rasa-pro 3.10.9.dev1__py3-none-any.whl → 3.10.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of rasa-pro might be problematic. Click here for more details.

rasa/constants.py CHANGED
@@ -18,7 +18,7 @@ CONFIG_TELEMETRY_ID = "rasa_user_id"
18
18
  CONFIG_TELEMETRY_ENABLED = "enabled"
19
19
  CONFIG_TELEMETRY_DATE = "date"
20
20
 
21
- MINIMUM_COMPATIBLE_VERSION = "3.10.9.dev1"
21
+ MINIMUM_COMPATIBLE_VERSION = "3.10.0rc1"
22
22
 
23
23
  GLOBAL_USER_CONFIG_PATH = os.path.expanduser("~/.config/rasa/global.yml")
24
24
 
@@ -1,8 +1,7 @@
1
1
  import logging
2
- from typing import List, Optional, Dict, Text, Set, Any
3
-
4
2
  import numpy as np
5
3
  import scipy.sparse
4
+ from typing import List, Optional, Dict, Text, Set, Any
6
5
 
7
6
  from rasa.core.featurizers.precomputation import MessageContainerForCoreFeaturization
8
7
  from rasa.nlu.extractors.extractor import EntityTagSpec
@@ -361,26 +360,6 @@ class SingleStateFeaturizer:
361
360
  for action in domain.action_names_or_texts
362
361
  ]
363
362
 
364
- def to_dict(self) -> Dict[str, Any]:
365
- return {
366
- "action_texts": self.action_texts,
367
- "entity_tag_specs": self.entity_tag_specs,
368
- "feature_states": self._default_feature_states,
369
- }
370
-
371
- @classmethod
372
- def create_from_dict(
373
- cls, data: Dict[str, Any]
374
- ) -> Optional["SingleStateFeaturizer"]:
375
- if not data:
376
- return None
377
-
378
- featurizer = SingleStateFeaturizer()
379
- featurizer.action_texts = data["action_texts"]
380
- featurizer._default_feature_states = data["feature_states"]
381
- featurizer.entity_tag_specs = data["entity_tag_specs"]
382
- return featurizer
383
-
384
363
 
385
364
  class IntentTokenizerSingleStateFeaturizer(SingleStateFeaturizer):
386
365
  """A SingleStateFeaturizer for use with policies that predict intent labels."""
@@ -1,9 +1,11 @@
1
1
  from __future__ import annotations
2
-
3
- import logging
4
- from abc import abstractmethod
5
- from collections import defaultdict
6
2
  from pathlib import Path
3
+ from collections import defaultdict
4
+ from abc import abstractmethod
5
+ import jsonpickle
6
+ import logging
7
+
8
+ from tqdm import tqdm
7
9
  from typing import (
8
10
  Tuple,
9
11
  List,
@@ -16,30 +18,25 @@ from typing import (
16
18
  Set,
17
19
  DefaultDict,
18
20
  cast,
19
- Type,
20
- Callable,
21
- ClassVar,
22
21
  )
23
-
24
22
  import numpy as np
25
- from tqdm import tqdm
26
23
 
24
+ from rasa.core.featurizers.single_state_featurizer import SingleStateFeaturizer
25
+ from rasa.core.featurizers.precomputation import MessageContainerForCoreFeaturization
26
+ from rasa.core.exceptions import InvalidTrackerFeaturizerUsageError
27
27
  import rasa.shared.core.trackers
28
28
  import rasa.shared.utils.io
29
- from rasa.core.exceptions import InvalidTrackerFeaturizerUsageError
30
- from rasa.core.featurizers.precomputation import MessageContainerForCoreFeaturization
31
- from rasa.core.featurizers.single_state_featurizer import SingleStateFeaturizer
29
+ from rasa.shared.nlu.constants import TEXT, INTENT, ENTITIES, ACTION_NAME
30
+ from rasa.shared.nlu.training_data.features import Features
31
+ from rasa.shared.core.trackers import DialogueStateTracker
32
+ from rasa.shared.core.domain import State, Domain
33
+ from rasa.shared.core.events import Event, ActionExecuted, UserUttered
32
34
  from rasa.shared.core.constants import (
33
35
  USER,
34
36
  ACTION_UNLIKELY_INTENT_NAME,
35
37
  PREVIOUS_ACTION,
36
38
  )
37
- from rasa.shared.core.domain import State, Domain
38
- from rasa.shared.core.events import Event, ActionExecuted, UserUttered
39
- from rasa.shared.core.trackers import DialogueStateTracker
40
39
  from rasa.shared.exceptions import RasaException
41
- from rasa.shared.nlu.constants import TEXT, INTENT, ENTITIES, ACTION_NAME
42
- from rasa.shared.nlu.training_data.features import Features
43
40
  from rasa.utils.tensorflow.constants import LABEL_PAD_ID
44
41
  from rasa.utils.tensorflow.model_data import ragged_array_to_ndarray
45
42
 
@@ -67,10 +64,6 @@ class InvalidStory(RasaException):
67
64
  class TrackerFeaturizer:
68
65
  """Base class for actual tracker featurizers."""
69
66
 
70
- # Class registry to store all subclasses
71
- _registry: ClassVar[Dict[str, Type["TrackerFeaturizer"]]] = {}
72
- _featurizer_type: str = "TrackerFeaturizer"
73
-
74
67
  def __init__(
75
68
  self, state_featurizer: Optional[SingleStateFeaturizer] = None
76
69
  ) -> None:
@@ -81,36 +74,6 @@ class TrackerFeaturizer:
81
74
  """
82
75
  self.state_featurizer = state_featurizer
83
76
 
84
- @classmethod
85
- def register(cls, featurizer_type: str) -> Callable:
86
- """Decorator to register featurizer subclasses."""
87
-
88
- def wrapper(subclass: Type["TrackerFeaturizer"]) -> Type["TrackerFeaturizer"]:
89
- cls._registry[featurizer_type] = subclass
90
- # Store the type identifier in the class for serialization
91
- subclass._featurizer_type = featurizer_type
92
- return subclass
93
-
94
- return wrapper
95
-
96
- @classmethod
97
- def from_dict(cls, data: Dict[str, Any]) -> "TrackerFeaturizer":
98
- """Create featurizer instance from dictionary."""
99
- featurizer_type = data.pop("type")
100
-
101
- if featurizer_type not in cls._registry:
102
- raise ValueError(f"Unknown featurizer type: {featurizer_type}")
103
-
104
- # Get the correct subclass and instantiate it
105
- subclass = cls._registry[featurizer_type]
106
- return subclass.create_from_dict(data)
107
-
108
- @classmethod
109
- @abstractmethod
110
- def create_from_dict(cls, data: Dict[str, Any]) -> "TrackerFeaturizer":
111
- """Each subclass must implement its own creation from dict method."""
112
- pass
113
-
114
77
  @staticmethod
115
78
  def _create_states(
116
79
  tracker: DialogueStateTracker,
@@ -502,7 +465,9 @@ class TrackerFeaturizer:
502
465
  self.state_featurizer.entity_tag_specs = []
503
466
 
504
467
  # noinspection PyTypeChecker
505
- rasa.shared.utils.io.dump_obj_as_json_to_file(featurizer_file, self.to_dict())
468
+ rasa.shared.utils.io.write_text_file(
469
+ str(jsonpickle.encode(self)), featurizer_file
470
+ )
506
471
 
507
472
  @staticmethod
508
473
  def load(path: Union[Text, Path]) -> Optional[TrackerFeaturizer]:
@@ -516,17 +481,7 @@ class TrackerFeaturizer:
516
481
  """
517
482
  featurizer_file = Path(path) / FEATURIZER_FILE
518
483
  if featurizer_file.is_file():
519
- data = rasa.shared.utils.io.read_json_file(featurizer_file)
520
-
521
- if "type" not in data:
522
- logger.error(
523
- f"Couldn't load featurizer for policy. "
524
- f"File '{featurizer_file}' does not contain all "
525
- f"necessary information. 'type' is missing."
526
- )
527
- return None
528
-
529
- return TrackerFeaturizer.from_dict(data)
484
+ return jsonpickle.decode(rasa.shared.utils.io.read_file(featurizer_file))
530
485
 
531
486
  logger.error(
532
487
  f"Couldn't load featurizer for policy. "
@@ -553,16 +508,7 @@ class TrackerFeaturizer:
553
508
  )
554
509
  ]
555
510
 
556
- def to_dict(self) -> Dict[str, Any]:
557
- return {
558
- "type": self.__class__._featurizer_type,
559
- "state_featurizer": (
560
- self.state_featurizer.to_dict() if self.state_featurizer else None
561
- ),
562
- }
563
-
564
511
 
565
- @TrackerFeaturizer.register("FullDialogueTrackerFeaturizer")
566
512
  class FullDialogueTrackerFeaturizer(TrackerFeaturizer):
567
513
  """Creates full dialogue training data for time distributed architectures.
568
514
 
@@ -700,20 +646,7 @@ class FullDialogueTrackerFeaturizer(TrackerFeaturizer):
700
646
 
701
647
  return trackers_as_states
702
648
 
703
- def to_dict(self) -> Dict[str, Any]:
704
- return super().to_dict()
705
649
 
706
- @classmethod
707
- def create_from_dict(cls, data: Dict[str, Any]) -> "FullDialogueTrackerFeaturizer":
708
- state_featurizer = SingleStateFeaturizer.create_from_dict(
709
- data["state_featurizer"]
710
- )
711
- return cls(
712
- state_featurizer,
713
- )
714
-
715
-
716
- @TrackerFeaturizer.register("MaxHistoryTrackerFeaturizer")
717
650
  class MaxHistoryTrackerFeaturizer(TrackerFeaturizer):
718
651
  """Truncates the tracker history into `max_history` long sequences.
719
652
 
@@ -951,25 +884,7 @@ class MaxHistoryTrackerFeaturizer(TrackerFeaturizer):
951
884
 
952
885
  return trackers_as_states
953
886
 
954
- def to_dict(self) -> Dict[str, Any]:
955
- data = super().to_dict()
956
- data.update(
957
- {
958
- "remove_duplicates": self.remove_duplicates,
959
- "max_history": self.max_history,
960
- }
961
- )
962
- return data
963
-
964
- @classmethod
965
- def create_from_dict(cls, data: Dict[str, Any]) -> "MaxHistoryTrackerFeaturizer":
966
- state_featurizer = SingleStateFeaturizer.create_from_dict(
967
- data["state_featurizer"]
968
- )
969
- return cls(state_featurizer, data["max_history"], data["remove_duplicates"])
970
887
 
971
-
972
- @TrackerFeaturizer.register("IntentMaxHistoryTrackerFeaturizer")
973
888
  class IntentMaxHistoryTrackerFeaturizer(MaxHistoryTrackerFeaturizer):
974
889
  """Truncates the tracker history into `max_history` long sequences.
975
890
 
@@ -1244,18 +1159,6 @@ class IntentMaxHistoryTrackerFeaturizer(MaxHistoryTrackerFeaturizer):
1244
1159
 
1245
1160
  return trackers_as_states
1246
1161
 
1247
- def to_dict(self) -> Dict[str, Any]:
1248
- return super().to_dict()
1249
-
1250
- @classmethod
1251
- def create_from_dict(
1252
- cls, data: Dict[str, Any]
1253
- ) -> "IntentMaxHistoryTrackerFeaturizer":
1254
- state_featurizer = SingleStateFeaturizer.create_from_dict(
1255
- data["state_featurizer"]
1256
- )
1257
- return cls(state_featurizer, data["max_history"], data["remove_duplicates"])
1258
-
1259
1162
 
1260
1163
  def _is_prev_action_unlikely_intent_in_state(state: State) -> bool:
1261
1164
  prev_action_name = state.get(PREVIOUS_ACTION, {}).get(ACTION_NAME)
@@ -1,15 +1,15 @@
1
1
  from __future__ import annotations
2
-
3
2
  import logging
3
+
4
+ from rasa.engine.recipes.default_recipe import DefaultV1Recipe
4
5
  from pathlib import Path
5
6
  from collections import defaultdict
6
7
  import contextlib
7
- from typing import Any, List, Optional, Text, Dict, Tuple, Union, Type
8
8
 
9
9
  import numpy as np
10
10
  import tensorflow as tf
11
+ from typing import Any, List, Optional, Text, Dict, Tuple, Union, Type
11
12
 
12
- from rasa.engine.recipes.default_recipe import DefaultV1Recipe
13
13
  from rasa.engine.graph import ExecutionContext
14
14
  from rasa.engine.storage.resource import Resource
15
15
  from rasa.engine.storage.storage import ModelStorage
@@ -49,22 +49,18 @@ from rasa.shared.core.generator import TrackerWithCachedStates
49
49
  from rasa.shared.core.events import EntitiesAdded, Event
50
50
  from rasa.shared.core.domain import Domain
51
51
  from rasa.shared.nlu.training_data.message import Message
52
- from rasa.shared.nlu.training_data.features import (
53
- Features,
54
- save_features,
55
- load_features,
56
- )
52
+ from rasa.shared.nlu.training_data.features import Features
57
53
  import rasa.shared.utils.io
58
54
  import rasa.utils.io
59
55
  from rasa.utils import train_utils
60
- from rasa.utils.tensorflow.feature_array import (
61
- FeatureArray,
62
- serialize_nested_feature_arrays,
63
- deserialize_nested_feature_arrays,
64
- )
65
56
  from rasa.utils.tensorflow.models import RasaModel, TransformerRasaModel
66
57
  from rasa.utils.tensorflow import rasa_layers
67
- from rasa.utils.tensorflow.model_data import RasaModelData, FeatureSignature, Data
58
+ from rasa.utils.tensorflow.model_data import (
59
+ RasaModelData,
60
+ FeatureSignature,
61
+ FeatureArray,
62
+ Data,
63
+ )
68
64
  from rasa.utils.tensorflow.model_data_utils import convert_to_data_format
69
65
  from rasa.utils.tensorflow.constants import (
70
66
  LABEL,
@@ -965,32 +961,22 @@ class TEDPolicy(Policy):
965
961
  model_path: Path where model is to be persisted
966
962
  """
967
963
  model_filename = self._metadata_filename()
968
- rasa.shared.utils.io.dump_obj_as_json_to_file(
969
- model_path / f"{model_filename}.priority.json", self.priority
970
- )
971
- rasa.shared.utils.io.dump_obj_as_json_to_file(
972
- model_path / f"{model_filename}.meta.json", self.config
964
+ rasa.utils.io.json_pickle(
965
+ model_path / f"{model_filename}.priority.pkl", self.priority
973
966
  )
974
- # save data example
975
- serialize_nested_feature_arrays(
976
- self.data_example,
977
- str(model_path / f"{model_filename}.data_example.st"),
978
- str(model_path / f"{model_filename}.data_example_metadata.json"),
967
+ rasa.utils.io.pickle_dump(
968
+ model_path / f"{model_filename}.meta.pkl", self.config
979
969
  )
980
- # save label data
981
- serialize_nested_feature_arrays(
982
- dict(self._label_data.data) if self._label_data is not None else {},
983
- str(model_path / f"{model_filename}.label_data.st"),
984
- str(model_path / f"{model_filename}.label_data_metadata.json"),
970
+ rasa.utils.io.pickle_dump(
971
+ model_path / f"{model_filename}.data_example.pkl", self.data_example
985
972
  )
986
- # save fake features
987
- metadata = save_features(
988
- self.fake_features, str(model_path / f"{model_filename}.fake_features.st")
973
+ rasa.utils.io.pickle_dump(
974
+ model_path / f"{model_filename}.fake_features.pkl", self.fake_features
989
975
  )
990
- rasa.shared.utils.io.dump_obj_as_json_to_file(
991
- model_path / f"{model_filename}.fake_features_metadata.json", metadata
976
+ rasa.utils.io.pickle_dump(
977
+ model_path / f"{model_filename}.label_data.pkl",
978
+ dict(self._label_data.data) if self._label_data is not None else {},
992
979
  )
993
-
994
980
  entity_tag_specs = (
995
981
  [tag_spec._asdict() for tag_spec in self._entity_tag_specs]
996
982
  if self._entity_tag_specs
@@ -1008,29 +994,18 @@ class TEDPolicy(Policy):
1008
994
  model_path: Path where model is to be persisted.
1009
995
  """
1010
996
  tf_model_file = model_path / f"{cls._metadata_filename()}.tf_model"
1011
-
1012
- # load data example
1013
- loaded_data = deserialize_nested_feature_arrays(
1014
- str(model_path / f"{cls._metadata_filename()}.data_example.st"),
1015
- str(model_path / f"{cls._metadata_filename()}.data_example_metadata.json"),
997
+ loaded_data = rasa.utils.io.pickle_load(
998
+ model_path / f"{cls._metadata_filename()}.data_example.pkl"
1016
999
  )
1017
- # load label data
1018
- loaded_label_data = deserialize_nested_feature_arrays(
1019
- str(model_path / f"{cls._metadata_filename()}.label_data.st"),
1020
- str(model_path / f"{cls._metadata_filename()}.label_data_metadata.json"),
1000
+ label_data = rasa.utils.io.pickle_load(
1001
+ model_path / f"{cls._metadata_filename()}.label_data.pkl"
1021
1002
  )
1022
- label_data = RasaModelData(data=loaded_label_data)
1023
-
1024
- # load fake features
1025
- metadata = rasa.shared.utils.io.read_json_file(
1026
- model_path / f"{cls._metadata_filename()}.fake_features_metadata.json"
1003
+ fake_features = rasa.utils.io.pickle_load(
1004
+ model_path / f"{cls._metadata_filename()}.fake_features.pkl"
1027
1005
  )
1028
- fake_features = load_features(
1029
- str(model_path / f"{cls._metadata_filename()}.fake_features.st"), metadata
1030
- )
1031
-
1032
- priority = rasa.shared.utils.io.read_json_file(
1033
- model_path / f"{cls._metadata_filename()}.priority.json"
1006
+ label_data = RasaModelData(data=label_data)
1007
+ priority = rasa.utils.io.json_unpickle(
1008
+ model_path / f"{cls._metadata_filename()}.priority.pkl"
1034
1009
  )
1035
1010
  entity_tag_specs = rasa.shared.utils.io.read_json_file(
1036
1011
  model_path / f"{cls._metadata_filename()}.entity_tag_specs.json"
@@ -1048,8 +1023,8 @@ class TEDPolicy(Policy):
1048
1023
  )
1049
1024
  for tag_spec in entity_tag_specs
1050
1025
  ]
1051
- model_config = rasa.shared.utils.io.read_json_file(
1052
- model_path / f"{cls._metadata_filename()}.meta.json"
1026
+ model_config = rasa.utils.io.pickle_load(
1027
+ model_path / f"{cls._metadata_filename()}.meta.pkl"
1053
1028
  )
1054
1029
 
1055
1030
  return {
@@ -1095,7 +1070,7 @@ class TEDPolicy(Policy):
1095
1070
  ) -> TEDPolicy:
1096
1071
  featurizer = TrackerFeaturizer.load(model_path)
1097
1072
 
1098
- if not (model_path / f"{cls._metadata_filename()}.data_example.st").is_file():
1073
+ if not (model_path / f"{cls._metadata_filename()}.data_example.pkl").is_file():
1099
1074
  return cls(
1100
1075
  config,
1101
1076
  model_storage,
@@ -5,7 +5,6 @@ from typing import Any, List, Optional, Text, Dict, Type, Union
5
5
 
6
6
  import numpy as np
7
7
  import tensorflow as tf
8
-
9
8
  import rasa.utils.common
10
9
  from rasa.engine.graph import ExecutionContext
11
10
  from rasa.engine.recipes.default_recipe import DefaultV1Recipe
@@ -17,7 +16,6 @@ from rasa.shared.core.domain import Domain
17
16
  from rasa.shared.core.trackers import DialogueStateTracker
18
17
  from rasa.shared.core.constants import SLOTS, ACTIVE_LOOP, ACTION_UNLIKELY_INTENT_NAME
19
18
  from rasa.shared.core.events import UserUttered, ActionExecuted
20
- import rasa.shared.utils.io
21
19
  from rasa.shared.nlu.constants import (
22
20
  INTENT,
23
21
  TEXT,
@@ -105,6 +103,8 @@ from rasa.utils.tensorflow.constants import (
105
103
  )
106
104
  from rasa.utils.tensorflow import layers
107
105
  from rasa.utils.tensorflow.model_data import RasaModelData, FeatureArray, Data
106
+
107
+ import rasa.utils.io as io_utils
108
108
  from rasa.core.exceptions import RasaCoreException
109
109
  from rasa.shared.utils import common
110
110
 
@@ -881,12 +881,9 @@ class UnexpecTEDIntentPolicy(TEDPolicy):
881
881
  model_path: Path where model is to be persisted
882
882
  """
883
883
  super().persist_model_utilities(model_path)
884
-
885
- from safetensors.numpy import save_file
886
-
887
- save_file(
888
- {str(k): np.array(v) for k, v in self.label_quantiles.items()},
889
- model_path / f"{self._metadata_filename()}.label_quantiles.st",
884
+ io_utils.pickle_dump(
885
+ model_path / f"{self._metadata_filename()}.label_quantiles.pkl",
886
+ self.label_quantiles,
890
887
  )
891
888
 
892
889
  @classmethod
@@ -897,14 +894,9 @@ class UnexpecTEDIntentPolicy(TEDPolicy):
897
894
  model_path: Path where model is to be persisted.
898
895
  """
899
896
  model_utilties = super()._load_model_utilities(model_path)
900
-
901
- from safetensors.numpy import load_file
902
-
903
- loaded_label_quantiles = load_file(
904
- model_path / f"{cls._metadata_filename()}.label_quantiles.st"
897
+ label_quantiles = io_utils.pickle_load(
898
+ model_path / f"{cls._metadata_filename()}.label_quantiles.pkl"
905
899
  )
906
- label_quantiles = {int(k): list(v) for k, v in loaded_label_quantiles.items()}
907
-
908
900
  model_utilties.update({"label_quantiles": label_quantiles})
909
901
  return model_utilties
910
902
 
@@ -1155,6 +1155,8 @@ class E2ETestRunner:
1155
1155
  flow_paths_stack
1156
1156
  and self.agent.domain
1157
1157
  and self.agent.domain.is_custom_action(event.action_name)
1158
+ and STEP_ID_METADATA_KEY in event.metadata
1159
+ and ACTIVE_FLOW_METADATA_KEY in event.metadata
1158
1160
  ):
1159
1161
  flow_paths_stack[-1].nodes.append(self._create_path_node(event))
1160
1162
 
@@ -1,17 +1,18 @@
1
1
  from __future__ import annotations
2
-
3
2
  import copy
4
3
  import logging
5
4
  from collections import defaultdict
6
5
  from pathlib import Path
7
- from typing import Any, Dict, List, Optional, Text, Tuple, Union, TypeVar, Type
6
+
7
+ from rasa.exceptions import ModelNotFound
8
+ from rasa.nlu.featurizers.featurizer import Featurizer
8
9
 
9
10
  import numpy as np
10
11
  import scipy.sparse
11
12
  import tensorflow as tf
12
13
 
13
- from rasa.exceptions import ModelNotFound
14
- from rasa.nlu.featurizers.featurizer import Featurizer
14
+ from typing import Any, Dict, List, Optional, Text, Tuple, Union, TypeVar, Type
15
+
15
16
  from rasa.engine.graph import ExecutionContext, GraphComponent
16
17
  from rasa.engine.recipes.default_recipe import DefaultV1Recipe
17
18
  from rasa.engine.storage.resource import Resource
@@ -19,21 +20,18 @@ from rasa.engine.storage.storage import ModelStorage
19
20
  from rasa.nlu.extractors.extractor import EntityExtractorMixin
20
21
  from rasa.nlu.classifiers.classifier import IntentClassifier
21
22
  import rasa.shared.utils.io
23
+ import rasa.utils.io as io_utils
22
24
  import rasa.nlu.utils.bilou_utils as bilou_utils
23
25
  from rasa.shared.constants import DIAGNOSTIC_DATA
24
26
  from rasa.nlu.extractors.extractor import EntityTagSpec
25
27
  from rasa.nlu.classifiers import LABEL_RANKING_LENGTH
26
28
  from rasa.utils import train_utils
27
29
  from rasa.utils.tensorflow import rasa_layers
28
- from rasa.utils.tensorflow.feature_array import (
29
- FeatureArray,
30
- serialize_nested_feature_arrays,
31
- deserialize_nested_feature_arrays,
32
- )
33
30
  from rasa.utils.tensorflow.models import RasaModel, TransformerRasaModel
34
31
  from rasa.utils.tensorflow.model_data import (
35
32
  RasaModelData,
36
33
  FeatureSignature,
34
+ FeatureArray,
37
35
  )
38
36
  from rasa.nlu.constants import TOKENS_NAMES, DEFAULT_TRANSFORMER_SIZE
39
37
  from rasa.shared.nlu.constants import (
@@ -120,6 +118,7 @@ LABEL_SUB_KEY = IDS
120
118
 
121
119
  POSSIBLE_TAGS = [ENTITY_ATTRIBUTE_TYPE, ENTITY_ATTRIBUTE_ROLE, ENTITY_ATTRIBUTE_GROUP]
122
120
 
121
+
123
122
  DIETClassifierT = TypeVar("DIETClassifierT", bound="DIETClassifier")
124
123
 
125
124
 
@@ -1084,24 +1083,18 @@ class DIETClassifier(GraphComponent, IntentClassifier, EntityExtractorMixin):
1084
1083
 
1085
1084
  self.model.save(str(tf_model_file))
1086
1085
 
1087
- # save data example
1088
- serialize_nested_feature_arrays(
1089
- self._data_example,
1090
- model_path / f"{file_name}.data_example.st",
1091
- model_path / f"{file_name}.data_example_metadata.json",
1092
- )
1093
- # save label data
1094
- serialize_nested_feature_arrays(
1095
- dict(self._label_data.data) if self._label_data is not None else {},
1096
- model_path / f"{file_name}.label_data.st",
1097
- model_path / f"{file_name}.label_data_metadata.json",
1086
+ io_utils.pickle_dump(
1087
+ model_path / f"{file_name}.data_example.pkl", self._data_example
1098
1088
  )
1099
-
1100
- rasa.shared.utils.io.dump_obj_as_json_to_file(
1101
- model_path / f"{file_name}.sparse_feature_sizes.json",
1089
+ io_utils.pickle_dump(
1090
+ model_path / f"{file_name}.sparse_feature_sizes.pkl",
1102
1091
  self._sparse_feature_sizes,
1103
1092
  )
1104
- rasa.shared.utils.io.dump_obj_as_json_to_file(
1093
+ io_utils.pickle_dump(
1094
+ model_path / f"{file_name}.label_data.pkl",
1095
+ dict(self._label_data.data) if self._label_data is not None else {},
1096
+ )
1097
+ io_utils.json_pickle(
1105
1098
  model_path / f"{file_name}.index_label_id_mapping.json",
1106
1099
  self.index_label_id_mapping,
1107
1100
  )
@@ -1190,22 +1183,15 @@ class DIETClassifier(GraphComponent, IntentClassifier, EntityExtractorMixin):
1190
1183
  ]:
1191
1184
  file_name = cls.__name__
1192
1185
 
1193
- # load data example
1194
- data_example = deserialize_nested_feature_arrays(
1195
- str(model_path / f"{file_name}.data_example.st"),
1196
- str(model_path / f"{file_name}.data_example_metadata.json"),
1186
+ data_example = io_utils.pickle_load(
1187
+ model_path / f"{file_name}.data_example.pkl"
1197
1188
  )
1198
- # load label data
1199
- loaded_label_data = deserialize_nested_feature_arrays(
1200
- str(model_path / f"{file_name}.label_data.st"),
1201
- str(model_path / f"{file_name}.label_data_metadata.json"),
1202
- )
1203
- label_data = RasaModelData(data=loaded_label_data)
1204
-
1205
- sparse_feature_sizes = rasa.shared.utils.io.read_json_file(
1206
- model_path / f"{file_name}.sparse_feature_sizes.json"
1189
+ label_data = io_utils.pickle_load(model_path / f"{file_name}.label_data.pkl")
1190
+ label_data = RasaModelData(data=label_data)
1191
+ sparse_feature_sizes = io_utils.pickle_load(
1192
+ model_path / f"{file_name}.sparse_feature_sizes.pkl"
1207
1193
  )
1208
- index_label_id_mapping = rasa.shared.utils.io.read_json_file(
1194
+ index_label_id_mapping = io_utils.json_unpickle(
1209
1195
  model_path / f"{file_name}.index_label_id_mapping.json"
1210
1196
  )
1211
1197
  entity_tag_specs = rasa.shared.utils.io.read_json_file(
@@ -1225,6 +1211,7 @@ class DIETClassifier(GraphComponent, IntentClassifier, EntityExtractorMixin):
1225
1211
  for tag_spec in entity_tag_specs
1226
1212
  ]
1227
1213
 
1214
+ # jsonpickle converts dictionary keys to strings
1228
1215
  index_label_id_mapping = {
1229
1216
  int(key): value for key, value in index_label_id_mapping.items()
1230
1217
  }
@@ -1,21 +1,22 @@
1
1
  from typing import Any, Text, Dict, List, Type, Tuple
2
2
 
3
+ import joblib
3
4
  import structlog
4
5
  from scipy.sparse import hstack, vstack, csr_matrix
5
6
  from sklearn.exceptions import NotFittedError
6
7
  from sklearn.linear_model import LogisticRegression
7
8
  from sklearn.utils.validation import check_is_fitted
8
9
 
9
- from rasa.engine.graph import ExecutionContext, GraphComponent
10
- from rasa.engine.recipes.default_recipe import DefaultV1Recipe
11
10
  from rasa.engine.storage.resource import Resource
12
11
  from rasa.engine.storage.storage import ModelStorage
12
+ from rasa.engine.recipes.default_recipe import DefaultV1Recipe
13
+ from rasa.engine.graph import ExecutionContext, GraphComponent
13
14
  from rasa.nlu.classifiers import LABEL_RANKING_LENGTH
14
- from rasa.nlu.classifiers.classifier import IntentClassifier
15
15
  from rasa.nlu.featurizers.featurizer import Featurizer
16
- from rasa.shared.nlu.constants import TEXT, INTENT
17
- from rasa.shared.nlu.training_data.message import Message
16
+ from rasa.nlu.classifiers.classifier import IntentClassifier
18
17
  from rasa.shared.nlu.training_data.training_data import TrainingData
18
+ from rasa.shared.nlu.training_data.message import Message
19
+ from rasa.shared.nlu.constants import TEXT, INTENT
19
20
  from rasa.utils.tensorflow.constants import RANKING_LENGTH
20
21
 
21
22
  structlogger = structlog.get_logger()
@@ -183,11 +184,9 @@ class LogisticRegressionClassifier(IntentClassifier, GraphComponent):
183
184
 
184
185
  def persist(self) -> None:
185
186
  """Persist this model into the passed directory."""
186
- import skops.io as sio
187
-
188
187
  with self._model_storage.write_to(self._resource) as model_dir:
189
- path = model_dir / f"{self._resource.name}.skops"
190
- sio.dump(self.clf, path)
188
+ path = model_dir / f"{self._resource.name}.joblib"
189
+ joblib.dump(self.clf, path)
191
190
  structlogger.debug(
192
191
  "logistic_regression_classifier.persist",
193
192
  event_info=f"Saved intent classifier to '{path}'.",
@@ -203,21 +202,9 @@ class LogisticRegressionClassifier(IntentClassifier, GraphComponent):
203
202
  **kwargs: Any,
204
203
  ) -> "LogisticRegressionClassifier":
205
204
  """Loads trained component (see parent class for full docstring)."""
206
- import skops.io as sio
207
-
208
205
  try:
209
206
  with model_storage.read_from(resource) as model_dir:
210
- classifier_file = model_dir / f"{resource.name}.skops"
211
- unknown_types = sio.get_untrusted_types(file=classifier_file)
212
-
213
- if unknown_types:
214
- structlogger.error(
215
- f"Untrusted types found when loading {classifier_file}!",
216
- unknown_types=unknown_types,
217
- )
218
- raise ValueError()
219
-
220
- classifier = sio.load(classifier_file, trusted=unknown_types)
207
+ classifier = joblib.load(model_dir / f"{resource.name}.joblib")
221
208
  component = cls(
222
209
  config, execution_context.node_name, model_storage, resource
223
210
  )