rapidtide 3.1__py3-none-any.whl → 3.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rapidtide/OrthoImageItem.py +4 -4
- rapidtide/_version.py +3 -3
- rapidtide/calccoherence.py +4 -4
- rapidtide/calcnullsimfunc.py +2 -5
- rapidtide/calcsimfunc.py +1 -4
- rapidtide/correlate.py +130 -127
- rapidtide/data/examples/src/testfmri +41 -9
- rapidtide/data/examples/src/testhappy +8 -8
- rapidtide/dlfilter.py +21 -22
- rapidtide/dlfiltertorch.py +18 -19
- rapidtide/filter.py +4 -4
- rapidtide/fit.py +18 -18
- rapidtide/happy_supportfuncs.py +84 -82
- rapidtide/helper_classes.py +2 -2
- rapidtide/io.py +88 -83
- rapidtide/linfitfiltpass.py +30 -49
- rapidtide/makelaggedtcs.py +11 -16
- rapidtide/maskutil.py +30 -14
- rapidtide/miscmath.py +2 -2
- rapidtide/patchmatch.py +10 -11
- rapidtide/peakeval.py +1 -3
- rapidtide/ppgproc.py +3 -3
- rapidtide/qualitycheck.py +2 -2
- rapidtide/refinedelay.py +12 -3
- rapidtide/refineregressor.py +20 -29
- rapidtide/scripts/showxcorr_legacy.py +7 -7
- rapidtide/scripts/stupidramtricks.py +15 -17
- rapidtide/simFuncClasses.py +2 -2
- rapidtide/simfuncfit.py +27 -41
- rapidtide/tests/test_cleanregressor.py +1 -2
- rapidtide/tests/test_fullrunhappy_v3.py +11 -5
- rapidtide/tests/test_fullrunhappy_v4.py +9 -1
- rapidtide/tests/test_getparsers.py +11 -3
- rapidtide/tests/test_refinedelay.py +0 -1
- rapidtide/tests/test_simroundtrip.py +8 -0
- rapidtide/tests/test_stcorrelate.py +3 -1
- rapidtide/util.py +6 -6
- rapidtide/voxelData.py +1 -1
- rapidtide/wiener.py +122 -16
- rapidtide/wiener2.py +3 -3
- rapidtide/workflows/applyppgproc.py +33 -15
- rapidtide/workflows/calcSimFuncMap.py +11 -22
- rapidtide/workflows/ccorrica.py +4 -2
- rapidtide/workflows/cleanregressor.py +6 -11
- rapidtide/workflows/delayvar.py +8 -13
- rapidtide/workflows/fitSimFuncMap.py +2 -9
- rapidtide/workflows/happy.py +6 -6
- rapidtide/workflows/happy_parser.py +36 -25
- rapidtide/workflows/pairproc.py +10 -2
- rapidtide/workflows/pixelcomp.py +1 -2
- rapidtide/workflows/rankimage.py +1 -1
- rapidtide/workflows/rapidtide.py +98 -63
- rapidtide/workflows/refineDelayMap.py +7 -6
- rapidtide/workflows/refineRegressor.py +6 -16
- rapidtide/workflows/regressfrommaps.py +9 -6
- rapidtide/workflows/retrolagtcs.py +5 -7
- rapidtide/workflows/retroregress.py +11 -17
- rapidtide/workflows/roisummarize.py +11 -10
- rapidtide/workflows/showarbcorr.py +2 -2
- rapidtide/workflows/showxcorrx.py +6 -6
- rapidtide/workflows/simdata.py +31 -31
- rapidtide/workflows/spatialmi.py +0 -1
- rapidtide/workflows/tidepool.py +6 -4
- {rapidtide-3.1.dist-info → rapidtide-3.1.1.dist-info}/METADATA +8 -7
- {rapidtide-3.1.dist-info → rapidtide-3.1.1.dist-info}/RECORD +69 -70
- rapidtide/wiener_doc.py +0 -255
- {rapidtide-3.1.dist-info → rapidtide-3.1.1.dist-info}/WHEEL +0 -0
- {rapidtide-3.1.dist-info → rapidtide-3.1.1.dist-info}/entry_points.txt +0 -0
- {rapidtide-3.1.dist-info → rapidtide-3.1.1.dist-info}/licenses/LICENSE +0 -0
- {rapidtide-3.1.dist-info → rapidtide-3.1.1.dist-info}/top_level.txt +0 -0
rapidtide/OrthoImageItem.py
CHANGED
|
@@ -843,11 +843,11 @@ class OrthoImageItem(QtWidgets.QWidget):
|
|
|
843
843
|
|
|
844
844
|
Parameters
|
|
845
845
|
----------
|
|
846
|
-
theimage :
|
|
846
|
+
theimage : NDArray
|
|
847
847
|
Input image array to be mapped using the lookup table
|
|
848
|
-
mask :
|
|
848
|
+
mask : NDArray
|
|
849
849
|
Mask array where values less than 1 will be set to transparent (alpha = 0)
|
|
850
|
-
theLUT :
|
|
850
|
+
theLUT : NDArray
|
|
851
851
|
Lookup table array for color mapping, typically with shape (N, 4) for RGBA values
|
|
852
852
|
dispmin : float
|
|
853
853
|
Minimum display value for scaling the input image
|
|
@@ -856,7 +856,7 @@ class OrthoImageItem(QtWidgets.QWidget):
|
|
|
856
856
|
|
|
857
857
|
Returns
|
|
858
858
|
-------
|
|
859
|
-
|
|
859
|
+
NDArray
|
|
860
860
|
Mapped image array with the same shape as input image, with colors applied
|
|
861
861
|
from the lookup table and masked regions set to transparent
|
|
862
862
|
|
rapidtide/_version.py
CHANGED
|
@@ -8,11 +8,11 @@ import json
|
|
|
8
8
|
|
|
9
9
|
version_json = '''
|
|
10
10
|
{
|
|
11
|
-
"date": "2025-11-
|
|
11
|
+
"date": "2025-11-17T10:45:04-0500",
|
|
12
12
|
"dirty": false,
|
|
13
13
|
"error": null,
|
|
14
|
-
"full-revisionid": "
|
|
15
|
-
"version": "3.1"
|
|
14
|
+
"full-revisionid": "81d19a032c3769c614d87b9bb4d14bcd71cfaf18",
|
|
15
|
+
"version": "3.1.1"
|
|
16
16
|
}
|
|
17
17
|
''' # END VERSION_JSON
|
|
18
18
|
|
rapidtide/calccoherence.py
CHANGED
|
@@ -227,15 +227,15 @@ def coherencepass(
|
|
|
227
227
|
|
|
228
228
|
Parameters
|
|
229
229
|
----------
|
|
230
|
-
fmridata :
|
|
230
|
+
fmridata : NDArray
|
|
231
231
|
Input fMRI data array with shape (time, voxels).
|
|
232
232
|
theCoherer : Any
|
|
233
233
|
Object or function used to perform coherence calculations.
|
|
234
|
-
coherencefunc :
|
|
234
|
+
coherencefunc : NDArray
|
|
235
235
|
Array to store coherence function results for each voxel.
|
|
236
|
-
coherencepeakval :
|
|
236
|
+
coherencepeakval : NDArray
|
|
237
237
|
Array to store peak coherence values for each voxel.
|
|
238
|
-
coherencepeakfreq :
|
|
238
|
+
coherencepeakfreq : NDArray
|
|
239
239
|
Array to store peak coherence frequencies for each voxel.
|
|
240
240
|
alt : bool, optional
|
|
241
241
|
If True, use alternative coherence calculation method. Default is False.
|
rapidtide/calcnullsimfunc.py
CHANGED
|
@@ -216,8 +216,7 @@ def getNullDistributionData(
|
|
|
216
216
|
showprogressbar: bool = True,
|
|
217
217
|
chunksize: int = 1000,
|
|
218
218
|
permutationmethod: str = "shuffle",
|
|
219
|
-
|
|
220
|
-
rt_floattype: str = "float64",
|
|
219
|
+
rt_floattype: np.dtype = np.float64,
|
|
221
220
|
debug: bool = False,
|
|
222
221
|
) -> NDArray:
|
|
223
222
|
"""
|
|
@@ -249,10 +248,8 @@ def getNullDistributionData(
|
|
|
249
248
|
Size of chunks for multiprocessing. Default is 1000.
|
|
250
249
|
permutationmethod : str, optional
|
|
251
250
|
Permutation method to use ('shuffle' or other supported methods). Default is 'shuffle'.
|
|
252
|
-
rt_floatset : type, optional
|
|
253
|
-
The floating-point type to use for internal calculations. Default is np.float64.
|
|
254
251
|
rt_floattype : str, optional
|
|
255
|
-
String representation of the floating-point type. Default is
|
|
252
|
+
String representation of the floating-point type. Default is np.float64.
|
|
256
253
|
debug : bool, optional
|
|
257
254
|
If True, enable debug output. Default is False.
|
|
258
255
|
|
rapidtide/calcsimfunc.py
CHANGED
|
@@ -236,8 +236,7 @@ def correlationpass(
|
|
|
236
236
|
interptype: str = "univariate",
|
|
237
237
|
showprogressbar: bool = True,
|
|
238
238
|
chunksize: int = 1000,
|
|
239
|
-
|
|
240
|
-
rt_floattype: str = "float64",
|
|
239
|
+
rt_floattype: np.dtype = np.float64,
|
|
241
240
|
debug: bool = False,
|
|
242
241
|
) -> tuple[int, list[float], NDArray]:
|
|
243
242
|
"""
|
|
@@ -279,8 +278,6 @@ def correlationpass(
|
|
|
279
278
|
Whether to display a progress bar. Default is True.
|
|
280
279
|
chunksize : int, optional
|
|
281
280
|
Size of chunks for multiprocessing. Default is 1000.
|
|
282
|
-
rt_floatset : type, optional
|
|
283
|
-
Floating-point type for internal computations. Default is np.float64.
|
|
284
281
|
rt_floattype : str, optional
|
|
285
282
|
String representation of floating-point type. Default is 'float64'.
|
|
286
283
|
debug : bool, optional
|
rapidtide/correlate.py
CHANGED
|
@@ -253,10 +253,11 @@ def shorttermcorr_1D(
|
|
|
253
253
|
detrendorder=detrendorder,
|
|
254
254
|
windowfunc=windowfunc,
|
|
255
255
|
)
|
|
256
|
-
|
|
256
|
+
thepearsonresult = sp.stats.pearsonr(dataseg1, dataseg2)
|
|
257
|
+
thepcorrR, thepcorrp = thepearsonresult.statistic, thepearsonresult.pvalue
|
|
257
258
|
times.append(i * sampletime)
|
|
258
|
-
corrpertime.append(
|
|
259
|
-
ppertime.append(
|
|
259
|
+
corrpertime.append(thepcorrR)
|
|
260
|
+
ppertime.append(thepcorrp)
|
|
260
261
|
return (
|
|
261
262
|
np.asarray(times, dtype="float64"),
|
|
262
263
|
np.asarray(corrpertime, dtype="float64"),
|
|
@@ -483,50 +484,50 @@ def mutual_info_2d_fast(
|
|
|
483
484
|
debug: bool = False,
|
|
484
485
|
) -> float:
|
|
485
486
|
"""
|
|
486
|
-
|
|
487
|
+
Compute (normalized) mutual information between two 1D variates from a joint histogram.
|
|
487
488
|
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
|
|
491
|
-
|
|
492
|
-
|
|
493
|
-
|
|
494
|
-
|
|
495
|
-
|
|
496
|
-
|
|
497
|
-
|
|
498
|
-
|
|
499
|
-
|
|
500
|
-
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
|
|
489
|
+
Parameters
|
|
490
|
+
----------
|
|
491
|
+
x : 1D NDArray[np.floating[Any]]
|
|
492
|
+
First variable.
|
|
493
|
+
y : 1D NDArray[np.floating[Any]]
|
|
494
|
+
Second variable.
|
|
495
|
+
bins : tuple of NDArray
|
|
496
|
+
Bin edges for the histogram. The first element corresponds to `x` and the second to `y`.
|
|
497
|
+
sigma : float, optional
|
|
498
|
+
Sigma for Gaussian smoothing of the joint histogram. Default is 1.
|
|
499
|
+
normalized : bool, optional
|
|
500
|
+
If True, compute normalized mutual information as defined in [1]_. Default is True.
|
|
501
|
+
EPS : float, optional
|
|
502
|
+
Small constant to avoid numerical errors in logarithms. Default is 1e-6.
|
|
503
|
+
debug : bool, optional
|
|
504
|
+
If True, print intermediate values for debugging. Default is False.
|
|
504
505
|
|
|
505
|
-
|
|
506
|
-
|
|
507
|
-
|
|
508
|
-
|
|
506
|
+
Returns
|
|
507
|
+
-------
|
|
508
|
+
float
|
|
509
|
+
The computed mutual information (or normalized mutual information if `normalized=True`).
|
|
509
510
|
|
|
510
|
-
|
|
511
|
-
|
|
512
|
-
|
|
513
|
-
|
|
511
|
+
Notes
|
|
512
|
+
-----
|
|
513
|
+
This function computes mutual information using a 2D histogram and Gaussian smoothing.
|
|
514
|
+
The normalization follows the approach described in [1]_.
|
|
514
515
|
|
|
515
|
-
|
|
516
|
-
|
|
517
|
-
|
|
518
|
-
|
|
519
|
-
|
|
516
|
+
References
|
|
517
|
+
----------
|
|
518
|
+
.. [1] Colin Studholme, David John Hawkes, Derek L.G. Hill (1998).
|
|
519
|
+
"Normalized entropy measure for multimodality image alignment".
|
|
520
|
+
in Proc. Medical Imaging 1998, vol. 3338, San Diego, CA, pp. 132-143.
|
|
520
521
|
|
|
521
|
-
|
|
522
|
-
|
|
523
|
-
|
|
524
|
-
|
|
525
|
-
|
|
526
|
-
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
|
|
522
|
+
Examples
|
|
523
|
+
--------
|
|
524
|
+
>>> import numpy as np
|
|
525
|
+
>>> x = np.random.randn(1000)
|
|
526
|
+
>>> y = np.random.randn(1000)
|
|
527
|
+
>>> bins = (np.linspace(-3, 3, 64), np.linspace(-3, 3, 64))
|
|
528
|
+
>>> mi = mutual_info_2d_fast(x, y, bins)
|
|
529
|
+
>>> print(mi)
|
|
530
|
+
"""
|
|
530
531
|
xstart = bins[0][0]
|
|
531
532
|
xend = bins[0][-1]
|
|
532
533
|
ystart = bins[1][0]
|
|
@@ -552,50 +553,50 @@ def mutual_info_2d(
|
|
|
552
553
|
debug: bool = False,
|
|
553
554
|
) -> float:
|
|
554
555
|
"""
|
|
555
|
-
|
|
556
|
+
Compute (normalized) mutual information between two 1D variates from a joint histogram.
|
|
556
557
|
|
|
557
|
-
|
|
558
|
-
|
|
559
|
-
|
|
560
|
-
|
|
561
|
-
|
|
562
|
-
|
|
563
|
-
|
|
564
|
-
|
|
565
|
-
|
|
566
|
-
|
|
567
|
-
|
|
568
|
-
|
|
569
|
-
|
|
570
|
-
|
|
571
|
-
|
|
572
|
-
|
|
573
|
-
|
|
558
|
+
Parameters
|
|
559
|
+
----------
|
|
560
|
+
x : 1D NDArray[np.floating[Any]]
|
|
561
|
+
First variable.
|
|
562
|
+
y : 1D NDArray[np.floating[Any]]
|
|
563
|
+
Second variable.
|
|
564
|
+
bins : tuple of int
|
|
565
|
+
Number of bins for the histogram. The first element is the number of bins for `x`
|
|
566
|
+
and the second for `y`.
|
|
567
|
+
sigma : float, optional
|
|
568
|
+
Sigma for Gaussian smoothing of the joint histogram. Default is 1.
|
|
569
|
+
normalized : bool, optional
|
|
570
|
+
If True, compute normalized mutual information as defined in [1]_. Default is True.
|
|
571
|
+
EPS : float, optional
|
|
572
|
+
Small constant to avoid numerical errors in logarithms. Default is 1e-6.
|
|
573
|
+
debug : bool, optional
|
|
574
|
+
If True, print intermediate values for debugging. Default is False.
|
|
574
575
|
|
|
575
|
-
|
|
576
|
-
|
|
577
|
-
|
|
578
|
-
|
|
576
|
+
Returns
|
|
577
|
+
-------
|
|
578
|
+
float
|
|
579
|
+
The computed mutual information (or normalized mutual information if `normalized=True`).
|
|
579
580
|
|
|
580
|
-
|
|
581
|
-
|
|
582
|
-
|
|
583
|
-
|
|
581
|
+
Notes
|
|
582
|
+
-----
|
|
583
|
+
This function computes mutual information using a 2D histogram and Gaussian smoothing.
|
|
584
|
+
The normalization follows the approach described in [1]_.
|
|
584
585
|
|
|
585
|
-
|
|
586
|
-
|
|
587
|
-
|
|
588
|
-
|
|
589
|
-
|
|
586
|
+
References
|
|
587
|
+
----------
|
|
588
|
+
.. [1] Colin Studholme, David John Hawkes, Derek L.G. Hill (1998).
|
|
589
|
+
"Normalized entropy measure for multimodality image alignment".
|
|
590
|
+
in Proc. Medical Imaging 1998, vol. 3338, San Diego, CA, pp. 132-143.
|
|
590
591
|
|
|
591
|
-
|
|
592
|
-
|
|
593
|
-
|
|
594
|
-
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
|
|
592
|
+
Examples
|
|
593
|
+
--------
|
|
594
|
+
>>> import numpy as np
|
|
595
|
+
>>> x = np.random.randn(1000)
|
|
596
|
+
>>> y = np.random.randn(1000)
|
|
597
|
+
>>> mi = mutual_info_2d(x, y)
|
|
598
|
+
>>> print(mi)
|
|
599
|
+
"""
|
|
599
600
|
jh, xbins, ybins = np.histogram2d(x, y, bins=bins)
|
|
600
601
|
if debug:
|
|
601
602
|
print(f"{xbins} {ybins}")
|
|
@@ -604,60 +605,60 @@ def mutual_info_2d(
|
|
|
604
605
|
|
|
605
606
|
|
|
606
607
|
def proc_MI_histogram(
|
|
607
|
-
|
|
608
|
-
|
|
609
|
-
|
|
610
|
-
|
|
611
|
-
|
|
608
|
+
jh: NDArray[np.floating[Any]],
|
|
609
|
+
sigma: float = 1,
|
|
610
|
+
normalized: bool = True,
|
|
611
|
+
EPS: float = 1.0e-6,
|
|
612
|
+
debug: bool = False,
|
|
612
613
|
) -> float:
|
|
613
614
|
"""
|
|
614
|
-
|
|
615
|
+
Compute the mutual information (MI) between two variables from a joint histogram.
|
|
615
616
|
|
|
616
|
-
|
|
617
|
-
|
|
618
|
-
|
|
617
|
+
This function calculates mutual information using the joint histogram of two variables,
|
|
618
|
+
applying Gaussian smoothing and computing entropy-based MI. It supports both normalized
|
|
619
|
+
and unnormalized versions of the mutual information.
|
|
619
620
|
|
|
620
|
-
|
|
621
|
-
|
|
622
|
-
|
|
623
|
-
|
|
624
|
-
|
|
625
|
-
|
|
626
|
-
|
|
627
|
-
|
|
628
|
-
|
|
629
|
-
|
|
630
|
-
|
|
631
|
-
|
|
632
|
-
|
|
633
|
-
|
|
621
|
+
Parameters
|
|
622
|
+
----------
|
|
623
|
+
jh : ndarray of shape (m, n)
|
|
624
|
+
Joint histogram of two variables. Should be a 2D array of floating point values.
|
|
625
|
+
sigma : float, optional
|
|
626
|
+
Standard deviation for Gaussian smoothing of the joint histogram. Default is 1.0.
|
|
627
|
+
normalized : bool, optional
|
|
628
|
+
If True, returns normalized mutual information. If False, returns unnormalized
|
|
629
|
+
mutual information. Default is True.
|
|
630
|
+
EPS : float, optional
|
|
631
|
+
Small constant added to the histogram to avoid numerical issues in log computation.
|
|
632
|
+
Default is 1e-6.
|
|
633
|
+
debug : bool, optional
|
|
634
|
+
If True, prints intermediate values for debugging purposes. Default is False.
|
|
634
635
|
|
|
635
|
-
|
|
636
|
-
|
|
637
|
-
|
|
638
|
-
|
|
639
|
-
|
|
636
|
+
Returns
|
|
637
|
+
-------
|
|
638
|
+
float
|
|
639
|
+
The computed mutual information (MI) between the two variables. The value is
|
|
640
|
+
positive and indicates the amount of information shared between the variables.
|
|
640
641
|
|
|
641
|
-
|
|
642
|
-
|
|
643
|
-
|
|
644
|
-
|
|
642
|
+
Notes
|
|
643
|
+
-----
|
|
644
|
+
The function applies Gaussian smoothing to the joint histogram before computing
|
|
645
|
+
marginal and joint entropies. The mutual information is computed as:
|
|
645
646
|
|
|
646
|
-
|
|
647
|
-
|
|
647
|
+
.. math::
|
|
648
|
+
MI = \\frac{H(X) + H(Y)}{H(X,Y)} - 1
|
|
648
649
|
|
|
649
|
-
|
|
650
|
-
|
|
650
|
+
where :math:`H(X)`, :math:`H(Y)`, and :math:`H(X,Y)` are the marginal and joint entropies,
|
|
651
|
+
respectively. If `normalized=False`, the unnormalized MI is returned instead.
|
|
651
652
|
|
|
652
|
-
|
|
653
|
-
|
|
654
|
-
|
|
655
|
-
|
|
656
|
-
|
|
657
|
-
|
|
658
|
-
|
|
659
|
-
|
|
660
|
-
|
|
653
|
+
Examples
|
|
654
|
+
--------
|
|
655
|
+
>>> import numpy as np
|
|
656
|
+
>>> from scipy import ndimage
|
|
657
|
+
>>> jh = np.random.rand(10, 10)
|
|
658
|
+
>>> mi = proc_MI_histogram(jh, sigma=0.5, normalized=True)
|
|
659
|
+
>>> print(mi)
|
|
660
|
+
0.123456789
|
|
661
|
+
"""
|
|
661
662
|
|
|
662
663
|
# smooth the jh with a gaussian filter of given sigma
|
|
663
664
|
sp.ndimage.gaussian_filter(jh, sigma=sigma, mode="constant", output=jh)
|
|
@@ -932,7 +933,9 @@ def mutual_info_to_r(themi: float, d: int = 1) -> float:
|
|
|
932
933
|
def delayedcorr(
|
|
933
934
|
data1: NDArray, data2: NDArray, delayval: float, timestep: float
|
|
934
935
|
) -> Tuple[float, float]:
|
|
935
|
-
return sp.stats.pearsonr(
|
|
936
|
+
return sp.stats.pearsonr(
|
|
937
|
+
data1, tide_resample.timeshift(data2, delayval / timestep, 30).statistic
|
|
938
|
+
)
|
|
936
939
|
|
|
937
940
|
|
|
938
941
|
def cepstraldelay(
|
|
@@ -1,5 +1,41 @@
|
|
|
1
1
|
#!/bin/bash
|
|
2
2
|
|
|
3
|
+
#rapidtide \
|
|
4
|
+
# --spatialfilt 2.5 \
|
|
5
|
+
# --nprocs -1 \
|
|
6
|
+
# --searchrange -7.5 30 \
|
|
7
|
+
# --simcalcrange 50 -1 \
|
|
8
|
+
# --outputlevel more \
|
|
9
|
+
# --graymattermask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_GRAY \
|
|
10
|
+
# --brainmask sub-RAPIDTIDETEST_brainmask.nii.gz \
|
|
11
|
+
# --whitemattermask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_WHITE \
|
|
12
|
+
# --csfmask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_CSF \
|
|
13
|
+
# --cleanrefined \
|
|
14
|
+
# --nofitfilt \
|
|
15
|
+
# --refinedelayeachpass \
|
|
16
|
+
# --similaritymetric correlation \
|
|
17
|
+
# --nonumba \
|
|
18
|
+
# sub-RAPIDTIDETEST.nii.gz \
|
|
19
|
+
# ../dst/sub-RAPIDTIDETEST_nonumba
|
|
20
|
+
|
|
21
|
+
#rapidtide \
|
|
22
|
+
# --spatialfilt 2.5 \
|
|
23
|
+
# --nprocs -1 \
|
|
24
|
+
# --searchrange -7.5 30 \
|
|
25
|
+
# --simcalcrange 50 -1 \
|
|
26
|
+
# --outputlevel more \
|
|
27
|
+
# --graymattermask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_GRAY \
|
|
28
|
+
# --brainmask sub-RAPIDTIDETEST_brainmask.nii.gz \
|
|
29
|
+
# --whitemattermask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_WHITE \
|
|
30
|
+
# --csfmask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_CSF \
|
|
31
|
+
# --cleanrefined \
|
|
32
|
+
# --nofitfilt \
|
|
33
|
+
# --refinedelayeachpass \
|
|
34
|
+
# --similaritymetric correlation \
|
|
35
|
+
# --spcalculation \
|
|
36
|
+
# sub-RAPIDTIDETEST.nii.gz \
|
|
37
|
+
# ../dst/sub-RAPIDTIDETEST_single
|
|
38
|
+
|
|
3
39
|
rapidtide \
|
|
4
40
|
--spatialfilt 2.5 \
|
|
5
41
|
--nprocs -1 \
|
|
@@ -12,13 +48,12 @@ rapidtide \
|
|
|
12
48
|
--csfmask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_CSF \
|
|
13
49
|
--cleanrefined \
|
|
14
50
|
--nofitfilt \
|
|
15
|
-
--
|
|
16
|
-
--similaritymetric correlation \
|
|
17
|
-
--nonumba \
|
|
51
|
+
--focaldebug \
|
|
18
52
|
sub-RAPIDTIDETEST.nii.gz \
|
|
19
|
-
../dst/sub-
|
|
53
|
+
../dst/sub-RAPIDTIDETEST
|
|
20
54
|
|
|
21
55
|
rapidtide \
|
|
56
|
+
--CVR \
|
|
22
57
|
--spatialfilt 2.5 \
|
|
23
58
|
--nprocs -1 \
|
|
24
59
|
--searchrange -7.5 30 \
|
|
@@ -28,12 +63,9 @@ rapidtide \
|
|
|
28
63
|
--brainmask sub-RAPIDTIDETEST_brainmask.nii.gz \
|
|
29
64
|
--whitemattermask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_WHITE \
|
|
30
65
|
--csfmask sub-RAPIDTIDETEST_synthseg.nii.gz:SSEG_CSF \
|
|
31
|
-
--
|
|
32
|
-
--nofitfilt \
|
|
33
|
-
--refinedelayeachpass \
|
|
34
|
-
--similaritymetric correlation \
|
|
66
|
+
--regressor ../dst/sub-RAPIDTIDETEST_desc-movingregressor_timeseries.json:pass3 \
|
|
35
67
|
sub-RAPIDTIDETEST.nii.gz \
|
|
36
|
-
../dst/
|
|
68
|
+
../dst/CVRTEST
|
|
37
69
|
|
|
38
70
|
#rapidtide \
|
|
39
71
|
#--spatialfilt 2.5 \
|
|
@@ -95,11 +95,11 @@ happy \
|
|
|
95
95
|
--usenewvesselmethod \
|
|
96
96
|
--nprocs -1
|
|
97
97
|
|
|
98
|
-
happy \
|
|
99
|
-
sub-HAPPYTEST.nii.gz \
|
|
100
|
-
sub-HAPPYTEST.json \
|
|
101
|
-
../dst/happy_tensorflow \
|
|
102
|
-
--increaseoutputlevel \
|
|
103
|
-
--usenewvesselmethod \
|
|
104
|
-
--usetensorflow \
|
|
105
|
-
--nprocs -1
|
|
98
|
+
#happy \
|
|
99
|
+
# sub-HAPPYTEST.nii.gz \
|
|
100
|
+
# sub-HAPPYTEST.json \
|
|
101
|
+
# ../dst/happy_tensorflow \
|
|
102
|
+
# --increaseoutputlevel \
|
|
103
|
+
# --usenewvesselmethod \
|
|
104
|
+
# --usetensorflow \
|
|
105
|
+
# --nprocs -1
|