaZZnAOUL9lxuBxGK7W6WZIPOw,1989
|
|
496
|
-
rasa/nlu/classifiers/sklearn_intent_classifier.py,sha256=
|
|
496
|
+
rasa/nlu/classifiers/sklearn_intent_classifier.py,sha256=h4J0dc2KPE4Q1J8m9X0JDznHUuUZICVE_XJQbKcPr04,12797
|
|
497
497
|
rasa/nlu/constants.py,sha256=ahRBMW-xordjgZtwmMimrTbl8lsCSzjfKMkN1cjanqs,2757
|
|
498
498
|
rasa/nlu/convert.py,sha256=jLtSQYnj1Ys4Q4WyfL29GDiRlBCbuPmmoFnBYcvFZ5A,1317
|
|
499
499
|
rasa/nlu/emulators/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -503,7 +503,7 @@ rasa/nlu/emulators/luis.py,sha256=AWMGI17Su1q6PcE8l1S1mDJpwfVtx7ibY9rwBmg3Maw,30
|
|
|
503
503
|
rasa/nlu/emulators/no_emulator.py,sha256=tLJ2DyWhOtaIBudVf7mJGsubca9Vunb6VhJB_tWJ8wU,334
|
|
504
504
|
rasa/nlu/emulators/wit.py,sha256=0eMj_q49JGj0Z6JZjR7rHIABNF-F3POX7s5W5OkANyo,1930
|
|
505
505
|
rasa/nlu/extractors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
506
|
-
rasa/nlu/extractors/crf_entity_extractor.py,sha256=
|
|
506
|
+
rasa/nlu/extractors/crf_entity_extractor.py,sha256=5IW7Fa4lLLUxMrbHiRmBD7Y6B7TmS_o66USoSxYBOZk,27532
|
|
507
507
|
rasa/nlu/extractors/duckling_entity_extractor.py,sha256=XooWjw6eDC0sxZ-T1YgDnrLcRTBx6B40SFGLjHTHg-w,7686
|
|
508
508
|
rasa/nlu/extractors/entity_synonyms.py,sha256=WShheUF7wbP7VWfpCNw3J4NouAcFjAupDsT4oAj_TUc,7148
|
|
509
509
|
rasa/nlu/extractors/extractor.py,sha256=m6p07GDBZi1VhgYCkYJrWs_Zk87okV77hvoiwG_1xxA,17539
|
|
@@ -519,9 +519,9 @@ rasa/nlu/featurizers/dense_featurizer/mitie_featurizer.py,sha256=xE-dOmdBqCJ4NEm
|
|
|
519
519
|
rasa/nlu/featurizers/dense_featurizer/spacy_featurizer.py,sha256=tJzDeX8wkOO1iUNmx13FSIeMHNC0U0RB5ZF9pPo8nqQ,4888
|
|
520
520
|
rasa/nlu/featurizers/featurizer.py,sha256=cV2v4f1V2DWDqJY1-oGAZsytv0L827nsCtUY6KjEChg,3348
|
|
521
521
|
rasa/nlu/featurizers/sparse_featurizer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
522
|
-
rasa/nlu/featurizers/sparse_featurizer/count_vectors_featurizer.py,sha256=
|
|
523
|
-
rasa/nlu/featurizers/sparse_featurizer/lexical_syntactic_featurizer.py,sha256=
|
|
524
|
-
rasa/nlu/featurizers/sparse_featurizer/regex_featurizer.py,sha256=
|
|
522
|
+
rasa/nlu/featurizers/sparse_featurizer/count_vectors_featurizer.py,sha256=CkbI7jS0UjiFE9BRgF4AnxvJHuQb2_aZ9ky4rUvgCH4,34794
|
|
523
|
+
rasa/nlu/featurizers/sparse_featurizer/lexical_syntactic_featurizer.py,sha256=yJC9dRrUnZP-tff10qbXrbfN5De55w8U1wc99gaWv_g,23100
|
|
524
|
+
rasa/nlu/featurizers/sparse_featurizer/regex_featurizer.py,sha256=jGK8IlDbms-xMoln9JucKCjGWVzyHbZOEzIPj2BvV9I,10293
|
|
525
525
|
rasa/nlu/featurizers/sparse_featurizer/sparse_featurizer.py,sha256=m6qpixorfTDFWSfGVmLImTOHM6zKdgydPaP_wVxCQ-w,220
|
|
526
526
|
rasa/nlu/model.py,sha256=r6StZb4Dmum_3dRoocxZWo2M5KVNV20_yKNvYZNvpOc,557
|
|
527
527
|
rasa/nlu/persistor.py,sha256=Sc0NH2VSK9efOYSD0INYd3za3esQvgNHa4FwClJVH-c,13788
|
|
@@ -607,7 +607,7 @@ rasa/shared/nlu/constants.py,sha256=rf628BT4r6hnvN6QWyh_t2UFKOD7PR5APspi6igmeCU,
|
|
|
607
607
|
rasa/shared/nlu/interpreter.py,sha256=eCNJp61nQYTGVf4aJi8SCWb46jxZY6-C1M1LFxMyQTM,188
|
|
608
608
|
rasa/shared/nlu/training_data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
609
609
|
rasa/shared/nlu/training_data/entities_parser.py,sha256=fC-VIso07so6E9b6KrQXOBC-ZUGCQGvnMvzVwiAO1GQ,6729
|
|
610
|
-
rasa/shared/nlu/training_data/features.py,sha256=
|
|
610
|
+
rasa/shared/nlu/training_data/features.py,sha256=KjvXQT_YF-fXAR1qvp_JhOvDiI0EGekQ8aRJo0KNQCg,18592
|
|
611
611
|
rasa/shared/nlu/training_data/formats/__init__.py,sha256=rX28sTQBs0fL4yTMtv3xVl2DM14TvWmkkoLJt2kIoho,453
|
|
612
612
|
rasa/shared/nlu/training_data/formats/dialogflow.py,sha256=YfBjqgY0uaqXVdT3bmnQkb8runPe8pY8H-lqVB0L7zM,6142
|
|
613
613
|
rasa/shared/nlu/training_data/formats/luis.py,sha256=Yaw_0QcXDC35hEckIJGS2fTdweQfyYAO378fwsEaSUs,3014
|
|
@@ -657,7 +657,7 @@ rasa/shared/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU
|
|
|
657
657
|
rasa/shared/utils/cli.py,sha256=bJpkf0VzzmtpmBnDnIl7SgvrntnBuaJQMHBXHm2WxcA,2916
|
|
658
658
|
rasa/shared/utils/common.py,sha256=Z0sfpDosVHLhGDY-72lGVTPWsNC64z3HWSLdnZRG7yE,10057
|
|
659
659
|
rasa/shared/utils/constants.py,sha256=ZNQu0RHM_7Q4A2hn6pD8XlKPEwzivNpfKiiQihwH8-U,141
|
|
660
|
-
rasa/shared/utils/io.py,sha256=
|
|
660
|
+
rasa/shared/utils/io.py,sha256=cYEkHjvuIB-XaK-Qchajv4lDMb_EZc3K-3CLwiEtUcA,15236
|
|
661
661
|
rasa/shared/utils/llm.py,sha256=h35-N4LiT0qbg_6sab0GiYsPJe1Q1WHMLj6UhVuXOSY,13804
|
|
662
662
|
rasa/shared/utils/pykwalify_extensions.py,sha256=4W8gde8C6QpGCY_t9IEmaZSgjMuie1xH0F1DYyn83BM,883
|
|
663
663
|
rasa/shared/utils/schemas/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -692,7 +692,7 @@ rasa/utils/cli.py,sha256=L-DT4nPdVBWfc2m1COHrziLitVWJxazSreb6JLbTho4,865
|
|
|
692
692
|
rasa/utils/common.py,sha256=1ETnOFB_nNexSqHL0EhsMtg8M1k9-2laAy2jsugxnIk,21079
|
|
693
693
|
rasa/utils/converter.py,sha256=H4LHpoAK7MXMmvNZG_uSn0gbccCJvHtsA2-6Zya4u6M,1656
|
|
694
694
|
rasa/utils/endpoints.py,sha256=cLeHBr6n88GYlYMxXVzZwvQ0nC1TpuC1pvn_RsxiDYY,9336
|
|
695
|
-
rasa/utils/io.py,sha256=
|
|
695
|
+
rasa/utils/io.py,sha256=HwhG-Y_VmyGNqYpA3Y3ef-OO7GI4TTRGyOnSjEJW6GQ,7442
|
|
696
696
|
rasa/utils/json_utils.py,sha256=SKtJzzsIRCAgNEQiBvWDDm9euMRBgJ-TyvCi2tXHH1w,1689
|
|
697
697
|
rasa/utils/licensing.py,sha256=JyqusmuufnTwlKFHOa8sdDZe5lG7YxeDQbrXnvsxQZw,20491
|
|
698
698
|
rasa/utils/log_utils.py,sha256=SmyRYbnqj9gCr-pavNCwmoid6cWVQ3D72ryqGhbtlpM,6377
|
|
@@ -707,10 +707,11 @@ rasa/utils/tensorflow/crf.py,sha256=xl6lHmie4aYIIN0kTVzvLSJ7Qkl3UeFoZRnc2RrgBEo,
|
|
|
707
707
|
rasa/utils/tensorflow/data_generator.py,sha256=zKW2Uc2EsYXu7Yu4JU13nWpbxwOZYq5mqCO0LHT_0ZA,16238
|
|
708
708
|
rasa/utils/tensorflow/environment.py,sha256=rXqs4btQbiOMtbCoujUmccvAMQvM0peqNkIiunPn5Ik,5599
|
|
709
709
|
rasa/utils/tensorflow/exceptions.py,sha256=I5chH5Lky3faXZOCfGyeXfkOsDpjYV7gJWZCiKp5CAs,168
|
|
710
|
+
rasa/utils/tensorflow/feature_array.py,sha256=0iCebkyVzMlGqFUBbvgXFvqsAS5v3XwC58J-jEYm01I,14001
|
|
710
711
|
rasa/utils/tensorflow/layers.py,sha256=jAa7kxO69z9I8x9d_lc8ABrGrOhFQ3TLngT9ftU2ET8,59261
|
|
711
712
|
rasa/utils/tensorflow/layers_utils.py,sha256=Lvldu67qO275VV064bI8AAmwQZFzgmL9JKRlBFARLs0,3319
|
|
712
713
|
rasa/utils/tensorflow/metrics.py,sha256=iaWI9W_0pRcSokl3NcsrDvqPryjNX64tv20Gd0OQCNM,10064
|
|
713
|
-
rasa/utils/tensorflow/model_data.py,sha256=
|
|
714
|
+
rasa/utils/tensorflow/model_data.py,sha256=U8hzLKZCZjojl41ibFXRUjwnY-NQ6MPFn5EX0sJDaRo,26942
|
|
714
715
|
rasa/utils/tensorflow/model_data_utils.py,sha256=cHY0ekIFpCTPmB_d3CrJv17ExGNgHNAVvn7FLERGnv8,18166
|
|
715
716
|
rasa/utils/tensorflow/models.py,sha256=jR7RBzSCXLER3YbRcocQ6pBSDZJsPisdSbEl9KCL0r8,36039
|
|
716
717
|
rasa/utils/tensorflow/rasa_layers.py,sha256=AZpQsAiikDNox1CYmKTB0cZQjemV97Cnv52xNdb0AAc,49111
|
|
@@ -720,9 +721,9 @@ rasa/utils/train_utils.py,sha256=f1NWpp5y6al0dzoQyyio4hc4Nf73DRoRSHDzEK6-C4E,212
|
|
|
720
721
|
rasa/utils/url_tools.py,sha256=JQcHL2aLqLHu82k7_d9imUoETCm2bmlHaDpOJ-dKqBc,1218
|
|
721
722
|
rasa/utils/yaml.py,sha256=KjbZq5C94ZP7Jdsw8bYYF7HASI6K4-C_kdHfrnPLpSI,2000
|
|
722
723
|
rasa/validator.py,sha256=ToRaa4dS859CJO3H2VGqS943O5qWOg45ypbDfFMKECU,62699
|
|
723
|
-
rasa/version.py,sha256=
|
|
724
|
-
rasa_pro-3.10.9.dist-info/METADATA,sha256=
|
|
725
|
-
rasa_pro-3.10.9.dist-info/NOTICE,sha256=7HlBoMHJY9CL2GlYSfTQ-PZsVmLmVkYmMiPlTjhuCqA,218
|
|
726
|
-
rasa_pro-3.10.9.dist-info/WHEEL,sha256=
|
|
727
|
-
rasa_pro-3.10.9.dist-info/entry_points.txt,sha256=ckJ2SfEyTPgBqj_I6vm_tqY9dZF_LAPJZA335Xp0Q9U,43
|
|
728
|
-
rasa_pro-3.10.9.dist-info/RECORD,,
|
|
724
|
+
rasa/version.py,sha256=ZYVWCHhDCP7gSj8njB4Anh1BKlbZcxtybJxXXMroFXo,122
|
|
725
|
+
rasa_pro-3.10.9.dev1.dist-info/METADATA,sha256=OWyF3V2qD-BDnkeaJmbhYjYEcRPxQZPHpgyj5dFS2Ck,30900
|
|
726
|
+
rasa_pro-3.10.9.dev1.dist-info/NOTICE,sha256=7HlBoMHJY9CL2GlYSfTQ-PZsVmLmVkYmMiPlTjhuCqA,218
|
|
727
|
+
rasa_pro-3.10.9.dev1.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
|
|
728
|
+
rasa_pro-3.10.9.dev1.dist-info/entry_points.txt,sha256=ckJ2SfEyTPgBqj_I6vm_tqY9dZF_LAPJZA335Xp0Q9U,43
|
|
729
|
+
rasa_pro-3.10.9.dev1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|