rasa-pro 3.10.11__py3-none-any.whl → 3.10.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of rasa-pro might be problematic. Click here for more details.

@@ -20,6 +20,8 @@ import numpy as np
20
20
  import scipy.sparse
21
21
  from sklearn.model_selection import train_test_split
22
22
 
23
+ from rasa.utils.tensorflow.feature_array import FeatureArray
24
+
23
25
  logger = logging.getLogger(__name__)
24
26
 
25
27
 
@@ -37,199 +39,6 @@ def ragged_array_to_ndarray(ragged_array: Iterable[np.ndarray]) -> np.ndarray:
37
39
  return np.array(ragged_array, dtype=object)
38
40
 
39
41
 
40
- class FeatureArray(np.ndarray):
41
- """Stores any kind of features ready to be used by a RasaModel.
42
-
43
- Next to the input numpy array of features, it also received the number of
44
- dimensions of the features.
45
- As our features can have 1 to 4 dimensions we might have different number of numpy
46
- arrays stacked. The number of dimensions helps us to figure out how to handle this
47
- particular feature array. Also, it is automatically determined whether the feature
48
- array is sparse or not and the number of units is determined as well.
49
-
50
- Subclassing np.array: https://numpy.org/doc/stable/user/basics.subclassing.html
51
- """
52
-
53
- def __new__(
54
- cls, input_array: np.ndarray, number_of_dimensions: int
55
- ) -> "FeatureArray":
56
- """Create and return a new object. See help(type) for accurate signature."""
57
- FeatureArray._validate_number_of_dimensions(number_of_dimensions, input_array)
58
-
59
- feature_array = np.asarray(input_array).view(cls)
60
-
61
- if number_of_dimensions <= 2:
62
- feature_array.units = input_array.shape[-1]
63
- feature_array.is_sparse = isinstance(input_array[0], scipy.sparse.spmatrix)
64
- elif number_of_dimensions == 3:
65
- feature_array.units = input_array[0].shape[-1]
66
- feature_array.is_sparse = isinstance(input_array[0], scipy.sparse.spmatrix)
67
- elif number_of_dimensions == 4:
68
- feature_array.units = input_array[0][0].shape[-1]
69
- feature_array.is_sparse = isinstance(
70
- input_array[0][0], scipy.sparse.spmatrix
71
- )
72
- else:
73
- raise ValueError(
74
- f"Number of dimensions '{number_of_dimensions}' currently not "
75
- f"supported."
76
- )
77
-
78
- feature_array.number_of_dimensions = number_of_dimensions
79
-
80
- return feature_array
81
-
82
- def __init__(
83
- self, input_array: Any, number_of_dimensions: int, **kwargs: Any
84
- ) -> None:
85
- """Initialize. FeatureArray.
86
-
87
- Needed in order to avoid 'Invalid keyword argument number_of_dimensions
88
- to function FeatureArray.__init__ '
89
- Args:
90
- input_array: the array that contains features
91
- number_of_dimensions: number of dimensions in input_array
92
- """
93
- super().__init__(**kwargs)
94
- self.number_of_dimensions = number_of_dimensions
95
-
96
- def __array_finalize__(self, obj: Optional[np.ndarray]) -> None:
97
- """This method is called when the system allocates a new array from obj.
98
-
99
- Args:
100
- obj: A subclass (subtype) of ndarray.
101
- """
102
- if obj is None:
103
- return
104
-
105
- self.units = getattr(obj, "units", None)
106
- self.number_of_dimensions = getattr(obj, "number_of_dimensions", None) # type: ignore[assignment]
107
- self.is_sparse = getattr(obj, "is_sparse", None)
108
-
109
- default_attributes = {
110
- "units": self.units,
111
- "number_of_dimensions": self.number_of_dimensions,
112
- "is_spare": self.is_sparse,
113
- }
114
- self.__dict__.update(default_attributes)
115
-
116
- # pytype: disable=attribute-error
117
- def __array_ufunc__(
118
- self, ufunc: Any, method: Text, *inputs: Any, **kwargs: Any
119
- ) -> Any:
120
- """Overwrite this method as we are subclassing numpy array.
121
-
122
- Args:
123
- ufunc: The ufunc object that was called.
124
- method: A string indicating which Ufunc method was called
125
- (one of "__call__", "reduce", "reduceat", "accumulate", "outer",
126
- "inner").
127
- *inputs: A tuple of the input arguments to the ufunc.
128
- **kwargs: Any additional arguments
129
-
130
- Returns:
131
- The result of the operation.
132
- """
133
- f = {
134
- "reduce": ufunc.reduce,
135
- "accumulate": ufunc.accumulate,
136
- "reduceat": ufunc.reduceat,
137
- "outer": ufunc.outer,
138
- "at": ufunc.at,
139
- "__call__": ufunc,
140
- }
141
- # convert the inputs to np.ndarray to prevent recursion, call the function,
142
- # then cast it back as FeatureArray
143
- output = FeatureArray(
144
- f[method](*(i.view(np.ndarray) for i in inputs), **kwargs),
145
- number_of_dimensions=kwargs["number_of_dimensions"],
146
- )
147
- output.__dict__ = self.__dict__ # carry forward attributes
148
- return output
149
-
150
- def __reduce__(self) -> Tuple[Any, Any, Any]:
151
- """Needed in order to pickle this object.
152
-
153
- Returns:
154
- A tuple.
155
- """
156
- pickled_state = super(FeatureArray, self).__reduce__()
157
- if isinstance(pickled_state, str):
158
- raise TypeError("np array __reduce__ returned string instead of tuple.")
159
- new_state = pickled_state[2] + (
160
- self.number_of_dimensions,
161
- self.is_sparse,
162
- self.units,
163
- )
164
- return pickled_state[0], pickled_state[1], new_state
165
-
166
- def __setstate__(self, state: Any, **kwargs: Any) -> None:
167
- """Sets the state.
168
-
169
- Args:
170
- state: The state argument must be a sequence that contains the following
171
- elements version, shape, dtype, isFortan, rawdata.
172
- **kwargs: Any additional parameter
173
- """
174
- # Needed in order to load the object
175
- self.number_of_dimensions = state[-3]
176
- self.is_sparse = state[-2]
177
- self.units = state[-1]
178
- super(FeatureArray, self).__setstate__(state[0:-3], **kwargs)
179
-
180
- # pytype: enable=attribute-error
181
-
182
- @staticmethod
183
- def _validate_number_of_dimensions(
184
- number_of_dimensions: int, input_array: np.ndarray
185
- ) -> None:
186
- """Validates if the the input array has given number of dimensions.
187
-
188
- Args:
189
- number_of_dimensions: number of dimensions
190
- input_array: input array
191
-
192
- Raises: ValueError in case the dimensions do not match
193
- """
194
- _sub_array = input_array
195
- dim = 0
196
- # Go number_of_dimensions into the given input_array
197
- for i in range(1, number_of_dimensions + 1):
198
- _sub_array = _sub_array[0]
199
- if isinstance(_sub_array, scipy.sparse.spmatrix):
200
- dim = i
201
- break
202
- if isinstance(_sub_array, np.ndarray) and _sub_array.shape[0] == 0:
203
- # sequence dimension is 0, we are dealing with "fake" features
204
- dim = i
205
- break
206
-
207
- # If the resulting sub_array is sparse, the remaining number of dimensions
208
- # should be at least 2
209
- if isinstance(_sub_array, scipy.sparse.spmatrix):
210
- if dim > 2:
211
- raise ValueError(
212
- f"Given number of dimensions '{number_of_dimensions}' does not "
213
- f"match dimensions of given input array: {input_array}."
214
- )
215
- elif isinstance(_sub_array, np.ndarray) and _sub_array.shape[0] == 0:
216
- # sequence dimension is 0, we are dealing with "fake" features,
217
- # but they should be of dim 2
218
- if dim > 2:
219
- raise ValueError(
220
- f"Given number of dimensions '{number_of_dimensions}' does not "
221
- f"match dimensions of given input array: {input_array}."
222
- )
223
- # If the resulting sub_array is dense, the sub_array should be a single number
224
- elif not np.issubdtype(type(_sub_array), np.integer) and not isinstance(
225
- _sub_array, (np.float32, np.float64)
226
- ):
227
- raise ValueError(
228
- f"Given number of dimensions '{number_of_dimensions}' does not match "
229
- f"dimensions of given input array: {input_array}."
230
- )
231
-
232
-
233
42
  class FeatureSignature(NamedTuple):
234
43
  """Signature of feature arrays.
235
44
 
rasa/version.py CHANGED
@@ -1,3 +1,3 @@
1
1
  # this file will automatically be changed,
2
2
  # do not add anything but the version number here!
3
- __version__ = "3.10.11"
3
+ __version__ = "3.10.12"
@@ -0,0 +1,196 @@
1
+ Metadata-Version: 2.1
2
+ Name: rasa-pro
3
+ Version: 3.10.12
4
+ Summary: State-of-the-art open-core Conversational AI framework for Enterprises that natively leverages generative AI for effortless assistant development.
5
+ Home-page: https://rasa.com
6
+ Keywords: nlp,machine-learning,machine-learning-library,bot,bots,botkit,rasa conversational-agents,conversational-ai,chatbot,chatbot-framework,bot-framework
7
+ Author: Rasa Technologies GmbH
8
+ Author-email: hi@rasa.com
9
+ Maintainer: Tom Bocklisch
10
+ Maintainer-email: tom@rasa.com
11
+ Requires-Python: >=3.9,<3.11
12
+ Classifier: Development Status :: 5 - Production/Stable
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: Programming Language :: Python :: 3
15
+ Classifier: Programming Language :: Python :: 3.9
16
+ Classifier: Programming Language :: Python :: 3.10
17
+ Classifier: Topic :: Software Development :: Libraries
18
+ Provides-Extra: full
19
+ Provides-Extra: gh-release-notes
20
+ Provides-Extra: jieba
21
+ Provides-Extra: metal
22
+ Provides-Extra: mlflow
23
+ Provides-Extra: spacy
24
+ Provides-Extra: transformers
25
+ Requires-Dist: CacheControl (>=0.12.14,<0.13.0)
26
+ Requires-Dist: PyJWT[crypto] (>=2.8.0,<3.0.0)
27
+ Requires-Dist: SQLAlchemy (>=2.0.22,<2.1.0)
28
+ Requires-Dist: absl-py (>=2.0,<2.1)
29
+ Requires-Dist: aio-pika (>=8.2.3,<8.2.4)
30
+ Requires-Dist: aiogram (>=2.15,<2.26)
31
+ Requires-Dist: aiohttp (>=3.9.4,<3.10)
32
+ Requires-Dist: apscheduler (>=3.10,<3.11)
33
+ Requires-Dist: attrs (>=23.1,<23.2)
34
+ Requires-Dist: azure-storage-blob (>=12.16.0,<12.17.0)
35
+ Requires-Dist: boto3 (>=1.35.5,<1.36.0)
36
+ Requires-Dist: certifi (>=2024.07.04)
37
+ Requires-Dist: colorama (>=0.4.6,<0.5.0) ; sys_platform == "win32"
38
+ Requires-Dist: colorclass (>=2.2,<2.3)
39
+ Requires-Dist: coloredlogs (>=15,<16)
40
+ Requires-Dist: colorhash (>=2.0,<2.1.0)
41
+ Requires-Dist: confluent-kafka (>=2.3.0,<3.0.0)
42
+ Requires-Dist: cryptography (>=42.0.5)
43
+ Requires-Dist: cvg-python-sdk (>=0.5.1,<0.6.0)
44
+ Requires-Dist: dask (==2022.10.2) ; python_version >= "3.9" and python_version < "3.11"
45
+ Requires-Dist: diskcache (>=5.6.3,<5.7.0)
46
+ Requires-Dist: dnspython (==2.6.1)
47
+ Requires-Dist: faiss-cpu (>=1.7.4,<2.0.0)
48
+ Requires-Dist: faker (>=26.0.0,<27.0.0)
49
+ Requires-Dist: fbmessenger (>=6.0.0,<6.1.0)
50
+ Requires-Dist: github3.py (>=3.2.0,<3.3.0) ; extra == "gh-release-notes"
51
+ Requires-Dist: gitpython (>=3.1.41,<3.2.0) ; extra == "full"
52
+ Requires-Dist: google-auth (>=2.23.4,<3)
53
+ Requires-Dist: google-cloud-storage (>=2.14.0,<3.0.0)
54
+ Requires-Dist: hvac (>=1.2.1,<2.0.0)
55
+ Requires-Dist: importlib-metadata (>=8.5.0,<8.6.0)
56
+ Requires-Dist: importlib-resources (==6.1.3)
57
+ Requires-Dist: jieba (>=0.42.1,<0.43) ; extra == "jieba" or extra == "full"
58
+ Requires-Dist: jinja2 (>=3.1.4,<4.0.0)
59
+ Requires-Dist: jsonpatch (>=1.33,<2.0)
60
+ Requires-Dist: jsonpickle (>=3.0,<3.1)
61
+ Requires-Dist: jsonschema (>=4.22)
62
+ Requires-Dist: keras (==2.14.0)
63
+ Requires-Dist: langchain (>=0.2.0,<0.3.0)
64
+ Requires-Dist: langchain-community (>=0.2.0,<0.3.0)
65
+ Requires-Dist: litellm (>=1.52.6,<1.53.0)
66
+ Requires-Dist: matplotlib (>=3.7,<3.8)
67
+ Requires-Dist: mattermostwrapper (>=2.2,<2.3)
68
+ Requires-Dist: mlflow (>=2.15.1,<3.0.0) ; extra == "mlflow"
69
+ Requires-Dist: networkx (>=3.1,<3.2)
70
+ Requires-Dist: numpy (>=1.23.5,<1.25.0) ; python_version >= "3.9" and python_version < "3.11"
71
+ Requires-Dist: openai (>=1.54.0,<1.55.0)
72
+ Requires-Dist: openpyxl (>=3.1.5,<4.0.0)
73
+ Requires-Dist: opentelemetry-api (>=1.16.0,<1.17.0)
74
+ Requires-Dist: opentelemetry-exporter-jaeger (>=1.16.0,<1.17.0)
75
+ Requires-Dist: opentelemetry-exporter-otlp (>=1.16.0,<1.17.0)
76
+ Requires-Dist: opentelemetry-sdk (>=1.16.0,<1.17.0)
77
+ Requires-Dist: packaging (>=23.2,<23.3)
78
+ Requires-Dist: pep440-version-utils (>=1.1.0,<1.2.0)
79
+ Requires-Dist: pluggy (>=1.2.0,<2.0.0)
80
+ Requires-Dist: portalocker (>=2.7.0,<3.0.0)
81
+ Requires-Dist: presidio-analyzer (>=2.2.33,<2.2.34)
82
+ Requires-Dist: presidio-anonymizer (>=2.2.354,<3.0.0)
83
+ Requires-Dist: prompt-toolkit (>=3.0.28,<3.0.29)
84
+ Requires-Dist: protobuf (>=4.23.3,<4.25.4)
85
+ Requires-Dist: psutil (>=5.9.5,<6.0.0)
86
+ Requires-Dist: psycopg2-binary (>=2.9.9,<2.10.0)
87
+ Requires-Dist: pycountry (>=22.3.5,<23.0.0)
88
+ Requires-Dist: pydantic (>=2.0,<3.0)
89
+ Requires-Dist: pydot (>=1.4,<1.5)
90
+ Requires-Dist: pykwalify (>=1.8,<1.9)
91
+ Requires-Dist: pymilvus (<2.4.2)
92
+ Requires-Dist: pymongo[srv,tls] (>=4.6.3,<4.7)
93
+ Requires-Dist: pypred (>=0.4.0,<0.5.0)
94
+ Requires-Dist: python-dateutil (>=2.8.2,<2.9.0)
95
+ Requires-Dist: python-dotenv (>=1.0.1,<2.0.0)
96
+ Requires-Dist: python-engineio (>=4.5.1,<6,!=5.0.0)
97
+ Requires-Dist: python-keycloak (>=3.12.0,<4.0.0)
98
+ Requires-Dist: python-socketio (>=5.8,<6)
99
+ Requires-Dist: pytz (>=2022.7.1,<2023.0)
100
+ Requires-Dist: pyyaml (>=6.0)
101
+ Requires-Dist: qdrant-client (>=1.9.0,<2.0.0)
102
+ Requires-Dist: questionary (>=1.10.0,<2.1.0)
103
+ Requires-Dist: randomname (>=0.2.1,<0.3.0)
104
+ Requires-Dist: rasa-sdk (>=3.10.0,<3.11.0)
105
+ Requires-Dist: redis (>=4.6.0,<6.0)
106
+ Requires-Dist: regex (>=2022.10.31,<2022.11)
107
+ Requires-Dist: requests (>=2.31.0,<2.32.0)
108
+ Requires-Dist: rich (>=13.4.2,<14.0.0)
109
+ Requires-Dist: rocketchat_API (>=1.30.0,<1.31.0)
110
+ Requires-Dist: ruamel.yaml (>=0.17.21,<0.17.22)
111
+ Requires-Dist: safetensors (>=0.4.5,<0.5.0)
112
+ Requires-Dist: sanic (>=22.12,<22.13)
113
+ Requires-Dist: sanic-cors (>=2.2.0,<2.3.0)
114
+ Requires-Dist: sanic-jwt (>=1.8.0,<2.0.0)
115
+ Requires-Dist: sanic-routing (>=22.8.0,<23.0.0)
116
+ Requires-Dist: scikit-learn (>=1.1.3,<1.2) ; python_version >= "3.9" and python_version < "3.11"
117
+ Requires-Dist: scipy (>=1.10.1,<1.11.0) ; python_version >= "3.9" and python_version < "3.11"
118
+ Requires-Dist: sentencepiece[sentencepiece] (>=0.1.99,<0.2.0) ; extra == "transformers" or extra == "full"
119
+ Requires-Dist: sentry-sdk (>=1.14.0,<1.15.0)
120
+ Requires-Dist: setuptools (>=70.0.0,<70.1.0)
121
+ Requires-Dist: sklearn-crfsuite (>=0.3.6,<0.4.0)
122
+ Requires-Dist: skops (>=0.10.0,<0.11.0)
123
+ Requires-Dist: slack-sdk (>=3.27.1,<4.0.0)
124
+ Requires-Dist: spacy (>=3.5.4,<4.0.0) ; extra == "spacy" or extra == "full"
125
+ Requires-Dist: structlog (>=23.1.0,<23.2.0)
126
+ Requires-Dist: structlog-sentry (>=2.0.3,<3.0.0)
127
+ Requires-Dist: tarsafe (>=0.0.5,<0.0.6)
128
+ Requires-Dist: tenacity (>=8.4.1,<8.5.0)
129
+ Requires-Dist: tensorflow (==2.14.1) ; sys_platform != "darwin" or platform_machine != "arm64"
130
+ Requires-Dist: tensorflow-cpu-aws (==2.14.1) ; sys_platform == "linux" and (platform_machine == "arm64" or platform_machine == "aarch64")
131
+ Requires-Dist: tensorflow-intel (==2.14.1) ; sys_platform == "win32"
132
+ Requires-Dist: tensorflow-io-gcs-filesystem (==0.31) ; sys_platform == "win32"
133
+ Requires-Dist: tensorflow-io-gcs-filesystem (==0.34) ; sys_platform == "darwin" and platform_machine != "arm64"
134
+ Requires-Dist: tensorflow-io-gcs-filesystem (==0.34) ; sys_platform == "linux"
135
+ Requires-Dist: tensorflow-macos (==2.14.1) ; sys_platform == "darwin" and platform_machine == "arm64"
136
+ Requires-Dist: tensorflow-metal (==1.1.0) ; (sys_platform == "darwin" and platform_machine == "arm64") and (extra == "metal")
137
+ Requires-Dist: tensorflow-text (==2.14.0) ; sys_platform != "win32" and (platform_machine != "arm64" and platform_machine != "aarch64")
138
+ Requires-Dist: tensorflow_hub (>=0.13.0,<0.14.0)
139
+ Requires-Dist: terminaltables (>=3.1.10,<3.2.0)
140
+ Requires-Dist: tiktoken (>=0.7.0,<0.8.0)
141
+ Requires-Dist: tqdm (>=4.66.2,<5.0.0)
142
+ Requires-Dist: transformers (>=4.36.2,<4.37.0) ; extra == "transformers" or extra == "full"
143
+ Requires-Dist: twilio (>=8.4,<8.5)
144
+ Requires-Dist: types-protobuf (==4.25.0.20240417)
145
+ Requires-Dist: typing-extensions (>=4.7.1,<5.0.0)
146
+ Requires-Dist: typing-utils (>=0.1.0,<0.2.0)
147
+ Requires-Dist: ujson (>=5.8,<6.0)
148
+ Requires-Dist: webexteamssdk (>=1.6.1,<1.7.0)
149
+ Requires-Dist: websockets (>=10.4,<11.0)
150
+ Requires-Dist: wheel (>=0.40.0)
151
+ Project-URL: Documentation, https://rasa.com/docs
152
+ Project-URL: Repository, https://github.com/rasahq/rasa
153
+ Description-Content-Type: text/markdown
154
+
155
+ <h1 align="center">Rasa Pro</h1>
156
+
157
+ <div align="center">
158
+
159
+ [![Build Status](https://github.com/RasaHQ/rasa-private/workflows/Continuous%20Integration/badge.svg)](https://github.com/RasaHQ/rasa-private/actions)
160
+ [![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=RasaHQ_rasa&metric=alert_status)](https://sonarcloud.io/summary/new_code?id=RasaHQ_rasa)
161
+ [![Documentation Status](https://img.shields.io/badge/docs-stable-brightgreen.svg)](https://rasa.com/docs/rasa-pro/)
162
+
163
+ </div>
164
+
165
+ <hr />
166
+
167
+
168
+ Rasa Pro is a framework for building scalable, dynamic conversational AI assistants that integrate large language models (LLMs) to enable more contextually aware and agentic interactions. Whether you’re new to conversational AI or an experienced developer, Rasa Pro offers enhanced flexibility, control, and performance for mission-critical applications.
169
+
170
+ Building on the foundation of Rasa Open Source, Rasa Pro adds advanced features like CALM (Conversational AI with Language Models) and Dialogue Understanding (DU), which enable developers to shift from traditional intent-driven systems to LLM-based agents. This allows for more robust, responsive interactions that adhere strictly to business logic, while reducing risks like prompt injection and minimizing hallucinations.
171
+
172
+ **Key Features:**
173
+
174
+ - **Flows for Business Logic:** Easily define business logic through Flows, a simplified way to describe how your AI assistant should handle conversations. Flows help streamline the development process, focusing on key tasks and reducing the complexity involved in managing conversations.
175
+ - **Automatic Conversation Repair:** Ensure seamless interactions by automatically handling interruptions or unexpected inputs. Developers have full control to customize these repairs based on specific use cases.
176
+ - **Customizable and Open:** Fully customizable code that allows developers to modify Rasa Pro to meet specific requirements, ensuring flexibility and adaptability to various conversational AI needs.
177
+ - **Robustness and Control:** Maintain strict adherence to business logic, preventing unwanted behaviors like prompt injection and hallucinations, leading to more reliable responses and secure interactions.
178
+ - **Built-in Security:** Safeguard sensitive data, control access, and ensure secure deployment, essential for production environments that demand high levels of security and compliance.
179
+
180
+
181
+
182
+ A [free developer license](https://rasa.com/docs/rasa-pro/developer-edition/) is available so you can explore and get to know Rasa Pro. For small production deployments, the Extended Developer License allows you to take your assistant live in a limited capacity. A paid license is required for larger-scale production use, but all code is visible and can be customized as needed.
183
+
184
+ To get started right now, you can
185
+
186
+ `pip install rasa-pro`
187
+
188
+ Check out our
189
+
190
+ - [Rasa-pro Quickstart](https://rasa.com/docs/rasa-pro/installation/quickstart/),
191
+ - [Conversational AI with Language Models (CALM) conceptual rundown](https://rasa.com/docs/rasa-pro/calm/),
192
+ - [Rasa Pro / CALM tutorial](https://rasa.com/docs/rasa-pro/tutorial), and
193
+ - [Rasa pro changelog](https://rasa.com/docs/rasa/rasa-pro-changelog/)
194
+
195
+ for more. Also feel free to reach out to us on the [Rasa forum](https://forum.rasa.com/).
196
+
@@ -1,4 +1,4 @@
1
- README.md,sha256=usVc63w5WCJkdj20eNl8OJILL181o9E1xOt9-RHZJCA,23283
1
+ README.md,sha256=hu3oA1lnwNcUZbeb3AlbNJidVy64MCYzXIqai8rPORY,3298
2
2
  rasa/__init__.py,sha256=YXG8RzVxiSJ__v-AewtV453YoCbmzWlHsU_4S0O2XpE,206
3
3
  rasa/__main__.py,sha256=s0wac5PWbCVu7lJyKUCLylKvE-K7UA6QzVfKUY-46-g,5825
4
4
  rasa/anonymization/__init__.py,sha256=Z-ZUW2ofZGfI6ysjYIS7U0JL4JSzDNOkHiiXK488Zik,86
@@ -89,7 +89,7 @@ rasa/cli/train.py,sha256=a8KB-zc9mFZrWYztpiC7g5Ab3O86KJcTlo_CBLyB7Tk,9934
89
89
  rasa/cli/utils.py,sha256=Q4WFdSYrqQvMY2nZY4i2P-vBimUh_cS08KEN-PGkJlg,15662
90
90
  rasa/cli/visualize.py,sha256=YmRAATAfxHpgE8_PknGyM-oIujwICNzVftTzz6iLNNc,1256
91
91
  rasa/cli/x.py,sha256=1w-H6kb_3OG3zVPJ1isX67BTb_T-x2MJo4OGffCD4Vc,6827
92
- rasa/constants.py,sha256=BuDQ59uM3GhxmShZR-1IuDHh5VHfEneA9P9HUQagZ9M,1311
92
+ rasa/constants.py,sha256=XZYjc2dDN2q3ixchLfRRNGAqxD2uL5-z_ZYoqJwLgxM,1309
93
93
  rasa/core/__init__.py,sha256=DYHLve7F1yQBVOZTA63efVIwLiULMuihOfdpzw1j0os,457
94
94
  rasa/core/actions/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
95
95
  rasa/core/actions/action.py,sha256=fzGdE-zhpul6dipV0t5_KtJomVsqfXw4bZ6IX1P1h5Y,43818
@@ -273,8 +273,8 @@ rasa/core/exceptions.py,sha256=0ZyxnGz6V02K24ybMbIwGx2bPh86X0u7As5wImcgrOk,901
273
273
  rasa/core/exporter.py,sha256=Jshzp7gqf7iC0z7uxHM5wALP4MXyDM-fs2Gf_tIgj2Y,10479
274
274
  rasa/core/featurizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
275
275
  rasa/core/featurizers/precomputation.py,sha256=LWhx7Gm_n1aVvguGkTrHcHt-menRP6gj9OObbSKiReA,18006
276
- rasa/core/featurizers/single_state_featurizer.py,sha256=9zohJb5tXcTRSAdzBM9ebCNy_yDtcJykUoCZTFm8laY,15431
277
- rasa/core/featurizers/tracker_featurizers.py,sha256=cjwAM8pmUE8TJX4qrX3EkxL3ETHOdFvRZTAXQ2SY6zg,43368
276
+ rasa/core/featurizers/single_state_featurizer.py,sha256=byEldbHPhUiFHN6oCy_IPislWwtM_6cG4AhR3vH3pJM,16088
277
+ rasa/core/featurizers/tracker_featurizers.py,sha256=micA9TuSFnsj1aTZDQTGPR44jIDbDg0oNadkv86nSUk,46756
278
278
  rasa/core/http_interpreter.py,sha256=zstMlaBK_K_DSpxMuR_Wn-AbYwFplLaG8jiWofa16Eg,3033
279
279
  rasa/core/information_retrieval/__init__.py,sha256=bop2jgd0f16j-SbVGsvAI3F7znb23qQ-Gydy-AG-dNI,218
280
280
  rasa/core/information_retrieval/faiss.py,sha256=gytyxSAPo4FoL23CwJZyEdF7gfQwEHKgX1MUPIqwV3Y,4192
@@ -307,8 +307,8 @@ rasa/core/policies/intentless_prompt_template.jinja2,sha256=KhIL3cruMmkxhrs5oVbq
307
307
  rasa/core/policies/memoization.py,sha256=XoRxUdYUGRfO47tAEyc5k5pUgt38a4fipO336EU5Vdc,19466
308
308
  rasa/core/policies/policy.py,sha256=HeVtIaV0dA1QcAG3vjdn-4g7-oUEJPL4u01ETJt78YA,27464
309
309
  rasa/core/policies/rule_policy.py,sha256=YNDPZUZkpKFCvZwKe1kSfP6LQnDL9CQ6JU69JRwdmWw,50729
310
- rasa/core/policies/ted_policy.py,sha256=TFTM-Ujp1Mu7dQKnX5euKY81cvzDkzokGqAT813PKkY,86658
311
- rasa/core/policies/unexpected_intent_policy.py,sha256=zeV4atIW9K2QHr4io_8RWOtreABSHoAQHjiznwcmUSo,39441
310
+ rasa/core/policies/ted_policy.py,sha256=_DHiDH5Upx1yFNzMXBA3SGdHBRfsitTLlr7howUHPoo,87750
311
+ rasa/core/policies/unexpected_intent_policy.py,sha256=5pGe9EMS-NLHIDDhqY6KCH_Kv7_TGMzSbe_GsjuKH1w,39649
312
312
  rasa/core/processor.py,sha256=-Jf2WliPA7lUZ8DCNt4r7fdU7qLNQf4g-IhoGZIswN0,54434
313
313
  rasa/core/run.py,sha256=s32pZE3B1uKIs20xIbSty0HxeQ9One63_8NeCODwpQE,11050
314
314
  rasa/core/secrets_manager/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -337,7 +337,7 @@ rasa/dialogue_understanding/coexistence/router_template.jinja2,sha256=CHWFreN0sv
337
337
  rasa/dialogue_understanding/commands/__init__.py,sha256=B_1q6p2l1TOfIcmggSzXc0iETZ1RvTUSFwuQhPmRjtQ,2004
338
338
  rasa/dialogue_understanding/commands/can_not_handle_command.py,sha256=2sNnIo1jZ2UEadkBdEWmDasm2tBES59lzvFcf0iY51U,2235
339
339
  rasa/dialogue_understanding/commands/cancel_flow_command.py,sha256=z1TmONIPQkYvPm2ZIULfBIXpgn5v6-VIsqInQnW3NH0,4275
340
- rasa/dialogue_understanding/commands/change_flow_command.py,sha256=PrmBa__Rz4NTqaGzqecZuny9zLVHuPxDoHTGzZScnGg,1175
340
+ rasa/dialogue_understanding/commands/change_flow_command.py,sha256=0s3g-3InNZs2eAiI7kmBKp3MzBJN69YzdT-IFJjaCaE,1338
341
341
  rasa/dialogue_understanding/commands/chit_chat_answer_command.py,sha256=jl8em1Xw867VAj5EogeuOjWK93uoT71IhjHU076c2mg,1773
342
342
  rasa/dialogue_understanding/commands/clarify_command.py,sha256=OzkqVRZrQo20cveqUoQGZE96DdRLLPgfPxJhroubIQw,2822
343
343
  rasa/dialogue_understanding/commands/command.py,sha256=oUP7cZHz2ew6JIrauzfkOntomNvgJfpMBhsuYh7cHo4,2528
@@ -487,13 +487,13 @@ rasa/model_training.py,sha256=1LoW9TMgzpXeXedLtzxmGHxOl1NBTbNDaqLzu2XayxE,20631
487
487
  rasa/nlu/__init__.py,sha256=D0IYuTK_ZQ_F_9xsy0bXxVCAtU62Fzvp8S7J9tmfI_c,123
488
488
  rasa/nlu/classifiers/__init__.py,sha256=Qvrf7_rfiMxm2Vt2fClb56R3QFExf7WPdFdL-AOvgsk,118
489
489
  rasa/nlu/classifiers/classifier.py,sha256=9fm1mORuFf1vowYIXmqE9yLRKdSC4nGQW7UqNZQipKY,133
490
- rasa/nlu/classifiers/diet_classifier.py,sha256=C2mKZ2GP7Uptpag240fFkAEZf6P1NuU_2TrnSsR3IA0,71936
490
+ rasa/nlu/classifiers/diet_classifier.py,sha256=jhzvTqC_Ln-eFCrE1o3uQf1JRR7d6mCPn5ZRewePUas,72565
491
491
  rasa/nlu/classifiers/fallback_classifier.py,sha256=FYOgM7bLG3HlasVWRozanz-MmDozygTlTIFcPHJWJoo,7150
492
492
  rasa/nlu/classifiers/keyword_intent_classifier.py,sha256=dxDzCK7YzYKslZiXYkBD1Al1y_yZWdZYkBBl7FLyPm8,7581
493
- rasa/nlu/classifiers/logistic_regression_classifier.py,sha256=Qga66-PjW4I4D2uIMoX2aW8ywdufq9ISmt12rP3rj9g,9124
493
+ rasa/nlu/classifiers/logistic_regression_classifier.py,sha256=C7GkIaVNC5MHu5xOaqKzRiV1LTu_19I5vk_Oa9BIDDU,9589
494
494
  rasa/nlu/classifiers/mitie_intent_classifier.py,sha256=_hf0aKWjcjZ8NdH61gbutgY5vAjMmpYDhCpO3dwIrDk,5559
495
495
  rasa/nlu/classifiers/regex_message_handler.py,sha256=r6Z-uFJvqFZjpI1rUeaZZnAOUL9lxuBxGK7W6WZIPOw,1989
496
- rasa/nlu/classifiers/sklearn_intent_classifier.py,sha256=zPLr1GNCEAG8xW5SEPLgc2lsenXavTG9KDby8JUDX3o,11923
496
+ rasa/nlu/classifiers/sklearn_intent_classifier.py,sha256=h4J0dc2KPE4Q1J8m9X0JDznHUuUZICVE_XJQbKcPr04,12797
497
497
  rasa/nlu/constants.py,sha256=ahRBMW-xordjgZtwmMimrTbl8lsCSzjfKMkN1cjanqs,2757
498
498
  rasa/nlu/convert.py,sha256=jLtSQYnj1Ys4Q4WyfL29GDiRlBCbuPmmoFnBYcvFZ5A,1317
499
499
  rasa/nlu/emulators/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -503,7 +503,7 @@ rasa/nlu/emulators/luis.py,sha256=AWMGI17Su1q6PcE8l1S1mDJpwfVtx7ibY9rwBmg3Maw,30
503
503
  rasa/nlu/emulators/no_emulator.py,sha256=tLJ2DyWhOtaIBudVf7mJGsubca9Vunb6VhJB_tWJ8wU,334
504
504
  rasa/nlu/emulators/wit.py,sha256=0eMj_q49JGj0Z6JZjR7rHIABNF-F3POX7s5W5OkANyo,1930
505
505
  rasa/nlu/extractors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
506
- rasa/nlu/extractors/crf_entity_extractor.py,sha256=vX7bZHjtdD2M2GhJDwTx-S-Q6y8eskkOIhZShYXaHj8,26503
506
+ rasa/nlu/extractors/crf_entity_extractor.py,sha256=5IW7Fa4lLLUxMrbHiRmBD7Y6B7TmS_o66USoSxYBOZk,27532
507
507
  rasa/nlu/extractors/duckling_entity_extractor.py,sha256=XooWjw6eDC0sxZ-T1YgDnrLcRTBx6B40SFGLjHTHg-w,7686
508
508
  rasa/nlu/extractors/entity_synonyms.py,sha256=WShheUF7wbP7VWfpCNw3J4NouAcFjAupDsT4oAj_TUc,7148
509
509
  rasa/nlu/extractors/extractor.py,sha256=m6p07GDBZi1VhgYCkYJrWs_Zk87okV77hvoiwG_1xxA,17539
@@ -519,9 +519,9 @@ rasa/nlu/featurizers/dense_featurizer/mitie_featurizer.py,sha256=xE-dOmdBqCJ4NEm
519
519
  rasa/nlu/featurizers/dense_featurizer/spacy_featurizer.py,sha256=tJzDeX8wkOO1iUNmx13FSIeMHNC0U0RB5ZF9pPo8nqQ,4888
520
520
  rasa/nlu/featurizers/featurizer.py,sha256=cV2v4f1V2DWDqJY1-oGAZsytv0L827nsCtUY6KjEChg,3348
521
521
  rasa/nlu/featurizers/sparse_featurizer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
522
- rasa/nlu/featurizers/sparse_featurizer/count_vectors_featurizer.py,sha256=275NcC7W9_n7V0AyVXm8jtYd9fcVHXZRQMgr5MVZAvA,33600
523
- rasa/nlu/featurizers/sparse_featurizer/lexical_syntactic_featurizer.py,sha256=awydhZZTRmff35L1838bbghNbutEf5xty301OyRIgvI,21848
524
- rasa/nlu/featurizers/sparse_featurizer/regex_featurizer.py,sha256=PhzJ17lNv3I5h8WrCvjzjjcUvbu_MJBxY6k3pQTDCac,10289
522
+ rasa/nlu/featurizers/sparse_featurizer/count_vectors_featurizer.py,sha256=CkbI7jS0UjiFE9BRgF4AnxvJHuQb2_aZ9ky4rUvgCH4,34794
523
+ rasa/nlu/featurizers/sparse_featurizer/lexical_syntactic_featurizer.py,sha256=yJC9dRrUnZP-tff10qbXrbfN5De55w8U1wc99gaWv_g,23100
524
+ rasa/nlu/featurizers/sparse_featurizer/regex_featurizer.py,sha256=jGK8IlDbms-xMoln9JucKCjGWVzyHbZOEzIPj2BvV9I,10293
525
525
  rasa/nlu/featurizers/sparse_featurizer/sparse_featurizer.py,sha256=m6qpixorfTDFWSfGVmLImTOHM6zKdgydPaP_wVxCQ-w,220
526
526
  rasa/nlu/model.py,sha256=r6StZb4Dmum_3dRoocxZWo2M5KVNV20_yKNvYZNvpOc,557
527
527
  rasa/nlu/persistor.py,sha256=QniAoBRjk9CPzFJOdkJIpgc_eXXan1cKC61L_xWQjGk,14702
@@ -606,7 +606,7 @@ rasa/shared/nlu/constants.py,sha256=rf628BT4r6hnvN6QWyh_t2UFKOD7PR5APspi6igmeCU,
606
606
  rasa/shared/nlu/interpreter.py,sha256=eCNJp61nQYTGVf4aJi8SCWb46jxZY6-C1M1LFxMyQTM,188
607
607
  rasa/shared/nlu/training_data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
608
608
  rasa/shared/nlu/training_data/entities_parser.py,sha256=fC-VIso07so6E9b6KrQXOBC-ZUGCQGvnMvzVwiAO1GQ,6729
609
- rasa/shared/nlu/training_data/features.py,sha256=k0IsGRWp1tl1_pLVF-1ejr-nqzY-wTsnjn3PZwZwvk0,14835
609
+ rasa/shared/nlu/training_data/features.py,sha256=KjvXQT_YF-fXAR1qvp_JhOvDiI0EGekQ8aRJo0KNQCg,18592
610
610
  rasa/shared/nlu/training_data/formats/__init__.py,sha256=rX28sTQBs0fL4yTMtv3xVl2DM14TvWmkkoLJt2kIoho,453
611
611
  rasa/shared/nlu/training_data/formats/dialogflow.py,sha256=YfBjqgY0uaqXVdT3bmnQkb8runPe8pY8H-lqVB0L7zM,6142
612
612
  rasa/shared/nlu/training_data/formats/luis.py,sha256=Yaw_0QcXDC35hEckIJGS2fTdweQfyYAO378fwsEaSUs,3014
@@ -656,7 +656,7 @@ rasa/shared/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU
656
656
  rasa/shared/utils/cli.py,sha256=bJpkf0VzzmtpmBnDnIl7SgvrntnBuaJQMHBXHm2WxcA,2916
657
657
  rasa/shared/utils/common.py,sha256=Z0sfpDosVHLhGDY-72lGVTPWsNC64z3HWSLdnZRG7yE,10057
658
658
  rasa/shared/utils/constants.py,sha256=ZNQu0RHM_7Q4A2hn6pD8XlKPEwzivNpfKiiQihwH8-U,141
659
- rasa/shared/utils/io.py,sha256=sRgT1JlTRsOtYR97ERj5SntmMaYsR2NWs_DhSxZRbgY,15235
659
+ rasa/shared/utils/io.py,sha256=cYEkHjvuIB-XaK-Qchajv4lDMb_EZc3K-3CLwiEtUcA,15236
660
660
  rasa/shared/utils/llm.py,sha256=h35-N4LiT0qbg_6sab0GiYsPJe1Q1WHMLj6UhVuXOSY,13804
661
661
  rasa/shared/utils/pykwalify_extensions.py,sha256=4W8gde8C6QpGCY_t9IEmaZSgjMuie1xH0F1DYyn83BM,883
662
662
  rasa/shared/utils/schemas/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -691,7 +691,7 @@ rasa/utils/cli.py,sha256=L-DT4nPdVBWfc2m1COHrziLitVWJxazSreb6JLbTho4,865
691
691
  rasa/utils/common.py,sha256=1ETnOFB_nNexSqHL0EhsMtg8M1k9-2laAy2jsugxnIk,21079
692
692
  rasa/utils/converter.py,sha256=H4LHpoAK7MXMmvNZG_uSn0gbccCJvHtsA2-6Zya4u6M,1656
693
693
  rasa/utils/endpoints.py,sha256=cLeHBr6n88GYlYMxXVzZwvQ0nC1TpuC1pvn_RsxiDYY,9336
694
- rasa/utils/io.py,sha256=4Wl5_5I6fnBWOJxbKwIPPMcdeoA5dZevcHuoo30sd3E,9305
694
+ rasa/utils/io.py,sha256=HwhG-Y_VmyGNqYpA3Y3ef-OO7GI4TTRGyOnSjEJW6GQ,7442
695
695
  rasa/utils/json_utils.py,sha256=SKtJzzsIRCAgNEQiBvWDDm9euMRBgJ-TyvCi2tXHH1w,1689
696
696
  rasa/utils/licensing.py,sha256=JyqusmuufnTwlKFHOa8sdDZe5lG7YxeDQbrXnvsxQZw,20491
697
697
  rasa/utils/log_utils.py,sha256=SmyRYbnqj9gCr-pavNCwmoid6cWVQ3D72ryqGhbtlpM,6377
@@ -706,10 +706,11 @@ rasa/utils/tensorflow/crf.py,sha256=xl6lHmie4aYIIN0kTVzvLSJ7Qkl3UeFoZRnc2RrgBEo,
706
706
  rasa/utils/tensorflow/data_generator.py,sha256=zKW2Uc2EsYXu7Yu4JU13nWpbxwOZYq5mqCO0LHT_0ZA,16238
707
707
  rasa/utils/tensorflow/environment.py,sha256=rXqs4btQbiOMtbCoujUmccvAMQvM0peqNkIiunPn5Ik,5599
708
708
  rasa/utils/tensorflow/exceptions.py,sha256=I5chH5Lky3faXZOCfGyeXfkOsDpjYV7gJWZCiKp5CAs,168
709
+ rasa/utils/tensorflow/feature_array.py,sha256=0iCebkyVzMlGqFUBbvgXFvqsAS5v3XwC58J-jEYm01I,14001
709
710
  rasa/utils/tensorflow/layers.py,sha256=jAa7kxO69z9I8x9d_lc8ABrGrOhFQ3TLngT9ftU2ET8,59261
710
711
  rasa/utils/tensorflow/layers_utils.py,sha256=Lvldu67qO275VV064bI8AAmwQZFzgmL9JKRlBFARLs0,3319
711
712
  rasa/utils/tensorflow/metrics.py,sha256=iaWI9W_0pRcSokl3NcsrDvqPryjNX64tv20Gd0OQCNM,10064
712
- rasa/utils/tensorflow/model_data.py,sha256=F9M4NF_aOwV-3zBsBie4RF8js2rLQEixyhiL6NWg9pA,34538
713
+ rasa/utils/tensorflow/model_data.py,sha256=U8hzLKZCZjojl41ibFXRUjwnY-NQ6MPFn5EX0sJDaRo,26942
713
714
  rasa/utils/tensorflow/model_data_utils.py,sha256=cHY0ekIFpCTPmB_d3CrJv17ExGNgHNAVvn7FLERGnv8,18166
714
715
  rasa/utils/tensorflow/models.py,sha256=jR7RBzSCXLER3YbRcocQ6pBSDZJsPisdSbEl9KCL0r8,36039
715
716
  rasa/utils/tensorflow/rasa_layers.py,sha256=AZpQsAiikDNox1CYmKTB0cZQjemV97Cnv52xNdb0AAc,49111
@@ -719,9 +720,9 @@ rasa/utils/train_utils.py,sha256=f1NWpp5y6al0dzoQyyio4hc4Nf73DRoRSHDzEK6-C4E,212
719
720
  rasa/utils/url_tools.py,sha256=JQcHL2aLqLHu82k7_d9imUoETCm2bmlHaDpOJ-dKqBc,1218
720
721
  rasa/utils/yaml.py,sha256=KjbZq5C94ZP7Jdsw8bYYF7HASI6K4-C_kdHfrnPLpSI,2000
721
722
  rasa/validator.py,sha256=ToRaa4dS859CJO3H2VGqS943O5qWOg45ypbDfFMKECU,62699
722
- rasa/version.py,sha256=0PycS7JWF6zF5RV14lJkREbKvYdYXHB_CbCKkQiYfP0,118
723
- rasa_pro-3.10.11.dist-info/METADATA,sha256=DoqzzlFIc1_OXg5TQimVBnOhWchKq-_c6vblqlOOeH0,30901
724
- rasa_pro-3.10.11.dist-info/NOTICE,sha256=7HlBoMHJY9CL2GlYSfTQ-PZsVmLmVkYmMiPlTjhuCqA,218
725
- rasa_pro-3.10.11.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
726
- rasa_pro-3.10.11.dist-info/entry_points.txt,sha256=ckJ2SfEyTPgBqj_I6vm_tqY9dZF_LAPJZA335Xp0Q9U,43
727
- rasa_pro-3.10.11.dist-info/RECORD,,
723
+ rasa/version.py,sha256=_k0Lu-3EqFE4i100DMYBgRi3c_KmZxqc9lFcIfHO9UA,118
724
+ rasa_pro-3.10.12.dist-info/METADATA,sha256=Ct7ic4Md_uIsiULOtZ2MGSrpeJ4ZlsoatHmyp2OUOCc,10919
725
+ rasa_pro-3.10.12.dist-info/NOTICE,sha256=7HlBoMHJY9CL2GlYSfTQ-PZsVmLmVkYmMiPlTjhuCqA,218
726
+ rasa_pro-3.10.12.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
727
+ rasa_pro-3.10.12.dist-info/entry_points.txt,sha256=ckJ2SfEyTPgBqj_I6vm_tqY9dZF_LAPJZA335Xp0Q9U,43
728
+ rasa_pro-3.10.12.dist-info/RECORD,,