ras-commander 0.47.0__py3-none-any.whl → 0.49.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ras_commander/Decorators.py +18 -1
- ras_commander/HdfBase.py +307 -197
- ras_commander/HdfBndry.py +94 -287
- ras_commander/HdfFluvialPluvial.py +156 -239
- ras_commander/HdfInfiltration.py +410 -0
- ras_commander/HdfMesh.py +121 -41
- ras_commander/HdfPipe.py +127 -175
- ras_commander/HdfPlan.py +144 -58
- ras_commander/HdfPlot.py +104 -0
- ras_commander/HdfPump.py +76 -28
- ras_commander/HdfResultsMesh.py +186 -167
- ras_commander/HdfResultsPlan.py +76 -220
- ras_commander/HdfResultsPlot.py +182 -0
- ras_commander/HdfResultsXsec.py +185 -145
- ras_commander/HdfStruc.py +65 -35
- ras_commander/HdfUtils.py +435 -518
- ras_commander/HdfXsec.py +137 -127
- ras_commander/RasCmdr.py +13 -0
- ras_commander/RasExamples.py +14 -0
- ras_commander/RasGeo.py +11 -0
- ras_commander/RasGpt.py +8 -0
- ras_commander/RasMapper.py +105 -0
- ras_commander/RasPlan.py +30 -0
- ras_commander/RasPrj.py +34 -0
- ras_commander/RasToGo.py +16 -0
- ras_commander/RasUnsteady.py +15 -0
- ras_commander/RasUtils.py +31 -0
- ras_commander/__init__.py +10 -0
- {ras_commander-0.47.0.dist-info → ras_commander-0.49.0.dist-info}/METADATA +74 -9
- ras_commander-0.49.0.dist-info/RECORD +34 -0
- ras_commander-0.47.0.dist-info/RECORD +0 -30
- {ras_commander-0.47.0.dist-info → ras_commander-0.49.0.dist-info}/LICENSE +0 -0
- {ras_commander-0.47.0.dist-info → ras_commander-0.49.0.dist-info}/WHEEL +0 -0
- {ras_commander-0.47.0.dist-info → ras_commander-0.49.0.dist-info}/top_level.txt +0 -0
@@ -1,14 +1,29 @@
|
|
1
|
+
"""
|
2
|
+
Class: HdfFluvialPluvial
|
3
|
+
|
4
|
+
All of the methods in this class are static and are designed to be used without instantiation.
|
5
|
+
|
6
|
+
List of Functions in HdfFluvialPluvial:
|
7
|
+
- calculate_fluvial_pluvial_boundary()
|
8
|
+
- _process_cell_adjacencies()
|
9
|
+
- _identify_boundary_edges()
|
10
|
+
|
11
|
+
"""
|
12
|
+
|
1
13
|
from typing import Dict, List, Tuple
|
2
14
|
import pandas as pd
|
3
15
|
import geopandas as gpd
|
4
|
-
import matplotlib.pyplot as plt
|
5
16
|
from collections import defaultdict
|
6
|
-
from
|
7
|
-
from shapely.geometry import LineString, MultiLineString
|
17
|
+
from shapely.geometry import LineString
|
8
18
|
from tqdm import tqdm
|
9
|
-
|
10
19
|
from .HdfMesh import HdfMesh
|
11
20
|
from .HdfUtils import HdfUtils
|
21
|
+
from .Decorators import standardize_input
|
22
|
+
from .HdfResultsMesh import HdfResultsMesh
|
23
|
+
from .LoggingConfig import get_logger
|
24
|
+
from pathlib import Path
|
25
|
+
|
26
|
+
logger = get_logger(__name__)
|
12
27
|
|
13
28
|
class HdfFluvialPluvial:
|
14
29
|
"""
|
@@ -16,229 +31,141 @@ class HdfFluvialPluvial:
|
|
16
31
|
|
17
32
|
This class provides methods to process and visualize HEC-RAS 2D model outputs,
|
18
33
|
specifically focusing on the delineation of fluvial and pluvial flood areas.
|
19
|
-
It includes functionality for
|
20
|
-
extracting cell polygons, and calculating fluvial-pluvial boundaries based on
|
34
|
+
It includes functionality for calculating fluvial-pluvial boundaries based on
|
21
35
|
the timing of maximum water surface elevations.
|
22
36
|
|
23
|
-
Key
|
24
|
-
-
|
25
|
-
-
|
26
|
-
-
|
37
|
+
Key Concepts:
|
38
|
+
- Fluvial flooding: Flooding from rivers/streams
|
39
|
+
- Pluvial flooding: Flooding from rainfall/surface water
|
40
|
+
- Delta_t: Time threshold (in hours) used to distinguish between fluvial and pluvial cells.
|
41
|
+
Cells with max WSE time differences greater than delta_t are considered boundaries.
|
27
42
|
|
28
43
|
Data Requirements:
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
- Requires max_ws_df with 'cell_id' and 'max_wsel_time' columns
|
41
|
-
(can be derived from HdfResultsMesh.mesh_max_ws(hdf_path))
|
42
|
-
|
43
|
-
Usage:
|
44
|
-
To use this class effectively, first initialize a RasPrj object and load the
|
45
|
-
necessary HDF files. Then, use the methods provided to analyze and visualize
|
46
|
-
the fluvial-pluvial characteristics of your 2D model results.
|
47
|
-
|
48
|
-
Example:
|
49
|
-
ras = RasPrj()
|
50
|
-
ras = init_ras_project(project_path, ras_version)
|
51
|
-
hdf_path = ras.get_plan_value(plan_number, 'Results_Output')
|
52
|
-
|
53
|
-
# Get maximum water surface data
|
54
|
-
max_ws_df = HdfResultsMesh.mesh_max_ws(hdf_path)
|
55
|
-
|
56
|
-
# Plot maximum water surface
|
57
|
-
HdfFluvialPluvial.plot_max_water_surface(max_ws_df)
|
58
|
-
|
59
|
-
# Extract cell polygons
|
60
|
-
cell_polygons_df = HdfMesh.mesh_cell_polygons(hdf_path)
|
61
|
-
projection = HdfUtils.projection(hdf_path)
|
62
|
-
cell_polygons_gdf = HdfFluvialPluvial.plot_cell_polygons(cell_polygons_df, projection)
|
63
|
-
|
64
|
-
# Calculate fluvial-pluvial boundary
|
65
|
-
boundary_gdf = HdfFluvialPluvial.calculate_fluvial_pluvial_boundary(cell_polygons_gdf, max_ws_df)
|
66
|
-
|
67
|
-
Note: Ensure that you have the necessary permissions and have initialized
|
68
|
-
the RAS project correctly before attempting to access HDF files.
|
44
|
+
- HEC-RAS plan HDF file containing:
|
45
|
+
- 2D mesh cell geometry (accessed via HdfMesh)
|
46
|
+
- Maximum water surface elevation times (accessed via HdfResultsMesh)
|
47
|
+
|
48
|
+
Usage Example:
|
49
|
+
>>> ras = init_ras_project(project_path, ras_version)
|
50
|
+
>>> hdf_path = Path("path/to/plan.hdf")
|
51
|
+
>>> boundary_gdf = HdfFluvialPluvial.calculate_fluvial_pluvial_boundary(
|
52
|
+
... hdf_path,
|
53
|
+
... delta_t=12
|
54
|
+
... )
|
69
55
|
"""
|
70
56
|
|
71
57
|
@staticmethod
|
72
|
-
|
58
|
+
@standardize_input(file_type='plan_hdf')
|
59
|
+
def calculate_fluvial_pluvial_boundary(hdf_path: Path, delta_t: float = 12) -> gpd.GeoDataFrame:
|
73
60
|
"""
|
74
|
-
|
75
|
-
|
76
|
-
Parameters:
|
77
|
-
- max_ws_df: DataFrame containing merged data with coordinates and max water surface.
|
78
|
-
|
79
|
-
Returns:
|
80
|
-
- None
|
81
|
-
"""
|
82
|
-
# Extract x and y coordinates from the geometry column
|
83
|
-
max_ws_df['x'] = max_ws_df['geometry'].apply(lambda geom: geom.x if geom is not None else None)
|
84
|
-
max_ws_df['y'] = max_ws_df['geometry'].apply(lambda geom: geom.y if geom is not None else None)
|
85
|
-
|
86
|
-
# Check if 'x' and 'y' columns exist in max_ws_df
|
87
|
-
if 'x' not in max_ws_df.columns or 'y' not in max_ws_df.columns:
|
88
|
-
print("Error: 'x' or 'y' columns not found in the merged dataframe.")
|
89
|
-
print("Available columns:", max_ws_df.columns.tolist())
|
90
|
-
return
|
91
|
-
|
92
|
-
# Create the plot
|
93
|
-
fig, ax = plt.subplots(figsize=(12, 8))
|
94
|
-
scatter = ax.scatter(max_ws_df['x'], max_ws_df['y'], c=max_ws_df['maximum_water_surface'], cmap='viridis', s=10)
|
95
|
-
|
96
|
-
# Customize the plot
|
97
|
-
ax.set_title('Max Water Surface per Cell')
|
98
|
-
ax.set_xlabel('X Coordinate')
|
99
|
-
ax.set_ylabel('Y Coordinate')
|
100
|
-
plt.colorbar(scatter, label='Max Water Surface (ft)')
|
101
|
-
|
102
|
-
# Add grid lines
|
103
|
-
ax.grid(True, linestyle='--', alpha=0.7)
|
104
|
-
|
105
|
-
# Increase font size for better readability
|
106
|
-
plt.rcParams.update({'font.size': 12})
|
107
|
-
|
108
|
-
# Adjust layout to prevent cutting off labels
|
109
|
-
plt.tight_layout()
|
110
|
-
|
111
|
-
# Show the plot
|
112
|
-
plt.show()
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
@staticmethod
|
118
|
-
def plot_max_wsel_time(max_ws_df: pd.DataFrame) -> None:
|
119
|
-
"""
|
120
|
-
Plots the time of the maximum water surface elevation (WSEL) per cell.
|
121
|
-
|
122
|
-
Parameters:
|
123
|
-
- max_ws_df: DataFrame containing merged data with coordinates and max water surface.
|
124
|
-
|
125
|
-
Returns:
|
126
|
-
- None
|
127
|
-
"""
|
128
|
-
max_ws_df['max_wsel_time'] = pd.to_datetime(max_ws_df['maximum_water_surface_time'])
|
129
|
-
HdfFluvialPluvial._extract_coordinates(max_ws_df)
|
130
|
-
|
131
|
-
if 'x' not in max_ws_df.columns or 'y' not in max_ws_df.columns:
|
132
|
-
raise ValueError("x and y coordinates are missing from the DataFrame. Make sure the 'face_point' column exists and contains valid coordinate data.")
|
133
|
-
|
134
|
-
fig, ax = plt.subplots(figsize=(12, 8))
|
135
|
-
|
136
|
-
min_time = max_ws_df['max_wsel_time'].min()
|
137
|
-
color_values = (max_ws_df['max_wsel_time'] - min_time).dt.total_seconds() / 3600
|
138
|
-
|
139
|
-
scatter = ax.scatter(max_ws_df['x'], max_ws_df['y'], c=color_values, cmap='viridis', s=10)
|
140
|
-
|
141
|
-
ax.set_title('Time of Maximum Water Surface Elevation per Cell')
|
142
|
-
ax.set_xlabel('X Coordinate')
|
143
|
-
ax.set_ylabel('Y Coordinate')
|
144
|
-
|
145
|
-
cbar = plt.colorbar(scatter)
|
146
|
-
cbar.set_label('Hours since simulation start')
|
147
|
-
cbar.set_ticks(range(0, int(color_values.max()) + 1, 6))
|
148
|
-
cbar.set_ticklabels([f'{h}h' for h in range(0, int(color_values.max()) + 1, 6)])
|
149
|
-
|
150
|
-
ax.grid(True, linestyle='--', alpha=0.7)
|
151
|
-
plt.rcParams.update({'font.size': 12})
|
152
|
-
plt.tight_layout()
|
153
|
-
plt.show()
|
154
|
-
|
155
|
-
HdfFluvialPluvial._print_max_wsel_info(max_ws_df, min_time)
|
156
|
-
|
157
|
-
@staticmethod
|
158
|
-
def plot_cell_polygons(cell_polygons_df: pd.DataFrame, projection: str) -> gpd.GeoDataFrame:
|
159
|
-
"""
|
160
|
-
Plots the cell polygons from the provided DataFrame and returns the GeoDataFrame.
|
61
|
+
Calculate the fluvial-pluvial boundary based on cell polygons and maximum water surface elevation times.
|
161
62
|
|
162
63
|
Args:
|
163
|
-
|
164
|
-
|
64
|
+
hdf_path (Path): Path to the HEC-RAS plan HDF file
|
65
|
+
delta_t (float): Threshold time difference in hours. Cells with time differences
|
66
|
+
greater than this value are considered boundaries. Default is 12 hours.
|
165
67
|
|
166
68
|
Returns:
|
167
|
-
gpd.GeoDataFrame: GeoDataFrame containing the
|
69
|
+
gpd.GeoDataFrame: GeoDataFrame containing the fluvial-pluvial boundaries with:
|
70
|
+
- geometry: LineString features representing boundaries
|
71
|
+
- CRS: Coordinate reference system matching the input HDF file
|
72
|
+
|
73
|
+
Raises:
|
74
|
+
ValueError: If no cell polygons or maximum water surface data found in HDF file
|
75
|
+
Exception: If there are errors during boundary calculation
|
76
|
+
|
77
|
+
Note:
|
78
|
+
The returned boundaries represent locations where the timing of maximum water surface
|
79
|
+
elevation changes significantly (> delta_t), indicating potential transitions between
|
80
|
+
fluvial and pluvial flooding mechanisms.
|
168
81
|
"""
|
169
|
-
|
170
|
-
|
171
|
-
|
82
|
+
try:
|
83
|
+
# Get cell polygons from HdfMesh
|
84
|
+
logger.info("Getting cell polygons from HDF file...")
|
85
|
+
cell_polygons_gdf = HdfMesh.get_mesh_cell_polygons(hdf_path)
|
86
|
+
if cell_polygons_gdf.empty:
|
87
|
+
raise ValueError("No cell polygons found in HDF file")
|
88
|
+
|
89
|
+
# Get max water surface data from HdfResultsMesh
|
90
|
+
logger.info("Getting maximum water surface data from HDF file...")
|
91
|
+
max_ws_df = HdfResultsMesh.get_mesh_max_ws(hdf_path)
|
92
|
+
if max_ws_df.empty:
|
93
|
+
raise ValueError("No maximum water surface data found in HDF file")
|
94
|
+
|
95
|
+
# Convert timestamps using the renamed utility function
|
96
|
+
if 'maximum_water_surface_time' in max_ws_df.columns:
|
97
|
+
max_ws_df['maximum_water_surface_time'] = max_ws_df['maximum_water_surface_time'].apply(
|
98
|
+
lambda x: HdfUtils.parse_ras_datetime(x) if isinstance(x, str) else x
|
99
|
+
)
|
100
|
+
|
101
|
+
# Process cell adjacencies
|
102
|
+
cell_adjacency, common_edges = HdfFluvialPluvial._process_cell_adjacencies(cell_polygons_gdf)
|
103
|
+
|
104
|
+
# Get cell times from max_ws_df
|
105
|
+
cell_times = max_ws_df.set_index('cell_id')['maximum_water_surface_time'].to_dict()
|
106
|
+
|
107
|
+
# Identify boundary edges
|
108
|
+
boundary_edges = HdfFluvialPluvial._identify_boundary_edges(
|
109
|
+
cell_adjacency, common_edges, cell_times, delta_t
|
110
|
+
)
|
111
|
+
|
112
|
+
# Join adjacent LineStrings into simple LineStrings
|
113
|
+
joined_lines = []
|
114
|
+
current_line = []
|
115
|
+
|
116
|
+
for edge in boundary_edges:
|
117
|
+
if not current_line:
|
118
|
+
current_line.append(edge)
|
119
|
+
else:
|
120
|
+
if current_line[-1].coords[-1] == edge.coords[0]:
|
121
|
+
current_line.append(edge)
|
122
|
+
else:
|
123
|
+
joined_lines.append(LineString([point for line in current_line for point in line.coords]))
|
124
|
+
current_line = [edge]
|
125
|
+
|
126
|
+
if current_line:
|
127
|
+
joined_lines.append(LineString([point for line in current_line for point in line.coords]))
|
172
128
|
|
173
|
-
|
129
|
+
# Create final GeoDataFrame with CRS from cell_polygons_gdf
|
130
|
+
boundary_gdf = gpd.GeoDataFrame(
|
131
|
+
geometry=joined_lines,
|
132
|
+
crs=cell_polygons_gdf.crs
|
133
|
+
)
|
174
134
|
|
175
|
-
|
176
|
-
|
135
|
+
# Clean up intermediate dataframes
|
136
|
+
del cell_polygons_gdf
|
137
|
+
del max_ws_df
|
177
138
|
|
178
|
-
|
179
|
-
cell_polygons_gdf.plot(ax=ax, edgecolor='blue', facecolor='none')
|
180
|
-
ax.set_xlabel('X Coordinate')
|
181
|
-
ax.set_ylabel('Y Coordinate')
|
182
|
-
ax.set_title('2D Flow Area Cell Polygons')
|
183
|
-
ax.grid(True)
|
184
|
-
plt.tight_layout()
|
185
|
-
plt.show()
|
139
|
+
return boundary_gdf
|
186
140
|
|
187
|
-
|
141
|
+
except Exception as e:
|
142
|
+
logger.error(f"Error calculating fluvial-pluvial boundary: {str(e)}")
|
143
|
+
raise
|
188
144
|
|
189
145
|
@staticmethod
|
190
|
-
def
|
146
|
+
def _process_cell_adjacencies(cell_polygons_gdf: gpd.GeoDataFrame) -> Tuple[Dict[int, List[int]], Dict[int, Dict[int, LineString]]]:
|
191
147
|
"""
|
192
|
-
|
148
|
+
Process cell adjacencies and common edges using R-tree spatial indexing for efficiency.
|
193
149
|
|
194
150
|
Args:
|
195
|
-
cell_polygons_gdf (gpd.GeoDataFrame): GeoDataFrame containing cell polygons
|
196
|
-
|
197
|
-
delta_t (float): Threshold time difference in hours. Default is 12 hours.
|
151
|
+
cell_polygons_gdf (gpd.GeoDataFrame): GeoDataFrame containing 2D mesh cell polygons
|
152
|
+
with 'cell_id' and 'geometry' columns
|
198
153
|
|
199
154
|
Returns:
|
200
|
-
|
155
|
+
Tuple containing:
|
156
|
+
- Dict[int, List[int]]: Dictionary mapping cell IDs to lists of adjacent cell IDs
|
157
|
+
- Dict[int, Dict[int, LineString]]: Nested dictionary storing common edges between cells,
|
158
|
+
where common_edges[cell1][cell2] gives the shared boundary
|
159
|
+
|
160
|
+
Note:
|
161
|
+
Uses R-tree spatial indexing to efficiently identify potential neighboring cells
|
162
|
+
before performing more detailed geometric operations.
|
201
163
|
"""
|
202
|
-
|
203
|
-
cell_times = max_ws_df.set_index('cell_id')['max_wsel_time'].to_dict()
|
204
|
-
boundary_edges = HdfFluvialPluvial._identify_boundary_edges(cell_adjacency, common_edges, cell_times, delta_t)
|
205
|
-
|
206
|
-
# Join adjacent LineStrings into simple LineStrings
|
207
|
-
joined_lines = []
|
208
|
-
current_line = []
|
209
|
-
|
210
|
-
for edge in boundary_edges:
|
211
|
-
if not current_line:
|
212
|
-
current_line.append(edge)
|
213
|
-
else:
|
214
|
-
if current_line[-1].coords[-1] == edge.coords[0]: # Check if the last point of the current line matches the first point of the new edge
|
215
|
-
current_line.append(edge)
|
216
|
-
else:
|
217
|
-
# Create a simple LineString from the current line and reset
|
218
|
-
joined_lines.append(LineString([point for line in current_line for point in line.coords]))
|
219
|
-
current_line = [edge]
|
220
|
-
|
221
|
-
# Add the last collected line if exists
|
222
|
-
if current_line:
|
223
|
-
joined_lines.append(LineString([point for line in current_line for point in line.coords]))
|
224
|
-
|
225
|
-
boundary_gdf = gpd.GeoDataFrame(geometry=joined_lines, crs=cell_polygons_gdf.crs)
|
226
|
-
return boundary_gdf
|
227
|
-
|
228
|
-
@staticmethod
|
229
|
-
def _print_max_wsel_info(max_ws_df: pd.DataFrame, min_time: pd.Timestamp) -> None:
|
230
|
-
max_wsel_row = max_ws_df.loc[max_ws_df['maximum_water_surface'].idxmax()]
|
231
|
-
hours_since_start = (max_wsel_row['max_wsel_time'] - min_time).total_seconds() / 3600
|
232
|
-
print(f"\nOverall Maximum WSEL: {max_wsel_row['maximum_water_surface']:.2f} ft")
|
233
|
-
print(f"Time of Overall Maximum WSEL: {max_wsel_row['max_wsel_time']}")
|
234
|
-
print(f"Hours since simulation start: {hours_since_start:.2f} hours")
|
235
|
-
print(f"Location of Overall Maximum WSEL: X={max_wsel_row['x']}, Y={max_wsel_row['y']}")
|
236
|
-
|
237
|
-
@staticmethod
|
238
|
-
def _process_cell_adjacencies(cell_polygons_gdf: gpd.GeoDataFrame) -> Tuple[Dict[int, List[int]], Dict[int, Dict[int, LineString]]]:
|
164
|
+
from rtree import index
|
239
165
|
cell_adjacency = defaultdict(list)
|
240
166
|
common_edges = defaultdict(dict)
|
241
167
|
idx = index.Index()
|
168
|
+
|
242
169
|
for i, geom in enumerate(cell_polygons_gdf.geometry):
|
243
170
|
idx.insert(i, geom.bounds)
|
244
171
|
|
@@ -247,15 +174,15 @@ class HdfFluvialPluvial:
|
|
247
174
|
cell_id1 = row1['cell_id']
|
248
175
|
poly1 = row1['geometry']
|
249
176
|
potential_neighbors = list(idx.intersection(poly1.bounds))
|
250
|
-
|
177
|
+
|
251
178
|
for idx2 in potential_neighbors:
|
252
179
|
if idx1 >= idx2:
|
253
180
|
continue
|
254
|
-
|
181
|
+
|
255
182
|
row2 = cell_polygons_gdf.iloc[idx2]
|
256
183
|
cell_id2 = row2['cell_id']
|
257
184
|
poly2 = row2['geometry']
|
258
|
-
|
185
|
+
|
259
186
|
if poly1.touches(poly2):
|
260
187
|
intersection = poly1.intersection(poly2)
|
261
188
|
if isinstance(intersection, LineString):
|
@@ -263,55 +190,45 @@ class HdfFluvialPluvial:
|
|
263
190
|
cell_adjacency[cell_id2].append(cell_id1)
|
264
191
|
common_edges[cell_id1][cell_id2] = intersection
|
265
192
|
common_edges[cell_id2][cell_id1] = intersection
|
266
|
-
|
193
|
+
|
267
194
|
pbar.update(1)
|
268
|
-
|
195
|
+
|
269
196
|
return cell_adjacency, common_edges
|
270
197
|
|
271
198
|
@staticmethod
|
272
|
-
def _identify_boundary_edges(cell_adjacency: Dict[int, List[int]],
|
199
|
+
def _identify_boundary_edges(cell_adjacency: Dict[int, List[int]],
|
200
|
+
common_edges: Dict[int, Dict[int, LineString]],
|
201
|
+
cell_times: Dict[int, pd.Timestamp],
|
202
|
+
delta_t: float) -> List[LineString]:
|
203
|
+
"""
|
204
|
+
Identify boundary edges between cells with significant time differences.
|
205
|
+
|
206
|
+
Args:
|
207
|
+
cell_adjacency (Dict[int, List[int]]): Dictionary of cell adjacencies
|
208
|
+
common_edges (Dict[int, Dict[int, LineString]]): Dictionary of shared edges between cells
|
209
|
+
cell_times (Dict[int, pd.Timestamp]): Dictionary mapping cell IDs to their max WSE times
|
210
|
+
delta_t (float): Time threshold in hours
|
211
|
+
|
212
|
+
Returns:
|
213
|
+
List[LineString]: List of LineString geometries representing boundaries where
|
214
|
+
adjacent cells have time differences greater than delta_t
|
215
|
+
|
216
|
+
Note:
|
217
|
+
Boundaries are identified where the absolute time difference between adjacent
|
218
|
+
cells exceeds the specified delta_t threshold.
|
219
|
+
"""
|
273
220
|
boundary_edges = []
|
274
221
|
with tqdm(total=len(cell_adjacency), desc="Processing cell adjacencies") as pbar:
|
275
222
|
for cell_id, neighbors in cell_adjacency.items():
|
276
223
|
cell_time = cell_times[cell_id]
|
277
|
-
|
224
|
+
|
278
225
|
for neighbor_id in neighbors:
|
279
226
|
neighbor_time = cell_times[neighbor_id]
|
280
227
|
time_diff = abs((cell_time - neighbor_time).total_seconds() / 3600)
|
281
|
-
|
228
|
+
|
282
229
|
if time_diff >= delta_t:
|
283
230
|
boundary_edges.append(common_edges[cell_id][neighbor_id])
|
284
|
-
|
285
|
-
pbar.update(1)
|
286
|
-
return boundary_edges
|
287
|
-
|
288
|
-
@staticmethod
|
289
|
-
def _extract_coordinates(df: pd.DataFrame) -> None:
|
290
|
-
"""
|
291
|
-
Extract x and y coordinates from the 'face_point' column.
|
292
|
-
|
293
|
-
Parameters:
|
294
|
-
- df: DataFrame containing the 'face_point' column.
|
295
231
|
|
296
|
-
|
297
|
-
- None (modifies the DataFrame in-place)
|
298
|
-
"""
|
299
|
-
if 'face_point' in df.columns:
|
300
|
-
df[['x', 'y']] = df['face_point'].str.strip('()').str.split(',', expand=True).astype(float)
|
301
|
-
else:
|
302
|
-
print("Warning: 'face_point' column not found in the DataFrame.")
|
303
|
-
|
304
|
-
@staticmethod
|
305
|
-
def _convert_to_geodataframe(df: pd.DataFrame, projection: str) -> gpd.GeoDataFrame:
|
306
|
-
"""
|
307
|
-
Convert a DataFrame to a GeoDataFrame.
|
308
|
-
|
309
|
-
Parameters:
|
310
|
-
- df: DataFrame containing 'geometry' column.
|
311
|
-
- projection: The coordinate reference system to assign to the GeoDataFrame.
|
232
|
+
pbar.update(1)
|
312
233
|
|
313
|
-
|
314
|
-
- GeoDataFrame with the specified projection.
|
315
|
-
"""
|
316
|
-
gdf = gpd.GeoDataFrame(df, geometry='geometry', crs=projection)
|
317
|
-
return gdf
|
234
|
+
return boundary_edges
|