ras-commander 0.59.0__py3-none-any.whl → 0.64.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ras_commander/__init__.py CHANGED
@@ -10,7 +10,7 @@ try:
10
10
  __version__ = version("ras-commander")
11
11
  except PackageNotFoundError:
12
12
  # package is not installed
13
- __version__ = "0.54.0"
13
+ __version__ = "0.64.0"
14
14
 
15
15
  # Set up logging
16
16
  setup_logging()
@@ -23,8 +23,6 @@ from .RasUnsteady import RasUnsteady
23
23
  from .RasUtils import RasUtils
24
24
  from .RasExamples import RasExamples
25
25
  from .RasCmdr import RasCmdr
26
- from .RasGpt import RasGpt
27
- from .RasToGo import RasToGo
28
26
  from .HdfFluvialPluvial import HdfFluvialPluvial
29
27
 
30
28
  # HDF handling
@@ -41,7 +39,6 @@ from .HdfXsec import HdfXsec
41
39
  from .HdfPump import HdfPump
42
40
  from .HdfPipe import HdfPipe
43
41
  from .HdfInfiltration import HdfInfiltration
44
- from .RasMapper import RasMapper
45
42
 
46
43
  # Plotting functionality
47
44
  from .HdfPlot import HdfPlot
@@ -52,14 +49,13 @@ __all__ = [
52
49
  # Core functionality
53
50
  'RasPrj', 'init_ras_project', 'get_ras_exe', 'ras',
54
51
  'RasPlan', 'RasGeo', 'RasUnsteady', 'RasUtils',
55
- 'RasExamples', 'RasCmdr', 'RasGpt', 'RasToGo',
56
- 'HdfFluvialPluvial',
52
+ 'RasExamples', 'RasCmdr', 'HdfFluvialPluvial',
57
53
 
58
54
  # HDF handling
59
55
  'HdfBase', 'HdfBndry', 'HdfMesh', 'HdfPlan',
60
56
  'HdfResultsMesh', 'HdfResultsPlan', 'HdfResultsXsec',
61
57
  'HdfStruc', 'HdfUtils', 'HdfXsec', 'HdfPump',
62
- 'HdfPipe', 'HdfInfiltration', 'RasMapper',
58
+ 'HdfPipe', 'HdfInfiltration',
63
59
 
64
60
  # Plotting functionality
65
61
  'HdfPlot', 'HdfResultsPlot',
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: ras-commander
3
- Version: 0.59.0
3
+ Version: 0.64.0
4
4
  Summary: A Python library for automating HEC-RAS 6.x operations
5
5
  Home-page: https://github.com/gpt-cmdr/ras-commander
6
6
  Author: William M. Katzenmeyer, P.E., C.F.M.
@@ -35,22 +35,25 @@ Dynamic: summary
35
35
  RAS Commander is a Python library for automating HEC-RAS operations, providing a set of tools to interact with HEC-RAS project files, execute simulations, and manage project data. This library was initially conceptualized in the Australian Water School course "AI Tools for Modelling Innovation", and subsequently expanded to cover the basic functionality of the HECRASController COM32 interface using open-source python libraries. This library uses a Test Driven Development strategy, leveraging the publicly-available HEC-RAS Example projects to create repeatable demonstration examples. The "Commmander" moniker is inspired by the "Command Line is All You Need" approach to HEC-RAS automation that was first implemented in the HEC-Commander Tools repository.
36
36
 
37
37
  ## Repository Author:
38
- (William Katzenmeyer, P.E., C.F.M.)[https://engineeringwithllms.info]
38
+ [William Katzenmeyer, P.E., C.F.M.](https://engineeringwithllms.info)
39
+ -----
39
40
 
40
- ## Don't Ask Me, Ask GPT!
41
+ ## Don't Ask Me, Ask GPT!
41
42
 
42
43
  This repository has several methods of interaction with Large Language Models and LLM-Assisted Coding built right in:
43
44
 
44
- 1. **[RAS Commander Library Assistant GPT](https://chatgpt.com/g/g-TZRPR3oAO-ras-commander-library-assistant)**: A specialized GPT model with access to the ras-commander codebase and library, available for answering queries and providing code suggestions. You can even upload your own plan, unsteady and HDF files to inspect and help determine how to automate your workflows or visualize your results, although this ability is still limited by OpenAI's GPT frameworks and may not be useful for long conversations.
45
+ 1. **[Purpose-Built Knowledge Base Summaries](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/llm_knowledge_bases)**: Up-to-date compilations of the documentation and codebase for use with large language models like Claude, ChatGPT, Gemini or Grok. Look in 'ai_tools/assistant_knowledge_bases/' in the repo. The repo's codebase (without documentation and examples) has been curated to stay within the current ~200k context window limitations of frontier models, and for tasks that do not need an understanding of the underlying code, the Comprehensive Library Guide and any relevant examples from the example folder should be adequate context for leveraging the ras-commander API to complete tasks.
45
46
 
46
- 2. **[Purpose-Built Knowledge Base Summaries](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/assistant_knowledge_bases)**: Up-to-date compilations of the documentation and codebase for use with large language models like Claude or GPT-4. Look in 'ai_tools/assistant_knowledge_bases/' in the repo. The repo's codebase (without documentation and examples) has been curated to stay within the current ~200k context window limitations of frontier models, and for tasks that do not need an understanding of the underlying code, the Comprehensive Library Guide and any relevant examples from the example folder should be adequate context for leveraging the ras-commander API to complete tasks.
47
+ 2. **[Cursor IDE Integration](https://github.com/gpt-cmdr/ras-commander/blob/main/.cursorrules)**: Custom rules(.cursorrules) for the Cursor IDE to provide context-aware suggestions and documentation. Just open the repository folder in Cursor to recognize these instructions. You can create your own folders "/workspace/, "/projects/", or "my_projects/" as these are already in the .gitignore, and place your custom scripts there for your projects. This will allow easy referencing of the ras-commander documents and individual repo files, the automatic loading of the .cursorrules file. Alternatvely, download the github repo into your projects folder to easily load documents and use cursor rules files.
47
48
 
48
- 3. **[Cursor IDE Integration](https://github.com/gpt-cmdr/ras-commander/blob/main/.cursorrules)**: Custom rules(.cursorrules) for the Cursor IDE to provide context-aware suggestions and documentation. Just open the repository folder in Cursor to recognize these instructions. You can create your own folders "/workspace/, "/projects/", or "my_projects/" as these are already in the .gitignore, and place your custom scripts there for your projects. This will allow easy referencing of the ras-commander documents and individual repo files, the automatic loading of the .cursorrules file. Alternatvely, download the github repo into your projects folder to easily load documents and use cursor rules files.
49
+ 3. **[RAS-Commander Library Assistant](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/library_assistant)**: A full-featured interface for multi-turn conversations, using your own API keys and the ras-commander library for context. The library assistant allows you to load your own scripts and chat with specific examples and/or function classes in the RAS-Commander library to effectively utilize the library's functions in your workflow. To reduce hallucinations, a file browser is included which adds full files to the conversation to ensure grounded responses. A dashboard shows you the total context and estimated cost of each request. **Now with support for Claude 3.7, OpenAI's o1 and o3-mini, and Deepseek V3 and R1 models using US-based Together.ai**
50
+
51
+
52
+ 4. **[RAS Commander Library Assistant on ChatGPT](https://chatgpt.com/g/g-TZRPR3oAO-ras-commander-library-assistant)**: A specialized ChatGPT "GPT" with access to the ras-commander codebase and library, available for answering queries and providing code suggestions. You can even upload your own plan, unsteady and HDF files to inspect and help determine how to automate your workflows or visualize your results. _NOTE: GPT's are still quite limited by OpenAI's GPT frameworks and may not be useful for long conversations. Code interpreter cannot run HEC-RAS but can open and view smaller HDF files and projects for demonstration purposes_
49
53
 
50
- 5. **[RAS-Commander Library Assistant](https://github.com/gpt-cmdr/ras-commander/blob/main/library_assistant)**: A full-featured interface for multi-turn conversations, using your own API keys and the ras-commander library for context. The library assistant allows you to load your own scripts and chat with specific examples and/or function classes in the RAS-Commander library to effectively utilize the library's functions in your workflow. To reduce hallucinations, a file browser is included which adds full files to the conversation to ensure grounded responses. A dashboard shows you the total context and estimated cost of each request. **Now with support for OpenAI's o1 and o3-mini, and Deepseek V3 and R1 models using US-based Together.ai**
51
54
 
52
55
  ## Background
53
- The ras-commander library emerged from the initial test-bed of AI-driven coding represented by the HEC-Commander tools Python notebooks. These notebooks served as a proof of concept, demonstrating the value proposition of automating HEC-RAS operations. The transition from notebooks to a structured library aims to provide a more robust, maintainable, and extensible solution for water resources engineers.
56
+ The ras-commander library emerged from the initial test-bed of AI-driven coding represented by the [HEC-Commander tools](https://github.com/gpt-cmdr/HEC-Commander) Python notebooks. These notebooks served as a proof of concept, demonstrating the value proposition of automating HEC-RAS operations. In 2024, I taught a series of progressively more complex webinars demonstrating how to use simple prompting, example projects and natural language instruction to effectively code HEC-RAS automation workflows, culminating in a 6 hour course. The library published for utilization in that course, [awsrastools](https://github.com/gpt-cmdr/awsrastools) served as a foundation of examples which were iteratively extended into the full RAS-Commander library. Unlike the original notebook by the same name, this library is not focused on parallel execution across multiple machines. Instead, it is focused on providing a general-purpose python API for interacting with HEC-RAS projects, and building an AI-friendly library that will allow new users to quickly scaffold their own workflows into a python script. Example notebooks are provided, but the intention is to empower engineers, software developers, GIS personnel and data analysts to more easily access and interact with HEC-RAS data in a python environment. Also, by publishing these examples publicly, with complete working code examples and LLM optimization, future users can readily rewrite they key functions of the library for inclusion in into their own preferred libraries, languages or return formats.
54
57
 
55
58
  ## Features
56
59
 
@@ -92,7 +95,13 @@ In your virtual environment, install ras-commander using pip:
92
95
  pip install --upgrade ras-commander
93
96
  ```
94
97
  If you have dependency issues with pip (especially if you have errors with numpy), try clearing your local pip packages 'C:\Users\your_username\AppData\Roaming\Python\' and then creating a new virtual environment.
95
-
98
+
99
+ Dependencies can also be manually installed:
100
+ ```
101
+ pip install h5py numpy pandas requests tqdm scipy xarray geopandas matplotlib shapely pathlib rasterstats rtree
102
+ ```
103
+
104
+
96
105
  #### Work in a Local Copy
97
106
 
98
107
  If you want to make revisions and work actively in your local version of ras-commander, just skip the pip install rascommander step above and clone a fork of the repo to your local machine using Git (ask ChatGPT if you need help). Most of the notebooks and examples in this repo have a code segment similar to the one below, that works as long as the script is located in a first-level subfolder of the ras-commander repository:
@@ -119,11 +128,46 @@ It is highly suggested to fork this repository before going this route, and usin
119
128
  from ras_commander import init_ras_project, RasCmdr, RasPlan
120
129
  ```
121
130
 
122
- ### Initialize a project
131
+ ### Initialize a project (single project)
123
132
  ```
124
133
  init_ras_project(r"/path/to/project", "6.5")
125
134
  ```
126
135
 
136
+ ### Initialize a project (multiple projects)
137
+ ```
138
+ your_ras_project = RasPrj()
139
+ init_ras_project(r"/path/to/project", "6.5", ras_object=your_ras_project)
140
+ ```
141
+
142
+ ## Accessing Plan, Unsteady and Boundary Conditions Dataframes
143
+ Using the default 'ras" object, othewise substitute your_ras_project for muli-project scripts
144
+ ```
145
+ print("\nPlan Files DataFrame:")
146
+ ras.plan_df
147
+ ```
148
+ ```
149
+ print("\nFlow Files DataFrame:")
150
+ ras.flow_df
151
+ ```
152
+ ```
153
+ print("\nUnsteady Flow Files DataFrame:")
154
+ ras.unsteady_df
155
+ ```
156
+ ```
157
+ print("\nGeometry Files DataFrame:")
158
+ ras.geom_df
159
+ ```
160
+ ```
161
+ print("\nBoundary Conditions DataFrame:")
162
+ ras.boundaries_df
163
+ ```
164
+ ```
165
+ print("\nHDF Entries DataFrame:")
166
+ ras.get_hdf_entries()
167
+ ```
168
+
169
+
170
+
127
171
  ### Execute a single plan
128
172
  ```
129
173
  RasCmdr.compute_plan("01", dest_folder=r"/path/to/results", overwrite_dest=True)
@@ -185,8 +229,10 @@ RAS Commander allows working with multiple HEC-RAS projects simultaneously:
185
229
 
186
230
  ```python
187
231
  # Initialize multiple projects
188
- project1 = init_ras_project(path1, "6.6")
189
- project2 = init_ras_project(path2, "6.6")
232
+ project1 = RasPrj()
233
+ init_ras_project(path1, "6.6", ras_object=project1)
234
+ project2 = RasPrj()
235
+ init_ras_project(path2, "6.6", ras_object=project2)
190
236
 
191
237
  # Perform operations on each project
192
238
  RasCmdr.compute_plan("01", ras_object=project1, dest_folder=folder1)
@@ -202,7 +248,7 @@ print(f"Project 2: {project2.project_name}")
202
248
 
203
249
  This is useful for comparing different river systems, running scenario analyses across multiple watersheds, or managing a suite of related models.
204
250
 
205
- #### Key Components
251
+ #### Core HEC-RAS Automation Classes
206
252
 
207
253
  - `RasPrj`: Manages HEC-RAS projects, handling initialization and data loading
208
254
  - `RasCmdr`: Handles execution of HEC-RAS simulations
@@ -212,7 +258,7 @@ This is useful for comparing different river systems, running scenario analyses
212
258
  - `RasUtils`: Contains utility functions for file operations and data management
213
259
  - `RasExamples`: Manages and loads HEC-RAS example projects
214
260
 
215
- #### New Components:
261
+ #### HDF Data Access Classes
216
262
  - `HdfBase`: Core functionality for HDF file operations
217
263
  - `HdfBndry`: Enhanced boundary condition handling
218
264
  - `HdfMesh`: Comprehensive mesh data management
@@ -224,14 +270,18 @@ This is useful for comparing different river systems, running scenario analyses
224
270
  - `HdfPipe`: Pipe network analysis tools
225
271
  - `HdfPump`: Pump station analysis capabilities
226
272
  - `HdfFluvialPluvial`: Fluvial-pluvial boundary analysis
227
- - `RasMapper`: RASMapper interface
228
- - `RasToGo`: Go-Consequences integration
273
+ - `RasMapper`: RASMapper Functions
229
274
  - `HdfPlot` & `HdfResultsPlot`: Specialized plotting utilities
230
275
 
231
276
  ### Project Organization Diagram
232
277
 
233
278
  ```
234
279
  ras_commander
280
+ ├── ai_tools
281
+ │ ├── [AI Knowledge Bases](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/llm_knowledge_bases)
282
+ │ └── [Library Assistant](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/library_asssistant)
283
+ ├── examples
284
+ │ └── [Examples Notebooks](https://github.com/gpt-cmdr/ras-commander/tree/main/ras_commander)
235
285
  ├── ras_commander
236
286
  │ ├── __init__.py
237
287
  │ ├── _version.py
@@ -244,8 +294,6 @@ ras_commander
244
294
  │ ├── RasPrj.py
245
295
  │ ├── RasUnsteady.py
246
296
  │ ├── RasUtils.py
247
- │ ├── RasToGo.py
248
- │ ├── RasGpt.py
249
297
  │ ├── HdfBase.py
250
298
  │ ├── HdfBndry.py
251
299
  │ ├── HdfMesh.py
@@ -259,28 +307,13 @@ ras_commander
259
307
  │ ├── HdfFluvialPluvial.py
260
308
  │ ├── HdfPlot.py
261
309
  │ └── HdfResultsPlot.py
262
- ├── examples
263
- │ ├── 00_Using_RasExamples.ipynb
264
- │ ├── 01_project_initialization.ipynb
265
- │ ├── 02_plan_and_geometry_operations.ipynb
266
- │ ├── 03_unsteady_flow_operations.ipynb
267
- │ ├── 04_multiple_project_operations.ipynb
268
- │ ├── 05_single_plan_execution.ipynb
269
- │ ├── 06_executing_plan_sets.ipynb
270
- │ ├── 07_sequential_plan_execution.ipynb
271
- │ ├── 08_parallel_execution.ipynb
272
- │ └── 09_plan_parameter_operations.ipynb
273
- ├── tests
274
- │ └── ... (test files)
275
310
  ├── .gitignore
276
311
  ├── LICENSE
277
312
  ├── README.md
278
313
  ├── STYLE_GUIDE.md
279
314
  ├── Comprehensive_Library_Guide.md
280
315
  ├── pyproject.toml
281
- ├── setup.cfg
282
316
  ├── setup.py
283
- └── requirements.txt
284
317
  ```
285
318
 
286
319
  ### Accessing HEC Examples through RasExamples
@@ -302,6 +335,8 @@ projects = ras_examples.list_projects("Steady Flow")
302
335
  extracted_paths = ras_examples.extract_project(["Bald Eagle Creek", "Muncie"])
303
336
  ```
304
337
 
338
+ The RasExamples class is used to provide an alternative to traditional unit testing, with example notebooks doubling as tests and in-context examples for the end user. This increases interpretability by LLM's, reducing hallucinations.
339
+
305
340
  ### RasPrj
306
341
 
307
342
  The `RasPrj` class is central to managing HEC-RAS projects within the ras-commander library. It handles project initialization, data loading, and provides access to project components.
@@ -426,18 +461,11 @@ The ras-commander library is an ongoing project. Future plans include:
426
461
  - [GPT-Commander YouTube Channel](https://www.youtube.com/@GPT_Commander)
427
462
  - [ChatGPT Examples for Water Resources Engineers](https://github.com/gpt-cmdr/HEC-Commander/tree/main/ChatGPT%20Examples)
428
463
 
429
- ## Contributing
430
-
431
- We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details on how to submit pull requests, report issues, and suggest improvements.
432
464
 
433
465
  ## Style Guide
434
466
 
435
467
  This project follows a specific style guide to maintain consistency across the codebase. Please refer to the [Style Guide](STYLE_GUIDE.md) for details on coding conventions, documentation standards, and best practices.
436
468
 
437
- ## License
438
-
439
- ras-commander is released under the MIT License. See the license file for details.
440
-
441
469
  ## Acknowledgments
442
470
 
443
471
  RAS Commander is based on the HEC-Commander project's "Command Line is All You Need" approach, leveraging the HEC-RAS command-line interface for automation. The initial development of this library was presented in the HEC-Commander Tools repository. In a 2024 Australian Water School webinar, Bill demonstrated the derivation of basic HEC-RAS automation functions from plain language instructions. Leveraging the previously developed code and AI tools, the library was created. The primary tools used for this initial development were Anthropic's Claude, GPT-4, Google's Gemini Experimental models, and the Cursor AI Coding IDE.
@@ -455,7 +483,7 @@ Additionally, we would like to acknowledge the following notable contributions a
455
483
  Xiaofeng Liu, Ph.D., P.E., Associate Professor, Department of Civil and Environmental Engineering
456
484
  Institute of Computational and Data Sciences, Penn State University
457
485
 
458
- 3. Attribution: The[ffrd\rashdf'](https://github.com/fema-ffrd/rashdf) project by FEMA-FFRD (FEMA Future of Flood Risk Data) was incorporated, revised, adapted and extended in rascommander's RasHDF libaries (where noted).
486
+ 3. Attribution: The [ffrd\rashdf'](https://github.com/fema-ffrd/rashdf) project by FEMA-FFRD (FEMA Future of Flood Risk Data) was incorporated, revised, adapted and extended in rascommander's RasHDF libaries (where noted).
459
487
 
460
488
  These acknowledgments recognize the contributions and inspirations that have helped shape RAS Commander, ensuring proper attribution for the ideas and code that have influenced its development.
461
489
 
@@ -466,19 +494,25 @@ These acknowledgments recognize the contributions and inspirations that have hel
466
494
  ## Official RAS Commander AI-Generated Songs:
467
495
 
468
496
  [No More Wait and See (Bluegrass)](https://suno.com/song/16889f3e-50f1-4afe-b779-a41738d7617a)
469
-
497
+
498
+
470
499
  [No More Wait and See (Cajun Zydeco)](https://suno.com/song/4441c45d-f6cd-47b9-8fbc-1f7b277ee8ed)
471
-
500
+
472
501
  ## Other Resources
473
502
 
474
- Notebook version of RAS-Commander: [RAS-Commander Notebook in the HEC-Commander Tools Repository](https://github.com/gpt-cmdr/HEC-Commander/tree/main/RAS-Commander)
503
+ Notebook version of RAS-Commander: [RAS-Commander Notebook in the HEC-Commander Tools Repository](https://github.com/gpt-cmdr/HEC-Commander/tree/main/RAS-Commander)
504
+
475
505
  Youtube Tutorials for HEC-Commander Tools and RAS-Commander: [GPT-Commander on YouTube](https://www.youtube.com/@GPT_Commander/videos)
476
506
 
507
+ ## Contributing
508
+
509
+ We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details on how to submit pull requests, report issues, and suggest improvements.
510
+
477
511
  ## LICENSE
478
512
 
479
513
  This software is released under the MIT license.
480
514
 
481
515
  ## Contact
482
516
 
483
- For questions, suggestions, or support, please contact:
517
+ For questions, suggestions, or support, please contact:
484
518
  William Katzenmeyer, P.E., C.F.M. - heccommander@gmail.com
@@ -1,18 +1,18 @@
1
- ras_commander/Decorators.py,sha256=v0xPvIs3LbPlRJXvSHNtMFhygWEBo7f-0j_fCp7lXnQ,6030
1
+ ras_commander/Decorators.py,sha256=0UIYc-hzmBVS7tovSLMzDp2NIhwrZvOYNrQSvETxhEE,6538
2
2
  ras_commander/HdfBase.py,sha256=Jws6Y8JFkharuiM6Br5ivp6MS64X2fL6y87FOpe3FQw,14219
3
- ras_commander/HdfBndry.py,sha256=m81NdCu_ER-AAZpEkQPQka7pYv3sm7vEZevq3SIt2pw,12545
3
+ ras_commander/HdfBndry.py,sha256=FBNFoTz4sXVB-MOsbHJBP8P0dMqJUfBROloKTaxmzCo,16377
4
4
  ras_commander/HdfFluvialPluvial.py,sha256=dlqoFX5i7uSA2BvuRNrV-Fg-z2JaeUxY86_fbZAdGqI,25933
5
- ras_commander/HdfInfiltration.py,sha256=QVigQJjYeQNutbazGHhbTmEuIVCb9gIb2f4yM-wyUtQ,15269
5
+ ras_commander/HdfInfiltration.py,sha256=SB8EsB-w1zrUHXqn3G8ihEahViTIZF7c7AyPHIrSrOU,15473
6
6
  ras_commander/HdfMesh.py,sha256=zI_4AqxDxb2_31G9RUmWibyld6KDMGhDpI3F8qwzVAw,19139
7
7
  ras_commander/HdfPipe.py,sha256=m-yvPL2GIP23NKt2tcwzOlS7khvgcDPGAshlTPMUAeI,32154
8
- ras_commander/HdfPlan.py,sha256=NW6g2kS74y44Ci1P9iMo7IKUfR0eYOaJn1QbzsRM1co,10415
8
+ ras_commander/HdfPlan.py,sha256=jCNeyMHlaiMjn6wgGjVXrRElMSh3xwlmFJxHMzOkanM,12317
9
9
  ras_commander/HdfPlot.py,sha256=7MNI5T9qIz-Ava1RdlnB6O9oJElE5BEB29QVF5Y2Xuc,3401
10
10
  ras_commander/HdfPump.py,sha256=Vc2ff16kRISR7jwtnaAqxI0p-gfBSuZKzR3rQbBLQoE,12951
11
- ras_commander/HdfResultsMesh.py,sha256=T1afgFsJ1NaqmOJEJfMUBm1ZZ5pwbd82aAqeEkHNaLk,30959
12
- ras_commander/HdfResultsPlan.py,sha256=3FMaVrN_Bj3EZOJn7WZQ83e9en2LUwZ2sq5e6O03XOM,15823
11
+ ras_commander/HdfResultsMesh.py,sha256=nO2dGYEvQiUWr19MAkkVAkU5AW3kKcps8d0zgox73u4,31738
12
+ ras_commander/HdfResultsPlan.py,sha256=L3IOdF6R3XiA7mbFAyLdczrZJQJogd8hhl7UYJWT5fY,16246
13
13
  ras_commander/HdfResultsPlot.py,sha256=ylzfT78CfgoDO0XAlRwlgMNRzvNQYBMn9eyXyBfjv_w,7660
14
14
  ras_commander/HdfResultsXsec.py,sha256=-P7nXnbjOLAeUnrdSC_lJQSfzrlWKmDF9Z5gEjmxbJY,13031
15
- ras_commander/HdfStruc.py,sha256=-Nyb9IhxTB1HdNLpn5lIRQ4j9_gZZc_ekNp_YOFe7Ik,12711
15
+ ras_commander/HdfStruc.py,sha256=SznjPvBWiqNVtviZvfCdjB_iwZF4UXxlIxITD8kwjP4,13733
16
16
  ras_commander/HdfUtils.py,sha256=VkIKAXBrLwTlk2VtXSO-W3RU-NHpfHbE1QcZUZgl-t8,15248
17
17
  ras_commander/HdfXsec.py,sha256=flREnFFrIZu4SSKGRQeX9w3SS49q0UWPJnq4zO7DbUM,27342
18
18
  ras_commander/LoggingConfig.py,sha256=gWe5K5XTmMQpSczsTysAqpC9my24i_IyM8dvD85fxYg,2704
@@ -20,15 +20,15 @@ ras_commander/RasCmdr.py,sha256=2i9gR5koFfBLwvhYAbNgQFNKKUKqxD1Hf6T9SN9sx-s,2655
20
20
  ras_commander/RasExamples.py,sha256=6IZ96LcAsk5LYFehdD0zDW5wyZWxQa6OQu2N9upxWXA,17536
21
21
  ras_commander/RasGeo.py,sha256=M0sVNKlWmmbve8iMXLWq25WgbxqLWBo7_1oDg_rALzU,5607
22
22
  ras_commander/RasGpt.py,sha256=N_7p2nucWrBBXdB2k2ZKvOeOdXNmFD9dIY3W7_5i5nw,1206
23
- ras_commander/RasMapper.py,sha256=A7xupixCmgXFiSfQs3oWBMBstrO8XcxieMeZWKTcbPQ,3271
24
- ras_commander/RasPlan.py,sha256=1HAn31oyz0hGv2r7GVNCLWcAZFcRjYTBNdL19mabvmw,53651
25
- ras_commander/RasPrj.py,sha256=epORKnwdzAovAO-whadvkOhJ8ruXPqmPjGCouHdqzuo,37783
23
+ ras_commander/RasMapper.py,sha256=LO_blvQnd4pwkEU8A30-RoE-CYIoU3s_fNLHBoM8ljw,613
24
+ ras_commander/RasPlan.py,sha256=TYxFh3d6ZDqeytFcwEmtlo8TQ79wLmalo7HohBUYf40,62118
25
+ ras_commander/RasPrj.py,sha256=KVDz4SKq-axe4AZv27H1ACrPov-ERHM9esl51p6Crfc,42560
26
26
  ras_commander/RasToGo.py,sha256=TKujfaV1xQhFaOddF4g2ogGy6ky-CLlfelSMPD2J3Nk,1223
27
27
  ras_commander/RasUnsteady.py,sha256=KfCXAag-_bPwwS3JbPZH-s4hbaoHACO0mlRnGrzbFgA,32092
28
28
  ras_commander/RasUtils.py,sha256=P2-aBL61kdRINsjnBpstZVD6VVc7hI_D3RUXqr6ldmc,34863
29
- ras_commander/__init__.py,sha256=mceEWRQJkDBi1o3zVg7DpG2qMrMnKHwwuK3GwyxoVr4,2132
30
- ras_commander-0.59.0.dist-info/LICENSE,sha256=_pbd6qHnlsz1iQ-ozDW_49r86BZT6CRwO2iBtw0iN6M,457
31
- ras_commander-0.59.0.dist-info/METADATA,sha256=Ai5tJpr_j9k8uO1SDIIz0WFLJu2QhAKesqh5ZB1mPWY,24307
32
- ras_commander-0.59.0.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
33
- ras_commander-0.59.0.dist-info/top_level.txt,sha256=i76S7eKLFC8doKcXDl3aiOr9RwT06G8adI6YuKbQDaA,14
34
- ras_commander-0.59.0.dist-info/RECORD,,
29
+ ras_commander/__init__.py,sha256=KGJQL7tKKaKdvY8Gtfm1QUsCX3vVxXZXF5EVStGVyk8,2001
30
+ ras_commander-0.64.0.dist-info/LICENSE,sha256=_pbd6qHnlsz1iQ-ozDW_49r86BZT6CRwO2iBtw0iN6M,457
31
+ ras_commander-0.64.0.dist-info/METADATA,sha256=u9uEBRrgkNsXiKrPRZDXAmhtUdCn1nVEQzIHRDDUe8c,26233
32
+ ras_commander-0.64.0.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
33
+ ras_commander-0.64.0.dist-info/top_level.txt,sha256=i76S7eKLFC8doKcXDl3aiOr9RwT06G8adI6YuKbQDaA,14
34
+ ras_commander-0.64.0.dist-info/RECORD,,