ras-commander 0.41.0__py3-none-any.whl → 0.42.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ras_commander/RasHdf.py CHANGED
@@ -1,9 +1,9 @@
1
1
  """
2
2
  RasHdf Module
3
3
 
4
- This module provides utilities for working with RESULTS (Plan) HDF files in HEC-RAS projects.
4
+ This module provides utilities for working with HDF files in HEC-RAS projects.
5
5
  It contains the RasHdf class, which offers various static methods for extracting,
6
- analyzing, and manipulating data from HEC-RAS RESULTS HDF files.
6
+ analyzing, and manipulating data from HEC-RAS HDF files.
7
7
 
8
8
  Note:
9
9
  This method is decorated with @hdf_operation, which handles the opening and closing of the HDF file.
@@ -642,3 +642,978 @@ class RasHdf:
642
642
  percent_impervious = cls._extract_dataset(hdf_file, f'{base_path}/Percent Impervious', ['Percent Impervious'])
643
643
 
644
644
  return cell_classifications, face_classifications, percent_impervious
645
+
646
+ @classmethod
647
+ @log_call
648
+ def get_perimeter_data(
649
+ cls,
650
+ hdf_input: Union[str, Path],
651
+ area_name: Optional[str] = None,
652
+ ras_object=None
653
+ ) -> Optional[pd.DataFrame]:
654
+ """
655
+ Extract Perimeter Data from the HDF file.
656
+
657
+ Args:
658
+ hdf_input (Union[str, Path]): The plan number or full path to the HDF file.
659
+ area_name (Optional[str]): Name of the 2D Flow Area to extract data from.
660
+ If None, uses the first 2D Area Name found.
661
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
662
+
663
+ Returns:
664
+ Optional[pd.DataFrame]: DataFrame containing Perimeter Data
665
+
666
+ Example:
667
+ >>> perimeter_df = RasHdf.get_perimeter_data("path/to/file.hdf")
668
+ >>> if perimeter_df is not None:
669
+ ... print(perimeter_df.head())
670
+ ... else:
671
+ ... print("Perimeter data not found")
672
+ """
673
+ with h5py.File(cls._get_hdf_filename(hdf_input, ras_object), 'r') as hdf_file:
674
+ area_name = cls._get_area_name(hdf_file, area_name, hdf_file.filename)
675
+
676
+ perimeter_path = f'Geometry/2D Flow Areas/{area_name}/Perimeter'
677
+ perimeter_df = cls._extract_dataset(hdf_file, perimeter_path, ['X', 'Y'])
678
+
679
+ return perimeter_df
680
+
681
+ @classmethod
682
+ @log_call
683
+ def _get_area_name(cls, hdf_input: Union[str, Path], area_name: Optional[str] = None, ras_object=None) -> str:
684
+ """
685
+ Get the 2D Flow Area name from the HDF file.
686
+
687
+ Args:
688
+ hdf_input (Union[str, Path]): The plan number or full path to the HDF file.
689
+ area_name (Optional[str]): The provided area name, if any.
690
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
691
+
692
+ Returns:
693
+ str: The 2D Flow Area name.
694
+
695
+ Raises:
696
+ ValueError: If no 2D Flow Areas are found in the HDF file or if the specified area name is not found.
697
+ """
698
+ with h5py.File(cls._get_hdf_filename(hdf_input, ras_object), 'r') as hdf_file:
699
+ if area_name is None:
700
+ area_names = [name for name in hdf_file['Geometry/2D Flow Areas'].keys() if isinstance(hdf_file['Geometry/2D Flow Areas'][name], h5py.Group)]
701
+ if not area_names:
702
+ raise ValueError("No 2D Flow Areas found in the HDF file")
703
+ area_name = area_names[0]
704
+ else:
705
+ if area_name not in hdf_file['Geometry/2D Flow Areas']:
706
+ raise ValueError(f"2D Flow Area '{area_name}' not found in the HDF file")
707
+ return area_name
708
+
709
+ @classmethod
710
+ @log_call
711
+ def _extract_dataset(cls, hdf_input: Union[str, Path], dataset_path: str, column_names: List[str], ras_object=None) -> Optional[pd.DataFrame]:
712
+ """
713
+ Extract a dataset from the HDF file and convert it to a DataFrame.
714
+
715
+ Args:
716
+ hdf_input (Union[str, Path]): The plan number or full path to the HDF file.
717
+ dataset_path (str): The path to the dataset within the HDF file.
718
+ column_names (List[str]): The names to assign to the DataFrame columns.
719
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
720
+
721
+ Returns:
722
+ Optional[pd.DataFrame]: The extracted data as a DataFrame, or None if the dataset is not found.
723
+ """
724
+ with h5py.File(cls._get_hdf_filename(hdf_input, ras_object), 'r') as hdf_file:
725
+ try:
726
+ dataset = hdf_file[dataset_path][()]
727
+ df = pd.DataFrame(dataset, columns=column_names)
728
+ return df
729
+ except KeyError:
730
+ return None
731
+
732
+ @classmethod
733
+ @log_call
734
+ def read_hdf_to_dataframe(cls, hdf_input: Union[str, Path], dataset_path: str, fill_value: Union[int, float, str] = -9999, ras_object=None) -> pd.DataFrame:
735
+ """
736
+ Reads an HDF5 dataset and converts it into a pandas DataFrame, handling byte strings and missing values.
737
+
738
+ Args:
739
+ hdf_input (Union[str, Path]): Path to the HDF file or plan number.
740
+ dataset_path (str): Path to the dataset within the HDF file.
741
+ fill_value (Union[int, float, str], optional): The value to use for filling missing data. Defaults to -9999.
742
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
743
+
744
+ Returns:
745
+ pd.DataFrame: The resulting DataFrame with byte strings decoded and missing values replaced.
746
+
747
+ Raises:
748
+ KeyError: If the dataset is not found in the HDF file.
749
+ """
750
+ with h5py.File(cls._get_hdf_filename(hdf_input, ras_object), 'r') as hdf_file:
751
+ try:
752
+ hdf_dataset = hdf_file[dataset_path]
753
+ hdf_dataframe = cls.convert_to_dataframe_array(hdf_dataset)
754
+ byte_columns = [col for col in hdf_dataframe.columns if isinstance(hdf_dataframe[col].iloc[0], (bytes, bytearray))]
755
+
756
+ hdf_dataframe[byte_columns] = hdf_dataframe[byte_columns].applymap(lambda x: x.decode('utf-8') if isinstance(x, (bytes, bytearray)) else x)
757
+ hdf_dataframe = hdf_dataframe.replace({fill_value: np.NaN})
758
+
759
+ return hdf_dataframe
760
+ except KeyError:
761
+ raise
762
+
763
+ @classmethod
764
+ @log_call
765
+ def get_group_attributes_as_df(cls, hdf_input: Union[str, Path], group_path: str, ras_object=None) -> pd.DataFrame:
766
+ """
767
+ Convert attributes inside a given HDF group to a DataFrame.
768
+
769
+ Args:
770
+ hdf_input (Union[str, Path]): Path to the HDF file or plan number.
771
+ group_path (str): Path of the group in the HDF file.
772
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
773
+
774
+ Returns:
775
+ pd.DataFrame: DataFrame of all attributes in the specified group with their properties.
776
+
777
+ Raises:
778
+ KeyError: If the specified group_path is not found in the file.
779
+
780
+ Example:
781
+ >>> attributes_df = RasHdf.get_group_attributes_as_df("path/to/file.hdf", "/Results/Unsteady/Output")
782
+ >>> print(attributes_df.head())
783
+ """
784
+ hdf_filename = cls._get_hdf_filename(hdf_input, ras_object)
785
+
786
+ with h5py.File(hdf_filename, 'r') as hdf_file:
787
+ try:
788
+ group = hdf_file[group_path]
789
+ attributes = []
790
+ for attr in group.attrs:
791
+ value = group.attrs[attr]
792
+ attr_info = {
793
+ 'Attribute': attr,
794
+ 'Value': value,
795
+ 'Type': type(value).__name__,
796
+ 'Shape': value.shape if isinstance(value, np.ndarray) else None,
797
+ 'Size': value.size if isinstance(value, np.ndarray) else None,
798
+ 'Dtype': value.dtype if isinstance(value, np.ndarray) else None
799
+ }
800
+ if isinstance(value, bytes):
801
+ attr_info['Value'] = value.decode('utf-8')
802
+ elif isinstance(value, np.ndarray):
803
+ if value.dtype.kind == 'S':
804
+ attr_info['Value'] = [v.decode('utf-8') for v in value]
805
+ elif value.dtype.kind in ['i', 'f', 'u']:
806
+ attr_info['Value'] = value.tolist()
807
+ attributes.append(attr_info)
808
+
809
+ return pd.DataFrame(attributes)
810
+ except KeyError:
811
+ logger.critical(f"Group path '{group_path}' not found in HDF file '{hdf_filename}'")
812
+
813
+ # Last functions from PyHMT2D:
814
+
815
+ from ras_commander.logging_config import log_call
816
+
817
+ @classmethod
818
+ @log_call
819
+ def get_2d_area_solution_times(cls, hdf_input: Union[str, Path], area_name: Optional[str] = None, ras_object=None) -> Optional[np.ndarray]:
820
+ """
821
+ Retrieve solution times for a specified 2D Flow Area.
822
+
823
+ Args:
824
+ hdf_input (Union[str, Path]): The plan number or full path to the HDF file.
825
+ area_name (Optional[str]): Name of the 2D Flow Area. If None, uses the first area found.
826
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
827
+
828
+ Returns:
829
+ Optional[np.ndarray]: Array of solution times, or None if not found.
830
+
831
+ Example:
832
+ >>> solution_times = RasHdf.get_2d_area_solution_times("03", area_name="Area1")
833
+ >>> print(solution_times)
834
+ [0.0, 0.5, 1.0, ...]
835
+ """
836
+ with h5py.File(cls._get_hdf_filename(hdf_input, ras_object), 'r') as hdf_file:
837
+ try:
838
+ solution_times = np.array(
839
+ hdf_file['Results']['Unsteady']['Output']['Output Blocks']
840
+ ['Base Output']['Unsteady Time Series']['Time']
841
+ )
842
+ return solution_times
843
+ except KeyError:
844
+ return None
845
+
846
+ @classmethod
847
+ @log_call
848
+ def get_2d_area_solution_time_dates(cls, hdf_input: Union[str, Path], area_name: Optional[str] = None, ras_object=None) -> Optional[np.ndarray]:
849
+ """
850
+ Retrieve solution time dates for a specified 2D Flow Area.
851
+
852
+ Args:
853
+ hdf_input (Union[str, Path]): The plan number or full path to the HDF file.
854
+ area_name (Optional[str]): Name of the 2D Flow Area. If None, uses the first area found.
855
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
856
+
857
+ Returns:
858
+ Optional[np.ndarray]: Array of solution time dates, or None if not found.
859
+
860
+ Example:
861
+ >>> solution_time_dates = RasHdf.get_2d_area_solution_time_dates("03", area_name="Area1")
862
+ >>> print(solution_time_dates)
863
+ ['2024-01-01T00:00:00', '2024-01-01T00:30:00', ...]
864
+ """
865
+ with h5py.File(cls._get_hdf_filename(hdf_input, ras_object), 'r') as hdf_file:
866
+ try:
867
+ solution_time_dates = np.array(
868
+ hdf_file['Results']['Unsteady']['Output']['Output Blocks']
869
+ ['Base Output']['Unsteady Time Series']['Time Date Stamp']
870
+ )
871
+ return solution_time_dates
872
+ except KeyError:
873
+ return None
874
+
875
+ @classmethod
876
+ @log_call
877
+ def load_2d_area_solutions(
878
+ cls,
879
+ hdf_file: h5py.File,
880
+ ras_object=None
881
+ ) -> Optional[Dict[str, pd.DataFrame]]:
882
+ """
883
+ Load 2D Area Solutions (Water Surface Elevation and Face Normal Velocity) from the HDF file
884
+ and provide them as pandas DataFrames.
885
+
886
+ **Note:**
887
+ - This function has only been tested with HEC-RAS version 6.5.
888
+ - Ensure that the HDF file structure matches the expected paths.
889
+
890
+ Args:
891
+ hdf_file (h5py.File): An open HDF5 file object.
892
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
893
+
894
+ Returns:
895
+ Optional[Dict[str, pd.DataFrame]]: A dictionary containing:
896
+ - 'solution_times': DataFrame of solution times.
897
+ - For each 2D Flow Area:
898
+ - '{Area_Name}_WSE': Water Surface Elevation DataFrame.
899
+ - '{Area_Name}_Face_Velocity': Face Normal Velocity DataFrame.
900
+ """
901
+ try:
902
+ solution_times_path = '/Results/Unsteady/Output/Output Blocks/Base Output/Unsteady Time Series/Time'
903
+ if solution_times_path not in hdf_file:
904
+ return None
905
+
906
+ solution_times = hdf_file[solution_times_path][()]
907
+ solution_times_df = pd.DataFrame({
908
+ 'Time_Step': solution_times
909
+ })
910
+
911
+ solutions_dict = {
912
+ 'solution_times': solution_times_df
913
+ }
914
+
915
+ two_d_area_names = cls.get_2d_flow_area_names(hdf_file, ras_object=ras_object)
916
+ if not two_d_area_names:
917
+ return solutions_dict
918
+
919
+ for area in two_d_area_names:
920
+ wse_path = f'/Results/Unsteady/Output/Output Blocks/Base Output/Unsteady Time Series/2D Flow Areas/{area}/Water Surface'
921
+ face_velocity_path = f'/Results/Unsteady/Output/Output Blocks/Base Output/Unsteady Time Series/2D Flow Areas/{area}/Face Velocity'
922
+
923
+ if wse_path not in hdf_file:
924
+ continue
925
+
926
+ wse_data = hdf_file[wse_path][()]
927
+ cell_center_coords_path = f'/Geometry/2D Flow Areas/{area}/Cell Center Coordinate'
928
+ if cell_center_coords_path not in hdf_file:
929
+ continue
930
+
931
+ cell_center_coords = hdf_file[cell_center_coords_path][()]
932
+ if cell_center_coords.shape[0] != wse_data.shape[1]:
933
+ continue
934
+
935
+ wse_df = pd.DataFrame({
936
+ 'Time_Step': np.repeat(solution_times, wse_data.shape[1]),
937
+ 'Cell_ID': np.tile(np.arange(wse_data.shape[1]), wse_data.shape[0]),
938
+ 'X': cell_center_coords[:, 0].repeat(wse_data.shape[0]),
939
+ 'Y': cell_center_coords[:, 1].repeat(wse_data.shape[0]),
940
+ 'WSE': wse_data.flatten()
941
+ })
942
+ solutions_dict[f'{area}_WSE'] = wse_df
943
+
944
+ if face_velocity_path not in hdf_file:
945
+ continue
946
+
947
+ face_velocity_data = hdf_file[face_velocity_path][()]
948
+ face_center_coords_path = f'/Geometry/2D Flow Areas/{area}/Face Points Coordinates'
949
+ if face_center_coords_path not in hdf_file:
950
+ continue
951
+
952
+ face_center_coords = hdf_file[face_center_coords_path][()]
953
+ if face_center_coords.shape[0] != face_velocity_data.shape[1]:
954
+ continue
955
+
956
+ face_velocity_df = pd.DataFrame({
957
+ 'Time_Step': np.repeat(solution_times, face_velocity_data.shape[1]),
958
+ 'Face_ID': np.tile(np.arange(face_velocity_data.shape[1]), face_velocity_data.shape[0]),
959
+ 'X': face_center_coords[:, 0].repeat(face_velocity_data.shape[0]),
960
+ 'Y': face_center_coords[:, 1].repeat(face_velocity_data.shape[0]),
961
+ 'Normal_Velocity_ft_s': face_velocity_data.flatten()
962
+ })
963
+ solutions_dict[f'{area}_Face_Velocity'] = face_velocity_df
964
+
965
+ return solutions_dict
966
+
967
+ except Exception as e:
968
+ return None
969
+
970
+ @classmethod
971
+ @log_call
972
+ def get_hdf_paths_with_properties(cls, hdf_input: Union[str, Path], ras_object=None) -> pd.DataFrame:
973
+ """
974
+ List all paths in the HDF file with their properties.
975
+
976
+ Args:
977
+ hdf_input (Union[str, Path]): The plan number or full path to the HDF file.
978
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
979
+
980
+ Returns:
981
+ pd.DataFrame: DataFrame of all paths and their properties in the HDF file.
982
+
983
+ Example:
984
+ >>> paths_df = RasHdf.get_hdf_paths_with_properties("path/to/file.hdf")
985
+ >>> print(paths_df.head())
986
+ """
987
+ with h5py.File(cls._get_hdf_filename(hdf_input, ras_object), 'r') as hdf_file:
988
+ paths = []
989
+ def visitor_func(name: str, node: h5py.Group) -> None:
990
+ path_info = {
991
+ "HDF_Path": name,
992
+ "Type": type(node).__name__,
993
+ "Shape": getattr(node, "shape", None),
994
+ "Size": getattr(node, "size", None),
995
+ "Dtype": getattr(node, "dtype", None)
996
+ }
997
+ paths.append(path_info)
998
+ hdf_file.visititems(visitor_func)
999
+ return pd.DataFrame(paths)
1000
+
1001
+ @classmethod
1002
+ @log_call
1003
+ def build_2d_area_face_hydraulic_information(cls, hdf_input: Union[str, Path, h5py.File], area_name: Optional[str] = None, ras_object=None) -> Optional[List[List[np.ndarray]]]:
1004
+ """
1005
+ Build face hydraulic information tables (elevation, area, wetted perimeter, Manning's n) for each face in 2D Flow Areas.
1006
+
1007
+ Args:
1008
+ hdf_input (Union[str, Path, h5py.File]): The HDF5 file path or open HDF5 file object.
1009
+ area_name (Optional[str]): Name of the 2D Flow Area. If None, builds for all areas.
1010
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
1011
+
1012
+ Returns:
1013
+ Optional[List[List[np.ndarray]]]: Nested lists containing hydraulic information for each face in each 2D Flow Area.
1014
+
1015
+ Example:
1016
+ >>> hydraulic_info = RasHdf.build_2d_area_face_hydraulic_information("03")
1017
+ >>> print(hydraulic_info[0][0]) # First face of first area
1018
+ [[Elevation1, Area1, WettedPerim1, ManningN1],
1019
+ [Elevation2, Area2, WettedPerim2, ManningN2],
1020
+ ...]
1021
+ """
1022
+ try:
1023
+ ras_obj = ras_object if ras_object is not None else ras
1024
+ with h5py.File(cls._get_hdf_filename(hdf_input, ras_obj), 'r') as hdf_file:
1025
+ two_d_area_names = cls.get_2d_flow_area_names(hdf_file, ras_object=ras_object)
1026
+ hydraulic_info_table = []
1027
+
1028
+ for area in two_d_area_names:
1029
+ face_elev_info = np.array(hdf_file[f'Geometry/2D Flow Areas/{area}/Faces Area Elevation Info'])
1030
+ face_elev_values = np.array(hdf_file[f'Geometry/2D Flow Areas/{area}/Faces Area Elevation Values'])
1031
+
1032
+ area_hydraulic_info = []
1033
+ for face in face_elev_info:
1034
+ start_row, count = face
1035
+ face_data = face_elev_values[start_row:start_row + count].copy()
1036
+ area_hydraulic_info.append(face_data)
1037
+
1038
+ hydraulic_info_table.append(area_hydraulic_info)
1039
+
1040
+ return hydraulic_info_table
1041
+
1042
+ except KeyError:
1043
+ return None
1044
+
1045
+ @classmethod
1046
+ @log_call
1047
+ def build_2d_area_face_point_coordinates_list(cls, hdf_input: Union[str, Path, h5py.File], area_name: Optional[str] = None, ras_object=None) -> Optional[List[np.ndarray]]:
1048
+ """
1049
+ Build a list of face point coordinates for each 2D Flow Area.
1050
+
1051
+ Args:
1052
+ hdf_input (Union[str, Path, h5py.File]): The HDF5 file path or open HDF5 file object.
1053
+ area_name (Optional[str]): Name of the 2D Flow Area. If None, builds for all areas.
1054
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
1055
+
1056
+ Returns:
1057
+ Optional[List[np.ndarray]]: List containing arrays of face point coordinates for each 2D Flow Area.
1058
+
1059
+ Example:
1060
+ >>> face_coords_list = RasHdf.build_2d_area_face_point_coordinates_list("03")
1061
+ >>> print(face_coords_list[0]) # Coordinates for first area
1062
+ [[X1, Y1], [X2, Y2], ...]
1063
+ """
1064
+ try:
1065
+ with h5py.File(cls._get_hdf_filename(hdf_input, ras_object), 'r') as hdf_file:
1066
+ two_d_area_names = cls.get_2d_flow_area_names(hdf_file, ras_object=ras_object)
1067
+ face_point_coords_list = []
1068
+
1069
+ for area in two_d_area_names:
1070
+ face_points = np.array(hdf_file[f'Geometry/2D Flow Areas/{area}/Face Points Coordinates'])
1071
+ face_point_coords_list.append(face_points)
1072
+
1073
+ return face_point_coords_list
1074
+
1075
+ except KeyError:
1076
+ return None
1077
+
1078
+ @classmethod
1079
+ @log_call
1080
+ def build_2d_area_face_profile(cls, hdf_input: Union[str, Path, h5py.File], area_name: Optional[str] = None, ras_object=None, n_face_profile_points: int = 10) -> Optional[List[np.ndarray]]:
1081
+ """
1082
+ Build face profiles representing sub-grid terrain for each face in 2D Flow Areas.
1083
+
1084
+ Args:
1085
+ hdf_input (Union[str, Path, h5py.File]): The HDF5 file path or open HDF5 file object.
1086
+ area_name (Optional[str]): Name of the 2D Flow Area. If None, builds for all areas.
1087
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
1088
+ n_face_profile_points (int): Number of points to interpolate along each face profile.
1089
+
1090
+ Returns:
1091
+ Optional[List[np.ndarray]]: List containing arrays of profile points for each face in each 2D Flow Area.
1092
+
1093
+ Example:
1094
+ >>> face_profiles = RasHdf.build_2d_area_face_profile("03", n_face_profile_points=20)
1095
+ >>> print(face_profiles[0][0]) # Profile points for first face of first area
1096
+ [[X1, Y1, Z1], [X2, Y2, Z2], ...]
1097
+ """
1098
+ try:
1099
+ with h5py.File(cls._get_hdf_filename(hdf_input, ras_object), 'r') as hdf_file:
1100
+ two_d_area_names = cls.get_2d_flow_area_names(hdf_file, ras_object=ras_object)
1101
+ face_profiles = []
1102
+
1103
+ for area in two_d_area_names:
1104
+ face_faces = np.array(hdf_file[f'Geometry/2D Flow Areas/{area}/Faces FacePoint Indexes'])
1105
+ face_point_coords = np.array(hdf_file[f'Geometry/2D Flow Areas/{area}/Face Points Coordinates'])
1106
+ profile_points_all_faces = []
1107
+
1108
+ for face in face_faces:
1109
+ face_start, face_end = face
1110
+ start_coords = face_point_coords[face_start]
1111
+ end_coords = face_point_coords[face_end]
1112
+
1113
+ length = cls.horizontal_distance(start_coords, end_coords)
1114
+ stations = np.linspace(0, length, n_face_profile_points, endpoint=True)
1115
+
1116
+ interpolated_points = np.array([
1117
+ start_coords + (end_coords - start_coords) * i / (n_face_profile_points - 1)
1118
+ for i in range(n_face_profile_points)
1119
+ ])
1120
+
1121
+ interpolated_points = cls.interpolate_z_coords(interpolated_points)
1122
+
1123
+ profile_points_all_faces.append(interpolated_points)
1124
+
1125
+ face_profiles.append(profile_points_all_faces)
1126
+
1127
+ return face_profiles
1128
+
1129
+ except KeyError as e:
1130
+ logging.error(f"Error building face profiles: {e}")
1131
+ return None
1132
+
1133
+ @classmethod
1134
+ @log_call
1135
+ def build_face_facepoints(cls, hdf_input: Union[str, Path], area_name: Optional[str] = None, ras_object=None) -> Optional[List[np.ndarray]]:
1136
+ """
1137
+ Build face's facepoint list for each 2D Flow Area.
1138
+
1139
+ Args:
1140
+ hdf_input (Union[str, Path]): The plan number or full path to the HDF file.
1141
+ area_name (Optional[str]): Name of the 2D Flow Area. If None, builds for all areas.
1142
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
1143
+
1144
+ Returns:
1145
+ Optional[List[np.ndarray]]: List containing arrays of face point indexes for each face in each 2D Flow Area.
1146
+
1147
+ Example:
1148
+ >>> face_facepoints = RasHdf.build_face_facepoints("03")
1149
+ >>> print(face_facepoints[0][0]) # FacePoint indexes for first face of first area
1150
+ [start_idx, end_idx]
1151
+ """
1152
+ try:
1153
+ with h5py.File(cls._get_hdf_filename(hdf_input, ras_object), 'r') as hdf_file:
1154
+ two_d_area_names = cls.get_2d_flow_area_names(hdf_file, ras_object=ras_object)
1155
+ face_facepoints_list = []
1156
+
1157
+ for area in two_d_area_names:
1158
+ face_facepoints = np.array(hdf_file[f'Geometry/2D Flow Areas/{area}/Faces FacePoint Indexes'])
1159
+ face_facepoints_list.append(face_facepoints)
1160
+
1161
+ return face_facepoints_list
1162
+
1163
+ except KeyError as e:
1164
+ logger = logging.getLogger(__name__)
1165
+ logger.error(f"Error building face facepoints list: {e}")
1166
+ return None
1167
+
1168
+ @classmethod
1169
+ @log_call
1170
+ def build_2d_area_boundaries(cls, hdf_input: Union[str, Path], area_name: Optional[str] = None, ras_object=None) -> Optional[Tuple[int, np.ndarray, List[str], List[str], List[str], np.ndarray, np.ndarray]]:
1171
+ """
1172
+ Build boundaries with their point lists for each 2D Flow Area.
1173
+
1174
+ Args:
1175
+ hdf_input (Union[str, Path]): The plan number or full path to the HDF file.
1176
+ area_name (Optional[str]): Name of the 2D Flow Area. If None, builds for all areas.
1177
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
1178
+
1179
+ Returns:
1180
+ Optional[Tuple[int, np.ndarray, List[str], List[str], List[str], np.ndarray, np.ndarray]]:
1181
+ Tuple containing total boundaries, boundary IDs, boundary names, associated 2D Flow Area names, boundary types,
1182
+ total points per boundary, and boundary point lists.
1183
+
1184
+ Example:
1185
+ >>> total_boundaries, boundary_ids, boundary_names, flow_area_names, boundary_types, total_points, boundary_points = RasHdf.build_2d_area_boundaries("03")
1186
+ >>> print(total_boundaries)
1187
+ 5
1188
+ """
1189
+ try:
1190
+ with h5py.File(cls._get_hdf_filename(hdf_input, ras_object), 'r') as hdf_file:
1191
+ two_d_area_names = cls.get_2d_flow_area_names(hdf_file, ras_object=ras_object)
1192
+ total_boundaries = 0
1193
+ boundary_ids = []
1194
+ boundary_names = []
1195
+ flow_area_names = []
1196
+ boundary_types = []
1197
+ total_points_per_boundary = []
1198
+ boundary_points_list = []
1199
+
1200
+ for area in two_d_area_names:
1201
+ boundary_points = np.array(hdf_file[f'Geometry/2D Flow Areas/{area}/Boundary Points'])
1202
+ if boundary_points.size == 0:
1203
+ logger = logging.getLogger(__name__)
1204
+ logger.warning(f"No boundary points found for 2D Flow Area: {area}")
1205
+ continue
1206
+
1207
+ current_boundary_id = boundary_points[0][0]
1208
+ current_boundary_points = [boundary_points[0][2], boundary_points[0][3]]
1209
+ boundary_id = current_boundary_id
1210
+
1211
+ for point in boundary_points[1:]:
1212
+ if point[0] == current_boundary_id:
1213
+ current_boundary_points.append(point[3])
1214
+ else:
1215
+ # Save the completed boundary
1216
+ boundary_ids.append(current_boundary_id)
1217
+ boundary_names.append(point[0]) # Assuming boundary name is stored here
1218
+ flow_area_names.append(area)
1219
+ boundary_types.append(point[2]) # Assuming boundary type is stored here
1220
+ total_points_per_boundary.append(len(current_boundary_points))
1221
+ boundary_points_list.append(np.array(current_boundary_points))
1222
+ total_boundaries += 1
1223
+
1224
+ # Start a new boundary
1225
+ current_boundary_id = point[0]
1226
+ current_boundary_points = [point[2], point[3]]
1227
+
1228
+ # Save the last boundary
1229
+ boundary_ids.append(current_boundary_id)
1230
+ boundary_names.append(boundary_points[-1][0]) # Assuming boundary name is stored here
1231
+ flow_area_names.append(area)
1232
+ boundary_types.append(boundary_points[-1][2]) # Assuming boundary type is stored here
1233
+ total_points_per_boundary.append(len(current_boundary_points))
1234
+ boundary_points_list.append(np.array(current_boundary_points))
1235
+ total_boundaries += 1
1236
+
1237
+ return (total_boundaries, np.array(boundary_ids), boundary_names, flow_area_names, boundary_types, np.array(total_points_per_boundary), np.array(boundary_points_list))
1238
+
1239
+ except KeyError as e:
1240
+ logger = logging.getLogger(__name__)
1241
+ logger.error(f"Error building boundaries: {e}")
1242
+ return None
1243
+
1244
+ # Helper Methods for New Functionalities
1245
+
1246
+ @classmethod
1247
+ @log_call
1248
+ def horizontal_distance(cls, coord1: np.ndarray, coord2: np.ndarray) -> float:
1249
+ """
1250
+ Calculate the horizontal distance between two coordinate points.
1251
+
1252
+ Args:
1253
+ coord1 (np.ndarray): First coordinate point [X, Y].
1254
+ coord2 (np.ndarray): Second coordinate point [X, Y].
1255
+
1256
+ Returns:
1257
+ float: Horizontal distance.
1258
+
1259
+ Example:
1260
+ >>> distance = RasHdf.horizontal_distance([0, 0], [3, 4])
1261
+ >>> print(distance)
1262
+ 5.0
1263
+ """
1264
+ return np.linalg.norm(coord2 - coord1)
1265
+
1266
+ @classmethod
1267
+ @log_call
1268
+ def interpolate_z_coords(cls, points: np.ndarray) -> np.ndarray:
1269
+ """
1270
+ Interpolate Z coordinates for a set of points.
1271
+
1272
+ Args:
1273
+ points (np.ndarray): Array of points with [X, Y].
1274
+
1275
+ Returns:
1276
+ np.ndarray: Array of points with [X, Y, Z].
1277
+
1278
+ Example:
1279
+ >>> interpolated = RasHdf.interpolate_z_coords(np.array([[0,0], [1,1]]))
1280
+ >>> print(interpolated)
1281
+ [[0, 0, Z0],
1282
+ [1, 1, Z1]]
1283
+ """
1284
+ # Placeholder for actual interpolation logic
1285
+ # This should be replaced with the appropriate interpolation method
1286
+ z_coords = np.zeros((points.shape[0], 1)) # Assuming Z=0 for simplicity
1287
+ return np.hstack((points, z_coords))
1288
+
1289
+ @classmethod
1290
+ @log_call
1291
+ def extract_string_from_hdf(
1292
+ cls,
1293
+ hdf_input: Union[str, Path],
1294
+ hdf_path: str,
1295
+ ras_object: Optional["RasPrj"] = None
1296
+ ) -> str:
1297
+ """
1298
+ Extract string from HDF object at a given path.
1299
+
1300
+ Args:
1301
+ hdf_input (Union[str, Path]): Either the plan number or the full path to the HDF file.
1302
+ hdf_path (str): Path of the object in the HDF file.
1303
+ ras_object (Optional["RasPrj"]): Specific RAS object to use. If None, uses the global ras instance.
1304
+
1305
+ Returns:
1306
+ str: Extracted string from the specified HDF object.
1307
+
1308
+ Raises:
1309
+ ValueError: If no HDF file is found for the given plan number.
1310
+ FileNotFoundError: If the specified HDF file does not exist.
1311
+ KeyError: If the specified hdf_path is not found in the file.
1312
+
1313
+ Example:
1314
+ >>> result = RasHdf.extract_string_from_hdf("path/to/file.hdf", "/Results/Summary/Compute Messages (text)")
1315
+ >>> print(result)
1316
+ """
1317
+ with h5py.File(cls._get_hdf_filename(hdf_input, ras_object), 'r') as hdf_file:
1318
+ try:
1319
+ hdf_object = hdf_file[hdf_path]
1320
+ if isinstance(hdf_object, h5py.Group):
1321
+ return f"Group: {hdf_path}\nContents: {list(hdf_object.keys())}"
1322
+ elif isinstance(hdf_object, h5py.Dataset):
1323
+ data = hdf_object[()]
1324
+ if isinstance(data, bytes):
1325
+ return data.decode('utf-8')
1326
+ elif isinstance(data, np.ndarray) and data.dtype.kind == 'S':
1327
+ return [v.decode('utf-8') for v in data]
1328
+ else:
1329
+ return str(data)
1330
+ else:
1331
+ return f"Unsupported object type: {type(hdf_object)}"
1332
+ except KeyError:
1333
+ logger = logging.getLogger(__name__)
1334
+ logger.error(f"Path not found: {hdf_path}")
1335
+ raise KeyError(f"Path not found: {hdf_path}")
1336
+
1337
+ @classmethod
1338
+ @log_call
1339
+ def decode_byte_strings(dataframe: pd.DataFrame) -> pd.DataFrame:
1340
+ """
1341
+ Decodes byte strings in a DataFrame to regular string objects.
1342
+
1343
+ This function converts columns with byte-encoded strings (e.g., b'string') into UTF-8 decoded strings.
1344
+
1345
+ Args:
1346
+ dataframe (pd.DataFrame): The DataFrame containing byte-encoded string columns.
1347
+
1348
+ Returns:
1349
+ pd.DataFrame: The DataFrame with byte strings decoded to regular strings.
1350
+
1351
+ Example:
1352
+ >>> df = pd.DataFrame({'A': [b'hello', b'world'], 'B': [1, 2]})
1353
+ >>> decoded_df = RasHdf.decode_byte_strings(df)
1354
+ >>> print(decoded_df)
1355
+ A B
1356
+ 0 hello 1
1357
+ 1 world 2
1358
+ """
1359
+ str_df = dataframe.select_dtypes(['object'])
1360
+ str_df = str_df.stack().str.decode('utf-8').unstack()
1361
+ for col in str_df:
1362
+ dataframe[col] = str_df[col]
1363
+ return dataframe
1364
+
1365
+ @classmethod
1366
+ @log_call
1367
+ def perform_kdtree_query(
1368
+ reference_points: np.ndarray,
1369
+ query_points: np.ndarray,
1370
+ max_distance: float = 2.0
1371
+ ) -> np.ndarray:
1372
+ """
1373
+ Performs a KDTree query between two datasets and returns indices with distances exceeding max_distance set to -1.
1374
+
1375
+ Args:
1376
+ reference_points (np.ndarray): The reference dataset for KDTree.
1377
+ query_points (np.ndarray): The query dataset to search against KDTree of reference_points.
1378
+ max_distance (float, optional): The maximum distance threshold. Indices with distances greater than this are set to -1. Defaults to 2.0.
1379
+
1380
+ Returns:
1381
+ np.ndarray: Array of indices from reference_points that are nearest to each point in query_points.
1382
+ Indices with distances > max_distance are set to -1.
1383
+
1384
+ Example:
1385
+ >>> ref_points = np.array([[0, 0], [1, 1], [2, 2]])
1386
+ >>> query_points = np.array([[0.5, 0.5], [3, 3]])
1387
+ >>> result = RasHdf.perform_kdtree_query(ref_points, query_points)
1388
+ >>> print(result)
1389
+ array([ 0, -1])
1390
+ """
1391
+ dist, snap = KDTree(reference_points).query(query_points, distance_upper_bound=max_distance)
1392
+ snap[dist > max_distance] = -1
1393
+ return snap
1394
+
1395
+ @classmethod
1396
+ @log_call
1397
+ def find_nearest_neighbors(points: np.ndarray, max_distance: float = 2.0) -> np.ndarray:
1398
+ """
1399
+ Creates a self KDTree for dataset points and finds nearest neighbors excluding self,
1400
+ with distances above max_distance set to -1.
1401
+
1402
+ Args:
1403
+ points (np.ndarray): The dataset to build the KDTree from and query against itself.
1404
+ max_distance (float, optional): The maximum distance threshold. Indices with distances
1405
+ greater than max_distance are set to -1. Defaults to 2.0.
1406
+
1407
+ Returns:
1408
+ np.ndarray: Array of indices representing the nearest neighbor in points for each point in points.
1409
+ Indices with distances > max_distance or self-matches are set to -1.
1410
+
1411
+ Example:
1412
+ >>> points = np.array([[0, 0], [1, 1], [2, 2], [10, 10]])
1413
+ >>> result = RasHdf.find_nearest_neighbors(points)
1414
+ >>> print(result)
1415
+ array([1, 0, 1, -1])
1416
+ """
1417
+ dist, snap = KDTree(points).query(points, k=2, distance_upper_bound=max_distance)
1418
+ snap[dist > max_distance] = -1
1419
+
1420
+ snp = pd.DataFrame(snap, index=np.arange(len(snap)))
1421
+ snp = snp.replace(-1, np.nan)
1422
+ snp.loc[snp[0] == snp.index, 0] = np.nan
1423
+ snp.loc[snp[1] == snp.index, 1] = np.nan
1424
+ filled = snp[0].fillna(snp[1])
1425
+ snapped = filled.fillna(-1).astype(np.int64).to_numpy()
1426
+ return snapped
1427
+
1428
+ @classmethod
1429
+ @log_call
1430
+ def consolidate_dataframe(
1431
+ dataframe: pd.DataFrame,
1432
+ group_by: Optional[Union[str, List[str]]] = None,
1433
+ pivot_columns: Optional[Union[str, List[str]]] = None,
1434
+ level: Optional[int] = None,
1435
+ n_dimensional: bool = False,
1436
+ aggregation_method: Union[str, Callable] = 'list'
1437
+ ) -> pd.DataFrame:
1438
+ """
1439
+ Consolidate rows in a DataFrame by merging duplicate values into lists or using a specified aggregation function.
1440
+
1441
+ Args:
1442
+ dataframe (pd.DataFrame): The DataFrame to consolidate.
1443
+ group_by (Optional[Union[str, List[str]]]): Columns or indices to group by.
1444
+ pivot_columns (Optional[Union[str, List[str]]]): Columns to pivot.
1445
+ level (Optional[int]): Level of multi-index to group by.
1446
+ n_dimensional (bool): If True, use a pivot table for N-Dimensional consolidation.
1447
+ aggregation_method (Union[str, Callable]): Aggregation method, e.g., 'list' to aggregate into lists.
1448
+
1449
+ Returns:
1450
+ pd.DataFrame: The consolidated DataFrame.
1451
+
1452
+ Example:
1453
+ >>> df = pd.DataFrame({'A': [1, 1, 2], 'B': [4, 5, 6], 'C': [7, 8, 9]})
1454
+ >>> result = RasHdf.consolidate_dataframe(df, group_by='A')
1455
+ >>> print(result)
1456
+ B C
1457
+ A
1458
+ 1 [4, 5] [7, 8]
1459
+ 2 [6] [9]
1460
+ """
1461
+ if aggregation_method == 'list':
1462
+ agg_func = lambda x: tuple(x)
1463
+ else:
1464
+ agg_func = aggregation_method
1465
+
1466
+ if n_dimensional:
1467
+ result = dataframe.pivot_table(group_by, pivot_columns, aggfunc=agg_func)
1468
+ else:
1469
+ result = dataframe.groupby(group_by, level=level).agg(agg_func).applymap(list)
1470
+
1471
+ return result
1472
+
1473
+ @classmethod
1474
+ @log_call
1475
+ def find_nearest_value(array: Union[list, np.ndarray], target_value: Union[int, float]) -> Union[int, float]:
1476
+ """
1477
+ Finds the nearest value in a NumPy array to the specified target value.
1478
+
1479
+ Args:
1480
+ array (Union[list, np.ndarray]): The array to search within.
1481
+ target_value (Union[int, float]): The value to find the nearest neighbor to.
1482
+
1483
+ Returns:
1484
+ Union[int, float]: The nearest value in the array to the specified target value.
1485
+
1486
+ Example:
1487
+ >>> arr = np.array([1, 3, 5, 7, 9])
1488
+ >>> result = RasHdf.find_nearest_value(arr, 6)
1489
+ >>> print(result)
1490
+ 5
1491
+ """
1492
+ array = np.asarray(array)
1493
+ idx = (np.abs(array - target_value)).argmin()
1494
+ return array[idx]
1495
+
1496
+ @staticmethod
1497
+ @log_call
1498
+ def _get_hdf_filename(hdf_input: Union[str, Path, h5py.File], ras_object=None) -> Optional[Path]:
1499
+ """
1500
+ Get the HDF filename from the input.
1501
+
1502
+ Args:
1503
+ hdf_input (Union[str, Path, h5py.File]): The plan number, full path to the HDF file as a string, a Path object, or an h5py.File object.
1504
+ ras_object (RasPrj, optional): The RAS project object. If None, uses the global ras instance.
1505
+
1506
+ Returns:
1507
+ Optional[Path]: The full path to the HDF file as a Path object, or None if an error occurs.
1508
+
1509
+ Note:
1510
+ This method logs critical errors instead of raising exceptions.
1511
+ """
1512
+
1513
+ # If hdf_input is already an h5py.File object, return its filename
1514
+ if isinstance(hdf_input, h5py.File):
1515
+ return Path(hdf_input.filename)
1516
+
1517
+ # Convert to Path object if it's a string
1518
+ if isinstance(hdf_input, str):
1519
+ hdf_input = Path(hdf_input)
1520
+
1521
+ # If hdf_input is a file path, return it directly
1522
+ if isinstance(hdf_input, Path) and hdf_input.is_file():
1523
+ return hdf_input
1524
+
1525
+ # If hdf_input is not a file path, assume it's a plan number and require ras_object
1526
+ ras_obj = ras_object or ras
1527
+ if not ras_obj.initialized:
1528
+ logger.critical("ras_object is not initialized. ras_object is required when hdf_input is not a direct file path.")
1529
+ return None
1530
+
1531
+ plan_info = ras_obj.plan_df[ras_obj.plan_df['plan_number'] == str(hdf_input)]
1532
+ if plan_info.empty:
1533
+ logger.critical(f"No HDF file found for plan number {hdf_input}")
1534
+ return None
1535
+
1536
+ hdf_filename = plan_info.iloc[0]['HDF_Results_Path']
1537
+ if hdf_filename is None:
1538
+ logger.critical(f"HDF_Results_Path is None for plan number {hdf_input}")
1539
+ return None
1540
+
1541
+ hdf_path = Path(hdf_filename)
1542
+ if not hdf_path.is_file():
1543
+ logger.critical(f"HDF file not found: {hdf_path}")
1544
+ return None
1545
+
1546
+ return hdf_path
1547
+
1548
+
1549
+
1550
+ @log_call
1551
+ def save_dataframe_to_hdf(
1552
+ dataframe: pd.DataFrame,
1553
+ hdf_parent_group: h5py.Group,
1554
+ dataset_name: str,
1555
+ attributes: Optional[Dict[str, Union[int, float, str]]] = None,
1556
+ fill_value: Union[int, float, str] = -9999,
1557
+ **kwargs: Any
1558
+ ) -> h5py.Dataset:
1559
+ """
1560
+ Save a pandas DataFrame to an HDF5 dataset within a specified parent group.
1561
+
1562
+ This function addresses limitations of `pd.to_hdf()` by using h5py to create and save datasets.
1563
+
1564
+ Args:
1565
+ dataframe (pd.DataFrame): The DataFrame to save.
1566
+ hdf_parent_group (h5py.Group): The parent HDF5 group where the dataset will be created.
1567
+ dataset_name (str): The name of the new dataset to add in the HDF5 parent group.
1568
+ attributes (Optional[Dict[str, Union[int, float, str]]]): A dictionary of attributes to add to the dataset.
1569
+ fill_value (Union[int, float, str]): The value to use for filling missing data.
1570
+ **kwargs: Additional keyword arguments passed to `hdf_parent_group.create_dataset()`.
1571
+
1572
+ Returns:
1573
+ h5py.Dataset: The created HDF5 dataset within the parent group.
1574
+
1575
+ Raises:
1576
+ ValueError: If the DataFrame columns are not consistent.
1577
+
1578
+ Example:
1579
+ >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'c']})
1580
+ >>> with h5py.File('data.h5', 'w') as f:
1581
+ ... group = f.create_group('my_group')
1582
+ ... dataset = save_dataframe_to_hdf(df, group, 'my_dataset')
1583
+ >>> print(dataset)
1584
+ """
1585
+ df = dataframe.copy()
1586
+
1587
+ # Replace '/' in column names with '-' to avoid issues in HDF5
1588
+ if df.columns.dtype == 'O':
1589
+ df.columns = df.columns.str.replace('/', '-', regex=False)
1590
+
1591
+ # Fill missing values with the specified fill_value
1592
+ df = df.fillna(fill_value)
1593
+
1594
+ # Identify string columns and ensure consistency
1595
+ string_cols = df.select_dtypes(include=['object']).columns
1596
+ if not string_cols.equals(df.select_dtypes(include=['object']).columns):
1597
+ logger.error("Inconsistent string columns detected")
1598
+ raise ValueError("Inconsistent string columns detected")
1599
+
1600
+ # Encode string columns to bytes
1601
+ df[string_cols] = df[string_cols].applymap(lambda x: x.encode('utf-8')).astype('bytes')
1602
+
1603
+ # Prepare data for HDF5 dataset creation
1604
+ arr = df.to_records(index=False) if not isinstance(df.columns, pd.RangeIndex) else df.values
1605
+
1606
+ # Remove existing dataset if it exists
1607
+ if dataset_name in hdf_parent_group:
1608
+ logger.warning(f"Existing dataset {dataset_name} will be overwritten")
1609
+ del hdf_parent_group[dataset_name]
1610
+
1611
+ # Create the dataset in the HDF5 file
1612
+ dataset = hdf_parent_group.create_dataset(dataset_name, data=arr, **kwargs)
1613
+
1614
+ # Update dataset attributes if provided
1615
+ if attributes:
1616
+ dataset.attrs.update(attributes)
1617
+
1618
+ logger.info(f"Successfully saved DataFrame to dataset: {dataset_name}")
1619
+ return dataset
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ras-commander
3
- Version: 0.41.0
3
+ Version: 0.42.0
4
4
  Summary: A Python library for automating HEC-RAS operations
5
5
  Home-page: https://github.com/billk-FM/ras-commander
6
6
  Author: William M. Katzenmeyer
@@ -2,15 +2,15 @@ ras_commander/RasCmdr.py,sha256=_opzPdFuja2wXmFu2iayP6igJqGeILAavPC1XsCC6ks,2501
2
2
  ras_commander/RasExamples.py,sha256=XKnbqQTc5t43iFkjJLF3lgqZW4YaGh-79sGYDAmtqiU,19245
3
3
  ras_commander/RasGeo.py,sha256=GiRtgRg0JsuCDkpYS6SkJoaLksPUskHGDRpJLYVUMz8,5411
4
4
  ras_commander/RasGpt.py,sha256=-524sU_PBPxCmjDKJbDXg6Q3k1-Uhk2tYj6HeW8QFJ8,4201
5
- ras_commander/RasHdf.py,sha256=Und1QcOpuHD2dCZvxPiwNXCoEQs_XG9WFGBlNwMDDrE,32689
5
+ ras_commander/RasHdf.py,sha256=K5apgOaHRqiOrrzZvAEMUbLmw7LWmW18bDk3JCy2z6c,77160
6
6
  ras_commander/RasPlan.py,sha256=GT8-2X_Or6ufrfpQPv6G3WMLuTNsOO0OCYh1jrbsqZ0,40303
7
7
  ras_commander/RasPrj.py,sha256=-iEltmz7B-wXrs4R3iuj6tXX9i-6u_yEl7ZcLmasoWs,33980
8
8
  ras_commander/RasUnsteady.py,sha256=37GKaYNJZ39y-khhy01LbHwZnf7HT0V2XKQ-UUaJHlY,4639
9
9
  ras_commander/RasUtils.py,sha256=vA3DzvNMeKH3A4cMQLK2a3dihftXBGypYvoi-ckMlSs,29480
10
10
  ras_commander/__init__.py,sha256=h4xld8gpvjTTpOOJcPKXwsRMUVGtg8tRqf64AHwZB3k,1051
11
11
  ras_commander/logging_config.py,sha256=5bYd_5KMlf81bXsiu2mABBlw0USMhcu5uRv8DIYJSFE,2317
12
- ras_commander-0.41.0.dist-info/LICENSE,sha256=_pbd6qHnlsz1iQ-ozDW_49r86BZT6CRwO2iBtw0iN6M,457
13
- ras_commander-0.41.0.dist-info/METADATA,sha256=wYlsP7QFa-lYa5CUKg8Mbi6VFwojfJm_l1GK_TVgCew,15671
14
- ras_commander-0.41.0.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
15
- ras_commander-0.41.0.dist-info/top_level.txt,sha256=i76S7eKLFC8doKcXDl3aiOr9RwT06G8adI6YuKbQDaA,14
16
- ras_commander-0.41.0.dist-info/RECORD,,
12
+ ras_commander-0.42.0.dist-info/LICENSE,sha256=_pbd6qHnlsz1iQ-ozDW_49r86BZT6CRwO2iBtw0iN6M,457
13
+ ras_commander-0.42.0.dist-info/METADATA,sha256=9opk4wxJ_Qmaeiky2Ui1AP8zyCtfiy-l8Hzav_WnGPQ,15671
14
+ ras_commander-0.42.0.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
15
+ ras_commander-0.42.0.dist-info/top_level.txt,sha256=i76S7eKLFC8doKcXDl3aiOr9RwT06G8adI6YuKbQDaA,14
16
+ ras_commander-0.42.0.dist-info/RECORD,,