rapidtide 3.1__py3-none-any.whl → 3.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (70) hide show
  1. rapidtide/OrthoImageItem.py +4 -4
  2. rapidtide/_version.py +3 -3
  3. rapidtide/calccoherence.py +4 -4
  4. rapidtide/calcnullsimfunc.py +2 -5
  5. rapidtide/calcsimfunc.py +1 -4
  6. rapidtide/correlate.py +130 -127
  7. rapidtide/data/examples/src/testfmri +41 -9
  8. rapidtide/data/examples/src/testhappy +8 -8
  9. rapidtide/dlfilter.py +21 -22
  10. rapidtide/dlfiltertorch.py +18 -19
  11. rapidtide/filter.py +4 -4
  12. rapidtide/fit.py +18 -18
  13. rapidtide/happy_supportfuncs.py +84 -82
  14. rapidtide/helper_classes.py +2 -2
  15. rapidtide/io.py +88 -83
  16. rapidtide/linfitfiltpass.py +30 -49
  17. rapidtide/makelaggedtcs.py +11 -16
  18. rapidtide/maskutil.py +30 -14
  19. rapidtide/miscmath.py +2 -2
  20. rapidtide/patchmatch.py +10 -11
  21. rapidtide/peakeval.py +1 -3
  22. rapidtide/ppgproc.py +3 -3
  23. rapidtide/qualitycheck.py +2 -2
  24. rapidtide/refinedelay.py +12 -3
  25. rapidtide/refineregressor.py +20 -29
  26. rapidtide/scripts/showxcorr_legacy.py +7 -7
  27. rapidtide/scripts/stupidramtricks.py +15 -17
  28. rapidtide/simFuncClasses.py +2 -2
  29. rapidtide/simfuncfit.py +27 -41
  30. rapidtide/tests/test_cleanregressor.py +1 -2
  31. rapidtide/tests/test_fullrunhappy_v3.py +11 -5
  32. rapidtide/tests/test_fullrunhappy_v4.py +9 -1
  33. rapidtide/tests/test_getparsers.py +11 -3
  34. rapidtide/tests/test_refinedelay.py +0 -1
  35. rapidtide/tests/test_simroundtrip.py +8 -0
  36. rapidtide/tests/test_stcorrelate.py +3 -1
  37. rapidtide/util.py +6 -6
  38. rapidtide/voxelData.py +1 -1
  39. rapidtide/wiener.py +122 -16
  40. rapidtide/wiener2.py +3 -3
  41. rapidtide/workflows/applyppgproc.py +33 -15
  42. rapidtide/workflows/calcSimFuncMap.py +11 -22
  43. rapidtide/workflows/ccorrica.py +4 -2
  44. rapidtide/workflows/cleanregressor.py +6 -11
  45. rapidtide/workflows/delayvar.py +8 -13
  46. rapidtide/workflows/fitSimFuncMap.py +2 -9
  47. rapidtide/workflows/happy.py +6 -6
  48. rapidtide/workflows/happy_parser.py +36 -25
  49. rapidtide/workflows/pairproc.py +10 -2
  50. rapidtide/workflows/pixelcomp.py +1 -2
  51. rapidtide/workflows/rankimage.py +1 -1
  52. rapidtide/workflows/rapidtide.py +98 -63
  53. rapidtide/workflows/refineDelayMap.py +7 -6
  54. rapidtide/workflows/refineRegressor.py +6 -16
  55. rapidtide/workflows/regressfrommaps.py +9 -6
  56. rapidtide/workflows/retrolagtcs.py +5 -7
  57. rapidtide/workflows/retroregress.py +11 -17
  58. rapidtide/workflows/roisummarize.py +11 -10
  59. rapidtide/workflows/showarbcorr.py +2 -2
  60. rapidtide/workflows/showxcorrx.py +6 -6
  61. rapidtide/workflows/simdata.py +31 -31
  62. rapidtide/workflows/spatialmi.py +0 -1
  63. rapidtide/workflows/tidepool.py +6 -4
  64. {rapidtide-3.1.dist-info → rapidtide-3.1.1.dist-info}/METADATA +8 -7
  65. {rapidtide-3.1.dist-info → rapidtide-3.1.1.dist-info}/RECORD +69 -70
  66. rapidtide/wiener_doc.py +0 -255
  67. {rapidtide-3.1.dist-info → rapidtide-3.1.1.dist-info}/WHEEL +0 -0
  68. {rapidtide-3.1.dist-info → rapidtide-3.1.1.dist-info}/entry_points.txt +0 -0
  69. {rapidtide-3.1.dist-info → rapidtide-3.1.1.dist-info}/licenses/LICENSE +0 -0
  70. {rapidtide-3.1.dist-info → rapidtide-3.1.1.dist-info}/top_level.txt +0 -0
@@ -843,11 +843,11 @@ class OrthoImageItem(QtWidgets.QWidget):
843
843
 
844
844
  Parameters
845
845
  ----------
846
- theimage : numpy.ndarray
846
+ theimage : NDArray
847
847
  Input image array to be mapped using the lookup table
848
- mask : numpy.ndarray
848
+ mask : NDArray
849
849
  Mask array where values less than 1 will be set to transparent (alpha = 0)
850
- theLUT : numpy.ndarray
850
+ theLUT : NDArray
851
851
  Lookup table array for color mapping, typically with shape (N, 4) for RGBA values
852
852
  dispmin : float
853
853
  Minimum display value for scaling the input image
@@ -856,7 +856,7 @@ class OrthoImageItem(QtWidgets.QWidget):
856
856
 
857
857
  Returns
858
858
  -------
859
- numpy.ndarray
859
+ NDArray
860
860
  Mapped image array with the same shape as input image, with colors applied
861
861
  from the lookup table and masked regions set to transparent
862
862
 
rapidtide/_version.py CHANGED
@@ -8,11 +8,11 @@ import json
8
8
 
9
9
  version_json = '''
10
10
  {
11
- "date": "2025-11-08T09:22:00-0500",
11
+ "date": "2025-11-17T10:45:04-0500",
12
12
  "dirty": false,
13
13
  "error": null,
14
- "full-revisionid": "d57dfd2f1902964ec2bdc7a760f361eea22f22aa",
15
- "version": "3.1"
14
+ "full-revisionid": "81d19a032c3769c614d87b9bb4d14bcd71cfaf18",
15
+ "version": "3.1.1"
16
16
  }
17
17
  ''' # END VERSION_JSON
18
18
 
@@ -227,15 +227,15 @@ def coherencepass(
227
227
 
228
228
  Parameters
229
229
  ----------
230
- fmridata : numpy.ndarray
230
+ fmridata : NDArray
231
231
  Input fMRI data array with shape (time, voxels).
232
232
  theCoherer : Any
233
233
  Object or function used to perform coherence calculations.
234
- coherencefunc : numpy.ndarray
234
+ coherencefunc : NDArray
235
235
  Array to store coherence function results for each voxel.
236
- coherencepeakval : numpy.ndarray
236
+ coherencepeakval : NDArray
237
237
  Array to store peak coherence values for each voxel.
238
- coherencepeakfreq : numpy.ndarray
238
+ coherencepeakfreq : NDArray
239
239
  Array to store peak coherence frequencies for each voxel.
240
240
  alt : bool, optional
241
241
  If True, use alternative coherence calculation method. Default is False.
@@ -216,8 +216,7 @@ def getNullDistributionData(
216
216
  showprogressbar: bool = True,
217
217
  chunksize: int = 1000,
218
218
  permutationmethod: str = "shuffle",
219
- rt_floatset: type = np.float64,
220
- rt_floattype: str = "float64",
219
+ rt_floattype: np.dtype = np.float64,
221
220
  debug: bool = False,
222
221
  ) -> NDArray:
223
222
  """
@@ -249,10 +248,8 @@ def getNullDistributionData(
249
248
  Size of chunks for multiprocessing. Default is 1000.
250
249
  permutationmethod : str, optional
251
250
  Permutation method to use ('shuffle' or other supported methods). Default is 'shuffle'.
252
- rt_floatset : type, optional
253
- The floating-point type to use for internal calculations. Default is np.float64.
254
251
  rt_floattype : str, optional
255
- String representation of the floating-point type. Default is 'float64'.
252
+ String representation of the floating-point type. Default is np.float64.
256
253
  debug : bool, optional
257
254
  If True, enable debug output. Default is False.
258
255
 
rapidtide/calcsimfunc.py CHANGED
@@ -236,8 +236,7 @@ def correlationpass(
236
236
  interptype: str = "univariate",
237
237
  showprogressbar: bool = True,
238
238
  chunksize: int = 1000,
239
- rt_floatset: type = np.float64,
240
- rt_floattype: str = "float64",
239
+ rt_floattype: np.dtype = np.float64,
241
240
  debug: bool = False,
242
241
  ) -> tuple[int, list[float], NDArray]:
243
242
  """
@@ -279,8 +278,6 @@ def correlationpass(
279
278
  Whether to display a progress bar. Default is True.
280
279
  chunksize : int, optional
281
280
  Size of chunks for multiprocessing. Default is 1000.
282
- rt_floatset : type, optional
283
- Floating-point type for internal computations. Default is np.float64.
284
281
  rt_floattype : str, optional
285
282
  String representation of floating-point type. Default is 'float64'.
286
283
  debug : bool, optional
rapidtide/correlate.py CHANGED
@@ -253,10 +253,11 @@ def shorttermcorr_1D(
253
253
  detrendorder=detrendorder,
254
254
  windowfunc=windowfunc,
255
255
  )
256
- thepcorr = sp.stats.pearsonr(dataseg1, dataseg2)
256
+ thepearsonresult = sp.stats.pearsonr(dataseg1, dataseg2)
257
+ thepcorrR, thepcorrp = thepearsonresult.statistic, thepearsonresult.pvalue
257
258
  times.append(i * sampletime)
258
- corrpertime.append(thepcorr[0])
259
- ppertime.append(thepcorr[1])
259
+ corrpertime.append(thepcorrR)
260
+ ppertime.append(thepcorrp)
260
261
  return (
261
262
  np.asarray(times, dtype="float64"),
262
263
  np.asarray(corrpertime, dtype="float64"),
@@ -483,50 +484,50 @@ def mutual_info_2d_fast(
483
484
  debug: bool = False,
484
485
  ) -> float:
485
486
  """
486
- Compute (normalized) mutual information between two 1D variates from a joint histogram.
487
+ Compute (normalized) mutual information between two 1D variates from a joint histogram.
487
488
 
488
- Parameters
489
- ----------
490
- x : 1D NDArray[np.floating[Any]]
491
- First variable.
492
- y : 1D NDArray[np.floating[Any]]
493
- Second variable.
494
- bins : tuple of NDArray
495
- Bin edges for the histogram. The first element corresponds to `x` and the second to `y`.
496
- sigma : float, optional
497
- Sigma for Gaussian smoothing of the joint histogram. Default is 1.
498
- normalized : bool, optional
499
- If True, compute normalized mutual information as defined in [1]_. Default is True.
500
- EPS : float, optional
501
- Small constant to avoid numerical errors in logarithms. Default is 1e-6.
502
- debug : bool, optional
503
- If True, print intermediate values for debugging. Default is False.
489
+ Parameters
490
+ ----------
491
+ x : 1D NDArray[np.floating[Any]]
492
+ First variable.
493
+ y : 1D NDArray[np.floating[Any]]
494
+ Second variable.
495
+ bins : tuple of NDArray
496
+ Bin edges for the histogram. The first element corresponds to `x` and the second to `y`.
497
+ sigma : float, optional
498
+ Sigma for Gaussian smoothing of the joint histogram. Default is 1.
499
+ normalized : bool, optional
500
+ If True, compute normalized mutual information as defined in [1]_. Default is True.
501
+ EPS : float, optional
502
+ Small constant to avoid numerical errors in logarithms. Default is 1e-6.
503
+ debug : bool, optional
504
+ If True, print intermediate values for debugging. Default is False.
504
505
 
505
- Returns
506
- -------
507
- float
508
- The computed mutual information (or normalized mutual information if `normalized=True`).
506
+ Returns
507
+ -------
508
+ float
509
+ The computed mutual information (or normalized mutual information if `normalized=True`).
509
510
 
510
- Notes
511
- -----
512
- This function computes mutual information using a 2D histogram and Gaussian smoothing.
513
- The normalization follows the approach described in [1]_.
511
+ Notes
512
+ -----
513
+ This function computes mutual information using a 2D histogram and Gaussian smoothing.
514
+ The normalization follows the approach described in [1]_.
514
515
 
515
- References
516
- ----------
517
- .. [1] Colin Studholme, David John Hawkes, Derek L.G. Hill (1998).
518
- "Normalized entropy measure for multimodality image alignment".
519
- in Proc. Medical Imaging 1998, vol. 3338, San Diego, CA, pp. 132-143.
516
+ References
517
+ ----------
518
+ .. [1] Colin Studholme, David John Hawkes, Derek L.G. Hill (1998).
519
+ "Normalized entropy measure for multimodality image alignment".
520
+ in Proc. Medical Imaging 1998, vol. 3338, San Diego, CA, pp. 132-143.
520
521
 
521
- Examples
522
- --------
523
- >>> import numpy as np
524
- >>> x = np.random.randn(1000)
525
- >>> y = np.random.randn(1000)
526
- >>> bins = (np.linspace(-3, 3, 64), np.linspace(-3, 3, 64))
527
- >>> mi = mutual_info_2d_fast(x, y, bins)
528
- >>> print(mi)
529
- """
522
+ Examples
523
+ --------
524
+ >>> import numpy as np
525
+ >>> x = np.random.randn(1000)
526
+ >>> y = np.random.randn(1000)
527
+ >>> bins = (np.linspace(-3, 3, 64), np.linspace(-3, 3, 64))
528
+ >>> mi = mutual_info_2d_fast(x, y, bins)
529
+ >>> print(mi)
530
+ """
530
531
  xstart = bins[0][0]
531
532
  xend = bins[0][-1]
532
533
  ystart = bins[1][0]
@@ -552,50 +553,50 @@ def mutual_info_2d(
552
553
  debug: bool = False,
553
554
  ) -> float:
554
555
  """
555
- Compute (normalized) mutual information between two 1D variates from a joint histogram.
556
+ Compute (normalized) mutual information between two 1D variates from a joint histogram.
556
557
 
557
- Parameters
558
- ----------
559
- x : 1D NDArray[np.floating[Any]]
560
- First variable.
561
- y : 1D NDArray[np.floating[Any]]
562
- Second variable.
563
- bins : tuple of int
564
- Number of bins for the histogram. The first element is the number of bins for `x`
565
- and the second for `y`.
566
- sigma : float, optional
567
- Sigma for Gaussian smoothing of the joint histogram. Default is 1.
568
- normalized : bool, optional
569
- If True, compute normalized mutual information as defined in [1]_. Default is True.
570
- EPS : float, optional
571
- Small constant to avoid numerical errors in logarithms. Default is 1e-6.
572
- debug : bool, optional
573
- If True, print intermediate values for debugging. Default is False.
558
+ Parameters
559
+ ----------
560
+ x : 1D NDArray[np.floating[Any]]
561
+ First variable.
562
+ y : 1D NDArray[np.floating[Any]]
563
+ Second variable.
564
+ bins : tuple of int
565
+ Number of bins for the histogram. The first element is the number of bins for `x`
566
+ and the second for `y`.
567
+ sigma : float, optional
568
+ Sigma for Gaussian smoothing of the joint histogram. Default is 1.
569
+ normalized : bool, optional
570
+ If True, compute normalized mutual information as defined in [1]_. Default is True.
571
+ EPS : float, optional
572
+ Small constant to avoid numerical errors in logarithms. Default is 1e-6.
573
+ debug : bool, optional
574
+ If True, print intermediate values for debugging. Default is False.
574
575
 
575
- Returns
576
- -------
577
- float
578
- The computed mutual information (or normalized mutual information if `normalized=True`).
576
+ Returns
577
+ -------
578
+ float
579
+ The computed mutual information (or normalized mutual information if `normalized=True`).
579
580
 
580
- Notes
581
- -----
582
- This function computes mutual information using a 2D histogram and Gaussian smoothing.
583
- The normalization follows the approach described in [1]_.
581
+ Notes
582
+ -----
583
+ This function computes mutual information using a 2D histogram and Gaussian smoothing.
584
+ The normalization follows the approach described in [1]_.
584
585
 
585
- References
586
- ----------
587
- .. [1] Colin Studholme, David John Hawkes, Derek L.G. Hill (1998).
588
- "Normalized entropy measure for multimodality image alignment".
589
- in Proc. Medical Imaging 1998, vol. 3338, San Diego, CA, pp. 132-143.
586
+ References
587
+ ----------
588
+ .. [1] Colin Studholme, David John Hawkes, Derek L.G. Hill (1998).
589
+ "Normalized entropy measure for multimodality image alignment".
590
+ in Proc. Medical Imaging 1998, vol. 3338, San Diego, CA, pp. 132-143.
590
591
 
591
- Examples
592
- --------
593
- >>> import numpy as np
594
- >>> x = np.random.randn(1000)
595
- >>> y = np.random.randn(1000)
596
- >>> mi = mutual_info_2d(x, y)
597
- >>> print(mi)
598
- """
592
+ Examples
593
+ --------
594
+ >>> import numpy as np
595
+ >>> x = np.random.randn(1000)
596
+ >>> y = np.random.randn(1000)
597
+ >>> mi = mutual_info_2d(x, y)
598
+ >>> print(mi)
599
+ """
599
600
  jh, xbins, ybins = np.histogram2d(x, y, bins=bins)
600
601
  if debug:
601
602
  print(f"{xbins} {ybins}")
@@ -604,60 +605,60 @@ def mutual_info_2d(
604
605
 
605
606
 
606
607
  def proc_MI_histogram(
607
- jh: NDArray[np.floating[Any]],
608
- sigma: float = 1,
609
- normalized: bool = True,
610
- EPS: float = 1.0e-6,
611
- debug: bool = False,
608
+ jh: NDArray[np.floating[Any]],
609
+ sigma: float = 1,
610
+ normalized: bool = True,
611
+ EPS: float = 1.0e-6,
612
+ debug: bool = False,
612
613
  ) -> float:
613
614
  """
614
- Compute the mutual information (MI) between two variables from a joint histogram.
615
+ Compute the mutual information (MI) between two variables from a joint histogram.
615
616
 
616
- This function calculates mutual information using the joint histogram of two variables,
617
- applying Gaussian smoothing and computing entropy-based MI. It supports both normalized
618
- and unnormalized versions of the mutual information.
617
+ This function calculates mutual information using the joint histogram of two variables,
618
+ applying Gaussian smoothing and computing entropy-based MI. It supports both normalized
619
+ and unnormalized versions of the mutual information.
619
620
 
620
- Parameters
621
- ----------
622
- jh : ndarray of shape (m, n)
623
- Joint histogram of two variables. Should be a 2D array of floating point values.
624
- sigma : float, optional
625
- Standard deviation for Gaussian smoothing of the joint histogram. Default is 1.0.
626
- normalized : bool, optional
627
- If True, returns normalized mutual information. If False, returns unnormalized
628
- mutual information. Default is True.
629
- EPS : float, optional
630
- Small constant added to the histogram to avoid numerical issues in log computation.
631
- Default is 1e-6.
632
- debug : bool, optional
633
- If True, prints intermediate values for debugging purposes. Default is False.
621
+ Parameters
622
+ ----------
623
+ jh : ndarray of shape (m, n)
624
+ Joint histogram of two variables. Should be a 2D array of floating point values.
625
+ sigma : float, optional
626
+ Standard deviation for Gaussian smoothing of the joint histogram. Default is 1.0.
627
+ normalized : bool, optional
628
+ If True, returns normalized mutual information. If False, returns unnormalized
629
+ mutual information. Default is True.
630
+ EPS : float, optional
631
+ Small constant added to the histogram to avoid numerical issues in log computation.
632
+ Default is 1e-6.
633
+ debug : bool, optional
634
+ If True, prints intermediate values for debugging purposes. Default is False.
634
635
 
635
- Returns
636
- -------
637
- float
638
- The computed mutual information (MI) between the two variables. The value is
639
- positive and indicates the amount of information shared between the variables.
636
+ Returns
637
+ -------
638
+ float
639
+ The computed mutual information (MI) between the two variables. The value is
640
+ positive and indicates the amount of information shared between the variables.
640
641
 
641
- Notes
642
- -----
643
- The function applies Gaussian smoothing to the joint histogram before computing
644
- marginal and joint entropies. The mutual information is computed as:
642
+ Notes
643
+ -----
644
+ The function applies Gaussian smoothing to the joint histogram before computing
645
+ marginal and joint entropies. The mutual information is computed as:
645
646
 
646
- .. math::
647
- MI = \\frac{H(X) + H(Y)}{H(X,Y)} - 1
647
+ .. math::
648
+ MI = \\frac{H(X) + H(Y)}{H(X,Y)} - 1
648
649
 
649
- where :math:`H(X)`, :math:`H(Y)`, and :math:`H(X,Y)` are the marginal and joint entropies,
650
- respectively. If `normalized=False`, the unnormalized MI is returned instead.
650
+ where :math:`H(X)`, :math:`H(Y)`, and :math:`H(X,Y)` are the marginal and joint entropies,
651
+ respectively. If `normalized=False`, the unnormalized MI is returned instead.
651
652
 
652
- Examples
653
- --------
654
- >>> import numpy as np
655
- >>> from scipy import ndimage
656
- >>> jh = np.random.rand(10, 10)
657
- >>> mi = proc_MI_histogram(jh, sigma=0.5, normalized=True)
658
- >>> print(mi)
659
- 0.123456789
660
- """
653
+ Examples
654
+ --------
655
+ >>> import numpy as np
656
+ >>> from scipy import ndimage
657
+ >>> jh = np.random.rand(10, 10)
658
+ >>> mi = proc_MI_histogram(jh, sigma=0.5, normalized=True)
659
+ >>> print(mi)
660
+ 0.123456789
661
+ """
661
662
 
662
663
  # smooth the jh with a gaussian filter of given sigma
663
664
  sp.ndimage.gaussian_filter(jh, sigma=sigma, mode="constant", output=jh)
@@ -932,7 +933,9 @@ def mutual_info_to_r(themi: float, d: int = 1) -> float:
932
933
  def delayedcorr(
933
934
  data1: NDArray, data2: NDArray, delayval: float, timestep: float
934
935
  ) -> Tuple[float, float]:
935
- return sp.stats.pearsonr(data1, tide_resample.timeshift(data2, delayval / timestep, 30)[0])
936
+ return sp.stats.pearsonr(
937
+ data1, tide_resample.timeshift(data2, delayval / timestep, 30).statistic
938
+ )
936
939
 
937
940
 
938
941
  def cepstraldelay(
@@ -1,5 +1,41 @@
1
1
  #!/bin/bash
2
2
 
3
+ #rapidtide \
4
+ # --spatialfilt 2.5 \
5
+ # --nprocs -1 \
6
+ # --searchrange -7.5 30 \
7
+ # --simcalcrange 50 -1 \
8
+ # --outputlevel more \
9
+ # --graymattermask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_GRAY \
10
+ # --brainmask sub-RAPIDTIDETEST_brainmask.nii.gz \
11
+ # --whitemattermask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_WHITE \
12
+ # --csfmask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_CSF \
13
+ # --cleanrefined \
14
+ # --nofitfilt \
15
+ # --refinedelayeachpass \
16
+ # --similaritymetric correlation \
17
+ # --nonumba \
18
+ # sub-RAPIDTIDETEST.nii.gz \
19
+ # ../dst/sub-RAPIDTIDETEST_nonumba
20
+
21
+ #rapidtide \
22
+ # --spatialfilt 2.5 \
23
+ # --nprocs -1 \
24
+ # --searchrange -7.5 30 \
25
+ # --simcalcrange 50 -1 \
26
+ # --outputlevel more \
27
+ # --graymattermask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_GRAY \
28
+ # --brainmask sub-RAPIDTIDETEST_brainmask.nii.gz \
29
+ # --whitemattermask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_WHITE \
30
+ # --csfmask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_CSF \
31
+ # --cleanrefined \
32
+ # --nofitfilt \
33
+ # --refinedelayeachpass \
34
+ # --similaritymetric correlation \
35
+ # --spcalculation \
36
+ # sub-RAPIDTIDETEST.nii.gz \
37
+ # ../dst/sub-RAPIDTIDETEST_single
38
+
3
39
  rapidtide \
4
40
  --spatialfilt 2.5 \
5
41
  --nprocs -1 \
@@ -12,13 +48,12 @@ rapidtide \
12
48
  --csfmask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_CSF \
13
49
  --cleanrefined \
14
50
  --nofitfilt \
15
- --refinedelayeachpass \
16
- --similaritymetric correlation \
17
- --nonumba \
51
+ --focaldebug \
18
52
  sub-RAPIDTIDETEST.nii.gz \
19
- ../dst/sub-RAPIDTIDETEST_nonumba
53
+ ../dst/sub-RAPIDTIDETEST
20
54
 
21
55
  rapidtide \
56
+ --CVR \
22
57
  --spatialfilt 2.5 \
23
58
  --nprocs -1 \
24
59
  --searchrange -7.5 30 \
@@ -28,12 +63,9 @@ rapidtide \
28
63
  --brainmask sub-RAPIDTIDETEST_brainmask.nii.gz \
29
64
  --whitemattermask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_WHITE \
30
65
  --csfmask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_CSF \
31
- --cleanrefined \
32
- --nofitfilt \
33
- --refinedelayeachpass \
34
- --similaritymetric correlation \
66
+ --regressor ../dst/sub-RAPIDTIDETEST_desc-movingregressor_timeseries.json:pass3 \
35
67
  sub-RAPIDTIDETEST.nii.gz \
36
- ../dst/sub-RAPIDTIDETEST_numba
68
+ ../dst/CVRTEST
37
69
 
38
70
  #rapidtide \
39
71
  #--spatialfilt 2.5 \
@@ -95,11 +95,11 @@ happy \
95
95
  --usenewvesselmethod \
96
96
  --nprocs -1
97
97
 
98
- happy \
99
- sub-HAPPYTEST.nii.gz \
100
- sub-HAPPYTEST.json \
101
- ../dst/happy_tensorflow \
102
- --increaseoutputlevel \
103
- --usenewvesselmethod \
104
- --usetensorflow \
105
- --nprocs -1
98
+ #happy \
99
+ # sub-HAPPYTEST.nii.gz \
100
+ # sub-HAPPYTEST.json \
101
+ # ../dst/happy_tensorflow \
102
+ # --increaseoutputlevel \
103
+ # --usenewvesselmethod \
104
+ # --usetensorflow \
105
+ # --nprocs -1