rasa-pro 3.10.9__py3-none-any.whl → 3.10.9.dev1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of rasa-pro might be problematic. Click here for more details.

@@ -20,6 +20,8 @@ import numpy as np
20
20
  import scipy.sparse
21
21
  from sklearn.model_selection import train_test_split
22
22
 
23
+ from rasa.utils.tensorflow.feature_array import FeatureArray
24
+
23
25
  logger = logging.getLogger(__name__)
24
26
 
25
27
 
@@ -37,199 +39,6 @@ def ragged_array_to_ndarray(ragged_array: Iterable[np.ndarray]) -> np.ndarray:
37
39
  return np.array(ragged_array, dtype=object)
38
40
 
39
41
 
40
- class FeatureArray(np.ndarray):
41
- """Stores any kind of features ready to be used by a RasaModel.
42
-
43
- Next to the input numpy array of features, it also received the number of
44
- dimensions of the features.
45
- As our features can have 1 to 4 dimensions we might have different number of numpy
46
- arrays stacked. The number of dimensions helps us to figure out how to handle this
47
- particular feature array. Also, it is automatically determined whether the feature
48
- array is sparse or not and the number of units is determined as well.
49
-
50
- Subclassing np.array: https://numpy.org/doc/stable/user/basics.subclassing.html
51
- """
52
-
53
- def __new__(
54
- cls, input_array: np.ndarray, number_of_dimensions: int
55
- ) -> "FeatureArray":
56
- """Create and return a new object. See help(type) for accurate signature."""
57
- FeatureArray._validate_number_of_dimensions(number_of_dimensions, input_array)
58
-
59
- feature_array = np.asarray(input_array).view(cls)
60
-
61
- if number_of_dimensions <= 2:
62
- feature_array.units = input_array.shape[-1]
63
- feature_array.is_sparse = isinstance(input_array[0], scipy.sparse.spmatrix)
64
- elif number_of_dimensions == 3:
65
- feature_array.units = input_array[0].shape[-1]
66
- feature_array.is_sparse = isinstance(input_array[0], scipy.sparse.spmatrix)
67
- elif number_of_dimensions == 4:
68
- feature_array.units = input_array[0][0].shape[-1]
69
- feature_array.is_sparse = isinstance(
70
- input_array[0][0], scipy.sparse.spmatrix
71
- )
72
- else:
73
- raise ValueError(
74
- f"Number of dimensions '{number_of_dimensions}' currently not "
75
- f"supported."
76
- )
77
-
78
- feature_array.number_of_dimensions = number_of_dimensions
79
-
80
- return feature_array
81
-
82
- def __init__(
83
- self, input_array: Any, number_of_dimensions: int, **kwargs: Any
84
- ) -> None:
85
- """Initialize. FeatureArray.
86
-
87
- Needed in order to avoid 'Invalid keyword argument number_of_dimensions
88
- to function FeatureArray.__init__ '
89
- Args:
90
- input_array: the array that contains features
91
- number_of_dimensions: number of dimensions in input_array
92
- """
93
- super().__init__(**kwargs)
94
- self.number_of_dimensions = number_of_dimensions
95
-
96
- def __array_finalize__(self, obj: Optional[np.ndarray]) -> None:
97
- """This method is called when the system allocates a new array from obj.
98
-
99
- Args:
100
- obj: A subclass (subtype) of ndarray.
101
- """
102
- if obj is None:
103
- return
104
-
105
- self.units = getattr(obj, "units", None)
106
- self.number_of_dimensions = getattr(obj, "number_of_dimensions", None) # type: ignore[assignment]
107
- self.is_sparse = getattr(obj, "is_sparse", None)
108
-
109
- default_attributes = {
110
- "units": self.units,
111
- "number_of_dimensions": self.number_of_dimensions,
112
- "is_spare": self.is_sparse,
113
- }
114
- self.__dict__.update(default_attributes)
115
-
116
- # pytype: disable=attribute-error
117
- def __array_ufunc__(
118
- self, ufunc: Any, method: Text, *inputs: Any, **kwargs: Any
119
- ) -> Any:
120
- """Overwrite this method as we are subclassing numpy array.
121
-
122
- Args:
123
- ufunc: The ufunc object that was called.
124
- method: A string indicating which Ufunc method was called
125
- (one of "__call__", "reduce", "reduceat", "accumulate", "outer",
126
- "inner").
127
- *inputs: A tuple of the input arguments to the ufunc.
128
- **kwargs: Any additional arguments
129
-
130
- Returns:
131
- The result of the operation.
132
- """
133
- f = {
134
- "reduce": ufunc.reduce,
135
- "accumulate": ufunc.accumulate,
136
- "reduceat": ufunc.reduceat,
137
- "outer": ufunc.outer,
138
- "at": ufunc.at,
139
- "__call__": ufunc,
140
- }
141
- # convert the inputs to np.ndarray to prevent recursion, call the function,
142
- # then cast it back as FeatureArray
143
- output = FeatureArray(
144
- f[method](*(i.view(np.ndarray) for i in inputs), **kwargs),
145
- number_of_dimensions=kwargs["number_of_dimensions"],
146
- )
147
- output.__dict__ = self.__dict__ # carry forward attributes
148
- return output
149
-
150
- def __reduce__(self) -> Tuple[Any, Any, Any]:
151
- """Needed in order to pickle this object.
152
-
153
- Returns:
154
- A tuple.
155
- """
156
- pickled_state = super(FeatureArray, self).__reduce__()
157
- if isinstance(pickled_state, str):
158
- raise TypeError("np array __reduce__ returned string instead of tuple.")
159
- new_state = pickled_state[2] + (
160
- self.number_of_dimensions,
161
- self.is_sparse,
162
- self.units,
163
- )
164
- return pickled_state[0], pickled_state[1], new_state
165
-
166
- def __setstate__(self, state: Any, **kwargs: Any) -> None:
167
- """Sets the state.
168
-
169
- Args:
170
- state: The state argument must be a sequence that contains the following
171
- elements version, shape, dtype, isFortan, rawdata.
172
- **kwargs: Any additional parameter
173
- """
174
- # Needed in order to load the object
175
- self.number_of_dimensions = state[-3]
176
- self.is_sparse = state[-2]
177
- self.units = state[-1]
178
- super(FeatureArray, self).__setstate__(state[0:-3], **kwargs)
179
-
180
- # pytype: enable=attribute-error
181
-
182
- @staticmethod
183
- def _validate_number_of_dimensions(
184
- number_of_dimensions: int, input_array: np.ndarray
185
- ) -> None:
186
- """Validates if the the input array has given number of dimensions.
187
-
188
- Args:
189
- number_of_dimensions: number of dimensions
190
- input_array: input array
191
-
192
- Raises: ValueError in case the dimensions do not match
193
- """
194
- _sub_array = input_array
195
- dim = 0
196
- # Go number_of_dimensions into the given input_array
197
- for i in range(1, number_of_dimensions + 1):
198
- _sub_array = _sub_array[0]
199
- if isinstance(_sub_array, scipy.sparse.spmatrix):
200
- dim = i
201
- break
202
- if isinstance(_sub_array, np.ndarray) and _sub_array.shape[0] == 0:
203
- # sequence dimension is 0, we are dealing with "fake" features
204
- dim = i
205
- break
206
-
207
- # If the resulting sub_array is sparse, the remaining number of dimensions
208
- # should be at least 2
209
- if isinstance(_sub_array, scipy.sparse.spmatrix):
210
- if dim > 2:
211
- raise ValueError(
212
- f"Given number of dimensions '{number_of_dimensions}' does not "
213
- f"match dimensions of given input array: {input_array}."
214
- )
215
- elif isinstance(_sub_array, np.ndarray) and _sub_array.shape[0] == 0:
216
- # sequence dimension is 0, we are dealing with "fake" features,
217
- # but they should be of dim 2
218
- if dim > 2:
219
- raise ValueError(
220
- f"Given number of dimensions '{number_of_dimensions}' does not "
221
- f"match dimensions of given input array: {input_array}."
222
- )
223
- # If the resulting sub_array is dense, the sub_array should be a single number
224
- elif not np.issubdtype(type(_sub_array), np.integer) and not isinstance(
225
- _sub_array, (np.float32, np.float64)
226
- ):
227
- raise ValueError(
228
- f"Given number of dimensions '{number_of_dimensions}' does not match "
229
- f"dimensions of given input array: {input_array}."
230
- )
231
-
232
-
233
42
  class FeatureSignature(NamedTuple):
234
43
  """Signature of feature arrays.
235
44
 
rasa/version.py CHANGED
@@ -1,3 +1,3 @@
1
1
  # this file will automatically be changed,
2
2
  # do not add anything but the version number here!
3
- __version__ = "3.10.9"
3
+ __version__ = "3.10.9.dev1"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: rasa-pro
3
- Version: 3.10.9
3
+ Version: 3.10.9.dev1
4
4
  Summary: State-of-the-art open-core Conversational AI framework for Enterprises that natively leverages generative AI for effortless assistant development.
5
5
  Home-page: https://rasa.com
6
6
  Keywords: nlp,machine-learning,machine-learning-library,bot,bots,botkit,rasa conversational-agents,conversational-ai,chatbot,chatbot-framework,bot-framework
@@ -34,7 +34,6 @@ Requires-Dist: attrs (>=23.1,<23.2)
34
34
  Requires-Dist: azure-storage-blob (>=12.16.0,<12.17.0)
35
35
  Requires-Dist: boto3 (>=1.35.5,<1.36.0)
36
36
  Requires-Dist: certifi (>=2024.07.04)
37
- Requires-Dist: cloudpickle (>=2.2.1,<3.1)
38
37
  Requires-Dist: colorama (>=0.4.6,<0.5.0) ; sys_platform == "win32"
39
38
  Requires-Dist: colorclass (>=2.2,<2.3)
40
39
  Requires-Dist: coloredlogs (>=15,<16)
@@ -57,20 +56,19 @@ Requires-Dist: importlib-metadata (>=8.5.0,<8.6.0)
57
56
  Requires-Dist: importlib-resources (==6.1.3)
58
57
  Requires-Dist: jieba (>=0.42.1,<0.43) ; extra == "jieba" or extra == "full"
59
58
  Requires-Dist: jinja2 (>=3.1.4,<4.0.0)
60
- Requires-Dist: joblib (>=1.2.0,<1.3.0)
61
59
  Requires-Dist: jsonpatch (>=1.33,<2.0)
62
60
  Requires-Dist: jsonpickle (>=3.0,<3.1)
63
61
  Requires-Dist: jsonschema (>=4.22)
64
62
  Requires-Dist: keras (==2.14.0)
65
63
  Requires-Dist: langchain (>=0.2.0,<0.3.0)
66
64
  Requires-Dist: langchain-community (>=0.2.0,<0.3.0)
67
- Requires-Dist: litellm (>=1.52.6,<1.53.0)
65
+ Requires-Dist: litellm (>=1.50.0,<1.51.0)
68
66
  Requires-Dist: matplotlib (>=3.7,<3.8)
69
67
  Requires-Dist: mattermostwrapper (>=2.2,<2.3)
70
68
  Requires-Dist: mlflow (>=2.15.1,<3.0.0) ; extra == "mlflow"
71
69
  Requires-Dist: networkx (>=3.1,<3.2)
72
70
  Requires-Dist: numpy (>=1.23.5,<1.25.0) ; python_version >= "3.9" and python_version < "3.11"
73
- Requires-Dist: openai (>=1.54.0,<1.55.0)
71
+ Requires-Dist: openai (>=1.52.0,<1.53.0)
74
72
  Requires-Dist: openpyxl (>=3.1.5,<4.0.0)
75
73
  Requires-Dist: opentelemetry-api (>=1.16.0,<1.17.0)
76
74
  Requires-Dist: opentelemetry-exporter-jaeger (>=1.16.0,<1.17.0)
@@ -110,6 +108,7 @@ Requires-Dist: requests (>=2.31.0,<2.32.0)
110
108
  Requires-Dist: rich (>=13.4.2,<14.0.0)
111
109
  Requires-Dist: rocketchat_API (>=1.30.0,<1.31.0)
112
110
  Requires-Dist: ruamel.yaml (>=0.17.21,<0.17.22)
111
+ Requires-Dist: safetensors (>=0.4.5,<0.5.0)
113
112
  Requires-Dist: sanic (>=22.12,<22.13)
114
113
  Requires-Dist: sanic-cors (>=2.2.0,<2.3.0)
115
114
  Requires-Dist: sanic-jwt (>=1.8.0,<2.0.0)
@@ -120,6 +119,7 @@ Requires-Dist: sentencepiece[sentencepiece] (>=0.1.99,<0.2.0) ; extra == "transf
120
119
  Requires-Dist: sentry-sdk (>=1.14.0,<1.15.0)
121
120
  Requires-Dist: setuptools (>=70.0.0,<70.1.0)
122
121
  Requires-Dist: sklearn-crfsuite (>=0.3.6,<0.4.0)
122
+ Requires-Dist: skops (>=0.10.0,<0.11.0)
123
123
  Requires-Dist: slack-sdk (>=3.27.1,<4.0.0)
124
124
  Requires-Dist: spacy (>=3.5.4,<4.0.0) ; extra == "spacy" or extra == "full"
125
125
  Requires-Dist: structlog (>=23.1.0,<23.2.0)
@@ -89,7 +89,7 @@ rasa/cli/train.py,sha256=X4q-ub66Jto8K2vW6g_AOk06SdC-DXC_Mnf6gMiR7lc,8514
89
89
  rasa/cli/utils.py,sha256=9VKC04qX9hJiMvQG9BWWJCH1Sb4jVNO0N_zE7oyUz1Y,15660
90
90
  rasa/cli/visualize.py,sha256=YmRAATAfxHpgE8_PknGyM-oIujwICNzVftTzz6iLNNc,1256
91
91
  rasa/cli/x.py,sha256=1w-H6kb_3OG3zVPJ1isX67BTb_T-x2MJo4OGffCD4Vc,6827
92
- rasa/constants.py,sha256=BuDQ59uM3GhxmShZR-1IuDHh5VHfEneA9P9HUQagZ9M,1311
92
+ rasa/constants.py,sha256=zFvPAkk6B17QAx0ofo9K220w0gwsdSrJ7xvhr03ukjQ,1313
93
93
  rasa/core/__init__.py,sha256=DYHLve7F1yQBVOZTA63efVIwLiULMuihOfdpzw1j0os,457
94
94
  rasa/core/actions/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
95
95
  rasa/core/actions/action.py,sha256=fzGdE-zhpul6dipV0t5_KtJomVsqfXw4bZ6IX1P1h5Y,43818
@@ -273,8 +273,8 @@ rasa/core/exceptions.py,sha256=0ZyxnGz6V02K24ybMbIwGx2bPh86X0u7As5wImcgrOk,901
273
273
  rasa/core/exporter.py,sha256=Jshzp7gqf7iC0z7uxHM5wALP4MXyDM-fs2Gf_tIgj2Y,10479
274
274
  rasa/core/featurizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
275
275
  rasa/core/featurizers/precomputation.py,sha256=LWhx7Gm_n1aVvguGkTrHcHt-menRP6gj9OObbSKiReA,18006
276
- rasa/core/featurizers/single_state_featurizer.py,sha256=9zohJb5tXcTRSAdzBM9ebCNy_yDtcJykUoCZTFm8laY,15431
277
- rasa/core/featurizers/tracker_featurizers.py,sha256=cjwAM8pmUE8TJX4qrX3EkxL3ETHOdFvRZTAXQ2SY6zg,43368
276
+ rasa/core/featurizers/single_state_featurizer.py,sha256=byEldbHPhUiFHN6oCy_IPislWwtM_6cG4AhR3vH3pJM,16088
277
+ rasa/core/featurizers/tracker_featurizers.py,sha256=micA9TuSFnsj1aTZDQTGPR44jIDbDg0oNadkv86nSUk,46756
278
278
  rasa/core/http_interpreter.py,sha256=zstMlaBK_K_DSpxMuR_Wn-AbYwFplLaG8jiWofa16Eg,3033
279
279
  rasa/core/information_retrieval/__init__.py,sha256=bop2jgd0f16j-SbVGsvAI3F7znb23qQ-Gydy-AG-dNI,218
280
280
  rasa/core/information_retrieval/faiss.py,sha256=gytyxSAPo4FoL23CwJZyEdF7gfQwEHKgX1MUPIqwV3Y,4192
@@ -307,8 +307,8 @@ rasa/core/policies/intentless_prompt_template.jinja2,sha256=KhIL3cruMmkxhrs5oVbq
307
307
  rasa/core/policies/memoization.py,sha256=XoRxUdYUGRfO47tAEyc5k5pUgt38a4fipO336EU5Vdc,19466
308
308
  rasa/core/policies/policy.py,sha256=HeVtIaV0dA1QcAG3vjdn-4g7-oUEJPL4u01ETJt78YA,27464
309
309
  rasa/core/policies/rule_policy.py,sha256=YNDPZUZkpKFCvZwKe1kSfP6LQnDL9CQ6JU69JRwdmWw,50729
310
- rasa/core/policies/ted_policy.py,sha256=TFTM-Ujp1Mu7dQKnX5euKY81cvzDkzokGqAT813PKkY,86658
311
- rasa/core/policies/unexpected_intent_policy.py,sha256=zeV4atIW9K2QHr4io_8RWOtreABSHoAQHjiznwcmUSo,39441
310
+ rasa/core/policies/ted_policy.py,sha256=_DHiDH5Upx1yFNzMXBA3SGdHBRfsitTLlr7howUHPoo,87750
311
+ rasa/core/policies/unexpected_intent_policy.py,sha256=5pGe9EMS-NLHIDDhqY6KCH_Kv7_TGMzSbe_GsjuKH1w,39649
312
312
  rasa/core/processor.py,sha256=-Jf2WliPA7lUZ8DCNt4r7fdU7qLNQf4g-IhoGZIswN0,54434
313
313
  rasa/core/run.py,sha256=s32pZE3B1uKIs20xIbSty0HxeQ9One63_8NeCODwpQE,11050
314
314
  rasa/core/secrets_manager/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -487,13 +487,13 @@ rasa/model_training.py,sha256=5NNOr5IJ6WMTx5ok0tL8EocByXpfaXUHJOXyxlm_TXQ,20339
487
487
  rasa/nlu/__init__.py,sha256=D0IYuTK_ZQ_F_9xsy0bXxVCAtU62Fzvp8S7J9tmfI_c,123
488
488
  rasa/nlu/classifiers/__init__.py,sha256=Qvrf7_rfiMxm2Vt2fClb56R3QFExf7WPdFdL-AOvgsk,118
489
489
  rasa/nlu/classifiers/classifier.py,sha256=9fm1mORuFf1vowYIXmqE9yLRKdSC4nGQW7UqNZQipKY,133
490
- rasa/nlu/classifiers/diet_classifier.py,sha256=C2mKZ2GP7Uptpag240fFkAEZf6P1NuU_2TrnSsR3IA0,71936
490
+ rasa/nlu/classifiers/diet_classifier.py,sha256=jhzvTqC_Ln-eFCrE1o3uQf1JRR7d6mCPn5ZRewePUas,72565
491
491
  rasa/nlu/classifiers/fallback_classifier.py,sha256=FYOgM7bLG3HlasVWRozanz-MmDozygTlTIFcPHJWJoo,7150
492
492
  rasa/nlu/classifiers/keyword_intent_classifier.py,sha256=dxDzCK7YzYKslZiXYkBD1Al1y_yZWdZYkBBl7FLyPm8,7581
493
- rasa/nlu/classifiers/logistic_regression_classifier.py,sha256=Qga66-PjW4I4D2uIMoX2aW8ywdufq9ISmt12rP3rj9g,9124
493
+ rasa/nlu/classifiers/logistic_regression_classifier.py,sha256=C7GkIaVNC5MHu5xOaqKzRiV1LTu_19I5vk_Oa9BIDDU,9589
494
494
  rasa/nlu/classifiers/mitie_intent_classifier.py,sha256=_hf0aKWjcjZ8NdH61gbutgY5vAjMmpYDhCpO3dwIrDk,5559
495
495
  rasa/nlu/classifiers/regex_message_handler.py,sha256=r6Z-uFJvqFZjpI1rUeaZZnAOUL9lxuBxGK7W6WZIPOw,1989
496
- rasa/nlu/classifiers/sklearn_intent_classifier.py,sha256=zPLr1GNCEAG8xW5SEPLgc2lsenXavTG9KDby8JUDX3o,11923
496
+ rasa/nlu/classifiers/sklearn_intent_classifier.py,sha256=h4J0dc2KPE4Q1J8m9X0JDznHUuUZICVE_XJQbKcPr04,12797
497
497
  rasa/nlu/constants.py,sha256=ahRBMW-xordjgZtwmMimrTbl8lsCSzjfKMkN1cjanqs,2757
498
498
  rasa/nlu/convert.py,sha256=jLtSQYnj1Ys4Q4WyfL29GDiRlBCbuPmmoFnBYcvFZ5A,1317
499
499
  rasa/nlu/emulators/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -503,7 +503,7 @@ rasa/nlu/emulators/luis.py,sha256=AWMGI17Su1q6PcE8l1S1mDJpwfVtx7ibY9rwBmg3Maw,30
503
503
  rasa/nlu/emulators/no_emulator.py,sha256=tLJ2DyWhOtaIBudVf7mJGsubca9Vunb6VhJB_tWJ8wU,334
504
504
  rasa/nlu/emulators/wit.py,sha256=0eMj_q49JGj0Z6JZjR7rHIABNF-F3POX7s5W5OkANyo,1930
505
505
  rasa/nlu/extractors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
506
- rasa/nlu/extractors/crf_entity_extractor.py,sha256=vX7bZHjtdD2M2GhJDwTx-S-Q6y8eskkOIhZShYXaHj8,26503
506
+ rasa/nlu/extractors/crf_entity_extractor.py,sha256=5IW7Fa4lLLUxMrbHiRmBD7Y6B7TmS_o66USoSxYBOZk,27532
507
507
  rasa/nlu/extractors/duckling_entity_extractor.py,sha256=XooWjw6eDC0sxZ-T1YgDnrLcRTBx6B40SFGLjHTHg-w,7686
508
508
  rasa/nlu/extractors/entity_synonyms.py,sha256=WShheUF7wbP7VWfpCNw3J4NouAcFjAupDsT4oAj_TUc,7148
509
509
  rasa/nlu/extractors/extractor.py,sha256=m6p07GDBZi1VhgYCkYJrWs_Zk87okV77hvoiwG_1xxA,17539
@@ -519,9 +519,9 @@ rasa/nlu/featurizers/dense_featurizer/mitie_featurizer.py,sha256=xE-dOmdBqCJ4NEm
519
519
  rasa/nlu/featurizers/dense_featurizer/spacy_featurizer.py,sha256=tJzDeX8wkOO1iUNmx13FSIeMHNC0U0RB5ZF9pPo8nqQ,4888
520
520
  rasa/nlu/featurizers/featurizer.py,sha256=cV2v4f1V2DWDqJY1-oGAZsytv0L827nsCtUY6KjEChg,3348
521
521
  rasa/nlu/featurizers/sparse_featurizer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
522
- rasa/nlu/featurizers/sparse_featurizer/count_vectors_featurizer.py,sha256=275NcC7W9_n7V0AyVXm8jtYd9fcVHXZRQMgr5MVZAvA,33600
523
- rasa/nlu/featurizers/sparse_featurizer/lexical_syntactic_featurizer.py,sha256=awydhZZTRmff35L1838bbghNbutEf5xty301OyRIgvI,21848
524
- rasa/nlu/featurizers/sparse_featurizer/regex_featurizer.py,sha256=PhzJ17lNv3I5h8WrCvjzjjcUvbu_MJBxY6k3pQTDCac,10289
522
+ rasa/nlu/featurizers/sparse_featurizer/count_vectors_featurizer.py,sha256=CkbI7jS0UjiFE9BRgF4AnxvJHuQb2_aZ9ky4rUvgCH4,34794
523
+ rasa/nlu/featurizers/sparse_featurizer/lexical_syntactic_featurizer.py,sha256=yJC9dRrUnZP-tff10qbXrbfN5De55w8U1wc99gaWv_g,23100
524
+ rasa/nlu/featurizers/sparse_featurizer/regex_featurizer.py,sha256=jGK8IlDbms-xMoln9JucKCjGWVzyHbZOEzIPj2BvV9I,10293
525
525
  rasa/nlu/featurizers/sparse_featurizer/sparse_featurizer.py,sha256=m6qpixorfTDFWSfGVmLImTOHM6zKdgydPaP_wVxCQ-w,220
526
526
  rasa/nlu/model.py,sha256=r6StZb4Dmum_3dRoocxZWo2M5KVNV20_yKNvYZNvpOc,557
527
527
  rasa/nlu/persistor.py,sha256=Sc0NH2VSK9efOYSD0INYd3za3esQvgNHa4FwClJVH-c,13788
@@ -607,7 +607,7 @@ rasa/shared/nlu/constants.py,sha256=rf628BT4r6hnvN6QWyh_t2UFKOD7PR5APspi6igmeCU,
607
607
  rasa/shared/nlu/interpreter.py,sha256=eCNJp61nQYTGVf4aJi8SCWb46jxZY6-C1M1LFxMyQTM,188
608
608
  rasa/shared/nlu/training_data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
609
609
  rasa/shared/nlu/training_data/entities_parser.py,sha256=fC-VIso07so6E9b6KrQXOBC-ZUGCQGvnMvzVwiAO1GQ,6729
610
- rasa/shared/nlu/training_data/features.py,sha256=k0IsGRWp1tl1_pLVF-1ejr-nqzY-wTsnjn3PZwZwvk0,14835
610
+ rasa/shared/nlu/training_data/features.py,sha256=KjvXQT_YF-fXAR1qvp_JhOvDiI0EGekQ8aRJo0KNQCg,18592
611
611
  rasa/shared/nlu/training_data/formats/__init__.py,sha256=rX28sTQBs0fL4yTMtv3xVl2DM14TvWmkkoLJt2kIoho,453
612
612
  rasa/shared/nlu/training_data/formats/dialogflow.py,sha256=YfBjqgY0uaqXVdT3bmnQkb8runPe8pY8H-lqVB0L7zM,6142
613
613
  rasa/shared/nlu/training_data/formats/luis.py,sha256=Yaw_0QcXDC35hEckIJGS2fTdweQfyYAO378fwsEaSUs,3014
@@ -657,7 +657,7 @@ rasa/shared/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU
657
657
  rasa/shared/utils/cli.py,sha256=bJpkf0VzzmtpmBnDnIl7SgvrntnBuaJQMHBXHm2WxcA,2916
658
658
  rasa/shared/utils/common.py,sha256=Z0sfpDosVHLhGDY-72lGVTPWsNC64z3HWSLdnZRG7yE,10057
659
659
  rasa/shared/utils/constants.py,sha256=ZNQu0RHM_7Q4A2hn6pD8XlKPEwzivNpfKiiQihwH8-U,141
660
- rasa/shared/utils/io.py,sha256=sRgT1JlTRsOtYR97ERj5SntmMaYsR2NWs_DhSxZRbgY,15235
660
+ rasa/shared/utils/io.py,sha256=cYEkHjvuIB-XaK-Qchajv4lDMb_EZc3K-3CLwiEtUcA,15236
661
661
  rasa/shared/utils/llm.py,sha256=h35-N4LiT0qbg_6sab0GiYsPJe1Q1WHMLj6UhVuXOSY,13804
662
662
  rasa/shared/utils/pykwalify_extensions.py,sha256=4W8gde8C6QpGCY_t9IEmaZSgjMuie1xH0F1DYyn83BM,883
663
663
  rasa/shared/utils/schemas/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -692,7 +692,7 @@ rasa/utils/cli.py,sha256=L-DT4nPdVBWfc2m1COHrziLitVWJxazSreb6JLbTho4,865
692
692
  rasa/utils/common.py,sha256=1ETnOFB_nNexSqHL0EhsMtg8M1k9-2laAy2jsugxnIk,21079
693
693
  rasa/utils/converter.py,sha256=H4LHpoAK7MXMmvNZG_uSn0gbccCJvHtsA2-6Zya4u6M,1656
694
694
  rasa/utils/endpoints.py,sha256=cLeHBr6n88GYlYMxXVzZwvQ0nC1TpuC1pvn_RsxiDYY,9336
695
- rasa/utils/io.py,sha256=4Wl5_5I6fnBWOJxbKwIPPMcdeoA5dZevcHuoo30sd3E,9305
695
+ rasa/utils/io.py,sha256=HwhG-Y_VmyGNqYpA3Y3ef-OO7GI4TTRGyOnSjEJW6GQ,7442
696
696
  rasa/utils/json_utils.py,sha256=SKtJzzsIRCAgNEQiBvWDDm9euMRBgJ-TyvCi2tXHH1w,1689
697
697
  rasa/utils/licensing.py,sha256=JyqusmuufnTwlKFHOa8sdDZe5lG7YxeDQbrXnvsxQZw,20491
698
698
  rasa/utils/log_utils.py,sha256=SmyRYbnqj9gCr-pavNCwmoid6cWVQ3D72ryqGhbtlpM,6377
@@ -707,10 +707,11 @@ rasa/utils/tensorflow/crf.py,sha256=xl6lHmie4aYIIN0kTVzvLSJ7Qkl3UeFoZRnc2RrgBEo,
707
707
  rasa/utils/tensorflow/data_generator.py,sha256=zKW2Uc2EsYXu7Yu4JU13nWpbxwOZYq5mqCO0LHT_0ZA,16238
708
708
  rasa/utils/tensorflow/environment.py,sha256=rXqs4btQbiOMtbCoujUmccvAMQvM0peqNkIiunPn5Ik,5599
709
709
  rasa/utils/tensorflow/exceptions.py,sha256=I5chH5Lky3faXZOCfGyeXfkOsDpjYV7gJWZCiKp5CAs,168
710
+ rasa/utils/tensorflow/feature_array.py,sha256=0iCebkyVzMlGqFUBbvgXFvqsAS5v3XwC58J-jEYm01I,14001
710
711
  rasa/utils/tensorflow/layers.py,sha256=jAa7kxO69z9I8x9d_lc8ABrGrOhFQ3TLngT9ftU2ET8,59261
711
712
  rasa/utils/tensorflow/layers_utils.py,sha256=Lvldu67qO275VV064bI8AAmwQZFzgmL9JKRlBFARLs0,3319
712
713
  rasa/utils/tensorflow/metrics.py,sha256=iaWI9W_0pRcSokl3NcsrDvqPryjNX64tv20Gd0OQCNM,10064
713
- rasa/utils/tensorflow/model_data.py,sha256=F9M4NF_aOwV-3zBsBie4RF8js2rLQEixyhiL6NWg9pA,34538
714
+ rasa/utils/tensorflow/model_data.py,sha256=U8hzLKZCZjojl41ibFXRUjwnY-NQ6MPFn5EX0sJDaRo,26942
714
715
  rasa/utils/tensorflow/model_data_utils.py,sha256=cHY0ekIFpCTPmB_d3CrJv17ExGNgHNAVvn7FLERGnv8,18166
715
716
  rasa/utils/tensorflow/models.py,sha256=jR7RBzSCXLER3YbRcocQ6pBSDZJsPisdSbEl9KCL0r8,36039
716
717
  rasa/utils/tensorflow/rasa_layers.py,sha256=AZpQsAiikDNox1CYmKTB0cZQjemV97Cnv52xNdb0AAc,49111
@@ -720,9 +721,9 @@ rasa/utils/train_utils.py,sha256=f1NWpp5y6al0dzoQyyio4hc4Nf73DRoRSHDzEK6-C4E,212
720
721
  rasa/utils/url_tools.py,sha256=JQcHL2aLqLHu82k7_d9imUoETCm2bmlHaDpOJ-dKqBc,1218
721
722
  rasa/utils/yaml.py,sha256=KjbZq5C94ZP7Jdsw8bYYF7HASI6K4-C_kdHfrnPLpSI,2000
722
723
  rasa/validator.py,sha256=ToRaa4dS859CJO3H2VGqS943O5qWOg45ypbDfFMKECU,62699
723
- rasa/version.py,sha256=DK8n4XcyRXMG-ezphYn9efLxc4P02gVlclLzdO4NdwI,117
724
- rasa_pro-3.10.9.dist-info/METADATA,sha256=VZG80CP9Yg2VvP5pCXTC8cuqd76qeVkSR6okEihMW_U,30892
725
- rasa_pro-3.10.9.dist-info/NOTICE,sha256=7HlBoMHJY9CL2GlYSfTQ-PZsVmLmVkYmMiPlTjhuCqA,218
726
- rasa_pro-3.10.9.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
727
- rasa_pro-3.10.9.dist-info/entry_points.txt,sha256=ckJ2SfEyTPgBqj_I6vm_tqY9dZF_LAPJZA335Xp0Q9U,43
728
- rasa_pro-3.10.9.dist-info/RECORD,,
724
+ rasa/version.py,sha256=ZYVWCHhDCP7gSj8njB4Anh1BKlbZcxtybJxXXMroFXo,122
725
+ rasa_pro-3.10.9.dev1.dist-info/METADATA,sha256=OWyF3V2qD-BDnkeaJmbhYjYEcRPxQZPHpgyj5dFS2Ck,30900
726
+ rasa_pro-3.10.9.dev1.dist-info/NOTICE,sha256=7HlBoMHJY9CL2GlYSfTQ-PZsVmLmVkYmMiPlTjhuCqA,218
727
+ rasa_pro-3.10.9.dev1.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
728
+ rasa_pro-3.10.9.dev1.dist-info/entry_points.txt,sha256=ckJ2SfEyTPgBqj_I6vm_tqY9dZF_LAPJZA335Xp0Q9U,43
729
+ rasa_pro-3.10.9.dev1.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 1.9.0
2
+ Generator: poetry-core 1.9.1
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any