rapidtide 3.0a11__py3-none-any.whl → 3.0a12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -80,6 +80,7 @@ DEFAULT_REFINE_PRENORM = "var"
80
80
  DEFAULT_REFINE_WEIGHTING = "None"
81
81
  DEFAULT_REFINE_PCACOMPONENTS = 0.8
82
82
  DEFAULT_GLMDERIVS = 0
83
+ DEFAULT_REFINEGLMDERIVS = 1
83
84
 
84
85
  DEFAULT_DENOISING_LAGMIN = -10.0
85
86
  DEFAULT_DENOISING_LAGMAX = 10.0
@@ -309,7 +310,7 @@ def _get_parser():
309
310
  dest="realtr",
310
311
  action="store",
311
312
  metavar="TSTEP",
312
- type=lambda x: pf.is_float(parser, x),
313
+ type=lambda x: pf.is_float(parser, x, minval=0.0),
313
314
  help=(
314
315
  "Set the timestep of the data file to TSTEP. "
315
316
  "This will override the TR in an "
@@ -395,7 +396,7 @@ def _get_parser():
395
396
  "--detrendorder",
396
397
  dest="detrendorder",
397
398
  action="store",
398
- type=int,
399
+ type=lambda x: pf.is_int(parser, x, minval=0),
399
400
  metavar="ORDER",
400
401
  help=(f"Set order of trend removal (0 to disable). Default is {DEFAULT_DETREND_ORDER}."),
401
402
  default=DEFAULT_DETREND_ORDER,
@@ -514,7 +515,7 @@ def _get_parser():
514
515
  "--confoundpowers",
515
516
  dest="confound_power",
516
517
  metavar="N",
517
- type=int,
518
+ type=lambda x: pf.is_int(parser, x, minval=1),
518
519
  help=(
519
520
  "Include powers of each confound regressor up to order N. Default is 1 (no expansion). "
520
521
  ),
@@ -580,7 +581,7 @@ def _get_parser():
580
581
  "--numskip",
581
582
  dest="preprocskip",
582
583
  action="store",
583
- type=int,
584
+ type=lambda x: pf.is_int(parser, x, minval=0),
584
585
  metavar="SKIP",
585
586
  help=(
586
587
  "SKIP TRs were previously deleted during "
@@ -672,7 +673,7 @@ def _get_parser():
672
673
  "--regressorfreq",
673
674
  dest="inputfreq",
674
675
  action="store",
675
- type=lambda x: pf.is_float(parser, x),
676
+ type=lambda x: pf.is_float(parser, x, minval=0.0),
676
677
  metavar="FREQ",
677
678
  help=(
678
679
  "Probe regressor in file has sample "
@@ -888,7 +889,7 @@ def _get_parser():
888
889
  "--despecklepasses",
889
890
  dest="despeckle_passes",
890
891
  action=pf.IndicateSpecifiedAction,
891
- type=int,
892
+ type=lambda x: pf.is_int(parser, x, minval=0),
892
893
  metavar="PASSES",
893
894
  help=(
894
895
  "Detect and refit suspect correlations to "
@@ -943,7 +944,7 @@ def _get_parser():
943
944
  "--passes",
944
945
  dest="passes",
945
946
  action=pf.IndicateSpecifiedAction,
946
- type=int,
947
+ type=lambda x: pf.is_int(parser, x, minval=1),
947
948
  metavar="PASSES",
948
949
  help=("Set the number of processing passes to PASSES. " f"Default is {DEFAULT_PASSES}."),
949
950
  default=DEFAULT_PASSES,
@@ -1157,7 +1158,7 @@ def _get_parser():
1157
1158
  "--maxpasses",
1158
1159
  dest="maxpasses",
1159
1160
  action="store",
1160
- type=int,
1161
+ type=lambda x: pf.is_int(parser, x, minval=1),
1161
1162
  metavar="MAXPASSES",
1162
1163
  help=(
1163
1164
  "Terminate refinement after MAXPASSES passes, whether or not convergence has occurred. "
@@ -1203,7 +1204,7 @@ def _get_parser():
1203
1204
  "--glmderivs",
1204
1205
  dest="glmderivs",
1205
1206
  action="store",
1206
- type=int,
1207
+ type=lambda x: pf.is_int(parser, x, minval=0),
1207
1208
  metavar="NDERIVS",
1208
1209
  help=(
1209
1210
  f"When doing final GLM, include derivatives up to NDERIVS order. Default is {DEFAULT_GLMDERIVS}"
@@ -1221,7 +1222,9 @@ def _get_parser():
1221
1222
  "--refinedelay",
1222
1223
  dest="dummy",
1223
1224
  action="store_true",
1224
- help=("Calculate a refined delay map using GLM information. ***DEPRECATED*** - this is now on by default."),
1225
+ help=(
1226
+ "Calculate a refined delay map using GLM information. ***DEPRECATED*** - this is now on by default."
1227
+ ),
1225
1228
  default=True,
1226
1229
  )
1227
1230
  glm.add_argument(
@@ -1297,7 +1300,7 @@ def _get_parser():
1297
1300
  "--histlen", # was -h
1298
1301
  dest="histlen",
1299
1302
  action="store",
1300
- type=int,
1303
+ type=lambda x: pf.is_int(parser, x, minval=5),
1301
1304
  metavar="HISTLEN",
1302
1305
  help=(f"Change the histogram length to HISTLEN. Default is {DEFAULT_HISTLEN}."),
1303
1306
  default=DEFAULT_HISTLEN,
@@ -1349,7 +1352,7 @@ def _get_parser():
1349
1352
  "--mklthreads",
1350
1353
  dest="mklthreads",
1351
1354
  action="store",
1352
- type=int,
1355
+ type=lambda x: pf.is_int(parser, x, minval=1),
1353
1356
  metavar="MKLTHREADS",
1354
1357
  help=(
1355
1358
  "If mkl library is installed, use no more than MKLTHREADS worker "
@@ -1463,6 +1466,25 @@ def _get_parser():
1463
1466
  experimental = parser.add_argument_group(
1464
1467
  "Experimental options (not fully tested, or not tested at all, may not work). Beware!"
1465
1468
  )
1469
+ experimental.add_argument(
1470
+ "--refineglmderivs",
1471
+ dest="refineglmderivs",
1472
+ action="store",
1473
+ type=lambda x: pf.is_int(parser, x, minval=1),
1474
+ metavar="NDERIVS",
1475
+ help=(
1476
+ f"When doing GLM for delay refinement, include derivatives up to NDERIVS order. Must be 1 or more. "
1477
+ f"Default is {DEFAULT_REFINEGLMDERIVS}"
1478
+ ),
1479
+ default=DEFAULT_REFINEGLMDERIVS,
1480
+ )
1481
+ experimental.add_argument(
1482
+ "--dofinalrefine",
1483
+ dest="dofinalrefine",
1484
+ action="store_true",
1485
+ help=("Do regressor refinement on the final pass."),
1486
+ default=False,
1487
+ )
1466
1488
  experimental.add_argument(
1467
1489
  "--territorymap",
1468
1490
  dest="territorymap",
@@ -1542,7 +1564,7 @@ def _get_parser():
1542
1564
  "--noisefreq",
1543
1565
  dest="noisefreq",
1544
1566
  action="store",
1545
- type=lambda x: pf.is_float(parser, x),
1567
+ type=lambda x: pf.is_float(parser, x, minval=0.0),
1546
1568
  metavar="FREQ",
1547
1569
  help=(
1548
1570
  "Noise timecourse in file has sample "
@@ -57,6 +57,7 @@ DEFAULT_REFINEDELAYMINDELAY = -5.0
57
57
  DEFAULT_REFINEDELAYMAXDELAY = 5.0
58
58
  DEFAULT_REFINEDELAYNUMPOINTS = 501
59
59
  DEFAULT_DELAYOFFSETSPATIALFILT = -1
60
+ DEFAULT_REFINEGLMDERIVS = 1
60
61
 
61
62
 
62
63
  def _get_parser():
@@ -91,7 +92,7 @@ def _get_parser():
91
92
  "--glmderivs",
92
93
  dest="glmderivs",
93
94
  action="store",
94
- type=int,
95
+ type=lambda x: pf.is_int(parser, x, minval=0),
95
96
  metavar="NDERIVS",
96
97
  help=(
97
98
  f"When doing final GLM, include derivatives up to NDERIVS order. Default is {DEFAULT_GLMDERIVS}"
@@ -115,7 +116,7 @@ def _get_parser():
115
116
  "--numskip",
116
117
  dest="numskip",
117
118
  action="store",
118
- type=int,
119
+ type=lambda x: pf.is_int(parser, x, minval=0),
119
120
  metavar="NUMSKIP",
120
121
  help=("Skip NUMSKIP points at the beginning of the fmri file."),
121
122
  default=0,
@@ -213,6 +214,21 @@ def _get_parser():
213
214
  help=("Output lots of helpful information on a limited subset of operations."),
214
215
  default=False,
215
216
  )
217
+ experimental = parser.add_argument_group(
218
+ "Experimental options (not fully tested, or not tested at all, may not work). Beware!"
219
+ )
220
+ experimental.add_argument(
221
+ "--refineglmderivs",
222
+ dest="refineglmderivs",
223
+ action="store",
224
+ type=lambda x: pf.is_int(parser, x, minval=1),
225
+ metavar="NDERIVS",
226
+ help=(
227
+ f"When doing GLM for delay refinement, include derivatives up to NDERIVS order. Must be 1 or more. "
228
+ f"Default is {DEFAULT_REFINEGLMDERIVS}"
229
+ ),
230
+ default=DEFAULT_REFINEGLMDERIVS,
231
+ )
216
232
 
217
233
  return parser
218
234
 
@@ -430,7 +446,7 @@ def retroglm(args):
430
446
  print(f"{numvalidspatiallocs=}")
431
447
  internalvalidspaceshape = numvalidspatiallocs
432
448
  if args.refinedelay:
433
- derivaxissize = np.max([2, args.glmderivs + 1])
449
+ derivaxissize = np.max([args.refineglmderivs + 1, args.glmderivs + 1])
434
450
  else:
435
451
  derivaxissize = args.glmderivs + 1
436
452
  internalvalidspaceshapederivs = (
@@ -505,6 +521,7 @@ def retroglm(args):
505
521
  threshval = therunoptions["glmthreshval"]
506
522
  except KeyError:
507
523
  threshval = 0.0
524
+ therunoptions["glmthreshval"] = threshval
508
525
  mode = "glm"
509
526
 
510
527
  if args.debug or args.focaldebug:
@@ -579,54 +596,94 @@ def retroglm(args):
579
596
  glmmean,
580
597
  rvalue,
581
598
  r2value,
582
- fitNorm[:, :2],
583
- fitcoeff[:, :2],
599
+ fitNorm[:, : (args.refineglmderivs + 1)],
600
+ fitcoeff[:, : (args.refineglmderivs + 1)],
584
601
  movingsignal,
585
602
  lagtc,
586
603
  filtereddata,
587
604
  LGR,
588
605
  TimingLGR,
589
606
  therunoptions,
607
+ glmderivs=args.refineglmderivs,
590
608
  debug=args.debug,
591
609
  )
592
610
 
593
- medfiltglmderivratios, filteredglmderivratios, delayoffsetMAD = (
594
- tide_refinedelay.filterderivratios(
595
- glmderivratios,
596
- (xsize, ysize, numslices),
597
- validvoxels,
598
- (xdim, ydim, slicedim),
599
- gausssigma=args.delayoffsetgausssigma,
600
- patchthresh=args.delaypatchthresh,
601
- fileiscifti=False,
602
- textio=False,
603
- rt_floattype=rt_floattype,
611
+ if args.refineglmderivs == 1:
612
+ medfiltglmderivratios, filteredglmderivratios, delayoffsetMAD = (
613
+ tide_refinedelay.filterderivratios(
614
+ glmderivratios,
615
+ (xsize, ysize, numslices),
616
+ validvoxels,
617
+ (xdim, ydim, slicedim),
618
+ gausssigma=args.delayoffsetgausssigma,
619
+ patchthresh=args.delaypatchthresh,
620
+ fileiscifti=False,
621
+ textio=False,
622
+ rt_floattype=rt_floattype,
623
+ debug=args.debug,
624
+ )
625
+ )
626
+
627
+ # find the mapping of glm ratios to delays
628
+ tide_refinedelay.trainratiotooffset(
629
+ genlagtc,
630
+ initial_fmri_x,
631
+ outputname,
632
+ args.outputlevel,
633
+ mindelay=args.mindelay,
634
+ maxdelay=args.maxdelay,
635
+ numpoints=args.numpoints,
604
636
  debug=args.debug,
605
637
  )
606
- )
638
+ TimingLGR.info("Refinement calibration end")
639
+
640
+ # now calculate the delay offsets
641
+ TimingLGR.info("Calculating delay offsets")
642
+ delayoffset = np.zeros_like(filteredglmderivratios)
643
+ if args.focaldebug:
644
+ print(f"calculating delayoffsets for {filteredglmderivratios.shape[0]} voxels")
645
+ for i in range(filteredglmderivratios.shape[0]):
646
+ delayoffset[i] = tide_refinedelay.ratiotodelay(filteredglmderivratios[i])
647
+ """delayoffset[i] = tide_refinedelay.coffstodelay(
648
+ np.asarray([filteredglmderivratios[i]]),
649
+ mindelay=args.mindelay,
650
+ maxdelay=args.maxdelay,
651
+ )"""
652
+
653
+ refinedvoxelstoreport = filteredglmderivratios.shape[0]
654
+ else:
655
+ medfiltglmderivratios = np.zeros_like(glmderivratios)
656
+ filteredglmderivratios = np.zeros_like(glmderivratios)
657
+ delayoffsetMAD = np.zeros(args.refineglmderivs, dtype=float)
658
+ for i in range(args.refineglmderivs):
659
+ medfiltglmderivratios[i, :], filteredglmderivratios[i, :], delayoffsetMAD[i] = (
660
+ tide_refinedelay.filterderivratios(
661
+ glmderivratios[i, :],
662
+ (xsize, ysize, numslices),
663
+ validvoxels,
664
+ (xdim, ydim, slicedim),
665
+ gausssigma=args.delayoffsetgausssigma,
666
+ patchthresh=args.delaypatchthresh,
667
+ fileiscifti=False,
668
+ textio=False,
669
+ rt_floattype=rt_floattype,
670
+ debug=args.debug,
671
+ )
672
+ )
673
+
674
+ # now calculate the delay offsets
675
+ delayoffset = np.zeros_like(filteredglmderivratios[0, :])
676
+ if args.debug:
677
+ print(f"calculating delayoffsets for {filteredglmderivratios.shape[1]} voxels")
678
+ for i in range(filteredglmderivratios.shape[1]):
679
+ delayoffset[i] = tide_refinedelay.coffstodelay(
680
+ filteredglmderivratios[:, i],
681
+ mindelay=args.mindelay,
682
+ maxdelay=args.maxdelay,
683
+ )
684
+ refinedvoxelstoreport = filteredglmderivratios.shape[1]
607
685
 
608
- # find the mapping of glm ratios to delays
609
- tide_refinedelay.trainratiotooffset(
610
- genlagtc,
611
- initial_fmri_x,
612
- outputname,
613
- args.outputlevel,
614
- mindelay=args.mindelay,
615
- maxdelay=args.maxdelay,
616
- numpoints=args.numpoints,
617
- debug=args.debug,
618
- )
619
- TimingLGR.info("Refinement calibration end")
620
-
621
- # now calculate the delay offsets
622
- TimingLGR.info("Calculating delay offsets")
623
- delayoffset = filteredglmderivratios * 0.0
624
- if args.focaldebug:
625
- print(f"calculating delayoffsets for {filteredglmderivratios.shape[0]} voxels")
626
- for i in range(filteredglmderivratios.shape[0]):
627
- delayoffset[i] = tide_refinedelay.ratiotodelay(filteredglmderivratios[i])
628
686
  namesuffix = "_desc-delayoffset_hist"
629
-
630
687
  tide_stats.makeandsavehistogram(
631
688
  delayoffset,
632
689
  therunoptions["histlen"],
@@ -641,7 +698,7 @@ def retroglm(args):
641
698
  TimingLGR.info(
642
699
  "Delay offset calculation done",
643
700
  {
644
- "message2": filteredglmderivratios.shape[0],
701
+ "message2": refinedvoxelstoreport,
645
702
  "message3": "voxels",
646
703
  },
647
704
  )
@@ -824,28 +881,56 @@ def retroglm(args):
824
881
  ]
825
882
 
826
883
  if args.refinedelay:
884
+ if args.refineglmderivs > 1:
885
+ for i in range(args.refineglmderivs):
886
+ maplist += [
887
+ (
888
+ glmderivratios[i, :],
889
+ f"glmderivratios_{i}",
890
+ "map",
891
+ None,
892
+ f"Ratio of derivative {i+1} of delayed sLFO to the delayed sLFO",
893
+ ),
894
+ (
895
+ medfiltglmderivratios[i, :],
896
+ f"medfiltglmderivratios_{i}",
897
+ "map",
898
+ None,
899
+ f"Median filtered version of the glmderivratios_{i} map",
900
+ ),
901
+ (
902
+ filteredglmderivratios[i, :],
903
+ f"filteredglmderivratios_{i}",
904
+ "map",
905
+ None,
906
+ f"glmderivratios_{i}, with outliers patched using median filtered data",
907
+ ),
908
+ ]
909
+ else:
910
+ maplist += [
911
+ (
912
+ glmderivratios,
913
+ "glmderivratios",
914
+ "map",
915
+ None,
916
+ "Ratio of the first derivative of delayed sLFO to the delayed sLFO",
917
+ ),
918
+ (
919
+ medfiltglmderivratios,
920
+ "medfiltglmderivratios",
921
+ "map",
922
+ None,
923
+ "Median filtered version of the glmderivratios map",
924
+ ),
925
+ (
926
+ filteredglmderivratios,
927
+ "filteredglmderivratios",
928
+ "map",
929
+ None,
930
+ "glmderivratios, with outliers patched using median filtered data",
931
+ ),
932
+ ]
827
933
  maplist += [
828
- (
829
- glmderivratios,
830
- "glmderivratios",
831
- "map",
832
- None,
833
- "Ratio of the first derivative of delayed sLFO to the delayed sLFO",
834
- ),
835
- (
836
- medfiltglmderivratios,
837
- "medfiltglmderivratios",
838
- "map",
839
- None,
840
- "Median filtered version of the glmderivratios map",
841
- ),
842
- (
843
- filteredglmderivratios,
844
- "filteredglmderivratios",
845
- "map",
846
- None,
847
- "glmderivratios, with outliers patched using median filtered data",
848
- ),
849
934
  (
850
935
  delayoffset,
851
936
  "delayoffset",
@@ -1982,13 +1982,13 @@ def tidepool(args):
1982
1982
  "funcmask": "p_lt_0p050_mask",
1983
1983
  },
1984
1984
  "lagsigma": {
1985
- "colormap": gen_spectrum_state(),
1985
+ "colormap": gen_plasma_state(),
1986
1986
  "label": "Similarity width",
1987
1987
  "display": True,
1988
1988
  "funcmask": "p_lt_0p050_mask",
1989
1989
  },
1990
1990
  "MTT": {
1991
- "colormap": gen_spectrum_state(),
1991
+ "colormap": gen_plasma_state(),
1992
1992
  "label": "MTT",
1993
1993
  "display": extramaps,
1994
1994
  "funcmask": "p_lt_0p050_mask",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: rapidtide
3
- Version: 3.0a11
3
+ Version: 3.0a12
4
4
  Summary: Tools for performing correlation analysis on fMRI data.
5
5
  Author: Taylor Salo, Daniel M. Drucker, Ph.D., Jeffrey N Stout, Yaroslav O. Halchenko, Derek Monroe
6
6
  Author-email: "Blaise deB. Frederick" <blaise.frederick@gmail.com>
@@ -9,6 +9,7 @@ cloud/simple-cp-test,sha256=5ef8wmLfcKdny59BV6_DnAPj7O_mi0rOHdFZVN2iiLA,421
9
9
  rapidtide/Colortables.py,sha256=AQC-aHwgemxZNKtf8du7Oe08IKKxuOsUF1bDEdSyleY,5804
10
10
  rapidtide/OrthoImageItem.py,sha256=uN-fMX4vVB00-AFoUnfOXXq1qjLXruzOqYttNJYpIpM,21669
11
11
  rapidtide/RapidtideDataset.py,sha256=BEGznVDvLzL1Cd9TtuwicCYXcVug8hX1t-6qnEjMEDg,52239
12
+ rapidtide/Refiner.py,sha256=9__em_DB8apzId7joLC0L_eermTUVMWDN8P9I54Gurc,17223
12
13
  rapidtide/__init__.py,sha256=DrceP8tLrtTWV8PwS7YAgw6NuFkKAREFM7FsTaZob-s,96
13
14
  rapidtide/_version.py,sha256=cTDBv24D1_YgVeFU_x3GvlNlQD-clOji6E0Sb34osJY,24506
14
15
  rapidtide/calcandfitcorrpairs.py,sha256=UmCp9eSU--HCYd7frdO9ctnMeDK32D1Eb53b1hdzw9w,7397
@@ -21,7 +22,7 @@ rapidtide/externaltools.py,sha256=YhxuSn5z3v5E7PzB07yftXJGw95rs95Nmxbq4Wo2fhU,39
21
22
  rapidtide/fMRIData_class.py,sha256=TrR-MyIBEzbUgUq8oQVmjkddnrhxeN_rHlX-En0p4Ao,5102
22
23
  rapidtide/filter.py,sha256=Ci62Vcw_qKX--Hzut9kb6XmBLjEe773JyGkGJtnH2g4,71773
23
24
  rapidtide/fit.py,sha256=lAzLc19VAhq3QJFSbaCbAWCNDefxSCsJfjW5WLHABMk,67130
24
- rapidtide/glmpass.py,sha256=Krdgj-pP2Vtelr6qYtMgh2u2C-9thJGwp2FKiEzo-7M,15681
25
+ rapidtide/glmpass.py,sha256=1Wd91y9KrJm2jAccFe7DYBVZCQBab8mQ2TkjDdW1dRM,15953
25
26
  rapidtide/happy_supportfuncs.py,sha256=3AuKqhWApvSiHUJS8YGyuuB66pEuodd6rmOp83JEKiU,47839
26
27
  rapidtide/helper_classes.py,sha256=jMS1SIU8YFZrZ10s3kOwbT0139CtTG3DLkJoyuDiiNQ,51401
27
28
  rapidtide/io.py,sha256=8J57TnfsYtOHJ1fSVGyy4Wnz5tH6djS-d7-i22-M-2c,74421
@@ -32,20 +33,20 @@ rapidtide/multiproc.py,sha256=Ri40ebUkxofKwqIKuZ0_FuQvp4uWFPE8yWMOau3TJ78,6238
32
33
  rapidtide/patchmatch.py,sha256=ZhGuJSwd_UBBJERuABLWzE-HvHLtMgP_Ep4-jq3q1rI,20643
33
34
  rapidtide/peakeval.py,sha256=4wboYOtGX1q9p2LmAX_eXcw1YsDWhzlGd-hMVQaso9Y,5198
34
35
  rapidtide/qualitycheck.py,sha256=VL4vA4IRoTPZ4fJHwKrYXsJDmsEs4qUV9xvxjvKpchA,11917
35
- rapidtide/refinedelay.py,sha256=lvLGzulhJLkHEXBmC6zBXiHg2UBfrG4yPTczE2qq1Zs,9903
36
- rapidtide/refineregressor.py,sha256=-_2Vm5YBkIwVkOe8oGCjJP4H3fsn8b4FREKf2Ji26Wo,22375
36
+ rapidtide/refinedelay.py,sha256=Ue3KH1K3S34RaWs6KvmVNCPzyHOYruTXk13VSFdAGCI,11552
37
+ rapidtide/refineregressor.py,sha256=50CXj57k5gccTqfn6tugLM1UxSvr_ImPDch9YwMkL5o,22950
37
38
  rapidtide/resample.py,sha256=wM3Ssq71EhAxNYcCmL-5-n6vMgx63S5g9nKOZBOWSLw,30473
38
39
  rapidtide/simfuncfit.py,sha256=YEgt-NYp0rVCCcGqnu8FFIQaNLqAJ_6CMg86_ShYHKg,11833
39
40
  rapidtide/stats.py,sha256=_UnjWwXo6LjYvaLfwrRhfdQ8wBXXuiuWnTqcld-myDA,29356
40
- rapidtide/tidepoolTemplate.py,sha256=KFG3UVA2xDKYlxUrboKSFdSZEdMJMpDhXwuq3uw6usg,46225
41
- rapidtide/tidepoolTemplate.ui,sha256=srYs8VZWgWFgTTJW6sTpzWYch_7iU-xgpTuXHCgefwU,46651
42
- rapidtide/tidepoolTemplate_alt.py,sha256=tKHsAs1eeP9dyTs6LjsJ5GeF1eLfQW7XDgSvacUfT3M,51839
43
- rapidtide/tidepoolTemplate_alt.ui,sha256=PKWsr59XCUAMeKtQliV2AxIo4_shgjedCCuwLKzhias,52212
44
- rapidtide/tidepoolTemplate_alt_qt6.py,sha256=Jef-eekrhR_UJxOttBzz9uxeRoP8CMVcfAQNR7bwD70,52494
45
- rapidtide/tidepoolTemplate_big.py,sha256=uNWwEeVOdGgOwVIrYXCQE30D2jLxjfrXesBAL5Q42Hk,64978
46
- rapidtide/tidepoolTemplate_big.ui,sha256=tiOtHirD69_MMFPP4Df4C5JEBoY6v7da-C5xW7-5WOw,65527
47
- rapidtide/tidepoolTemplate_big_qt6.py,sha256=hzXmpJtEf6M6Zh_OrYfnkEc54AuKFkEU494uN646_dg,65801
48
- rapidtide/tidepoolTemplate_qt6.py,sha256=8xY0nuF9nEfeQWQPRuglxw6nRaKhIKkLMMIvELJRXSg,46872
41
+ rapidtide/tidepoolTemplate.py,sha256=YK6vXIXfgAq5OHa67RjvL0MhMJIIgjmDpxQY16Cwnl4,46252
42
+ rapidtide/tidepoolTemplate.ui,sha256=WX_ppn1meIWXl_yw0bkSmrsPw_YpylQzPJlf8XYob5w,46676
43
+ rapidtide/tidepoolTemplate_alt.py,sha256=09p8J2a5xJEm8y3VNTCYOHOdDBsFx2W838RgYTnK-r4,51866
44
+ rapidtide/tidepoolTemplate_alt.ui,sha256=PMvFcSKJKfGboq-YOntzGqwIg1xLHfCnbXEW0ooI5A0,52237
45
+ rapidtide/tidepoolTemplate_alt_qt6.py,sha256=FivtOPUCQifXrvjYFhkJ-z05fHD2yJYbKKfIT4nr2Fc,52521
46
+ rapidtide/tidepoolTemplate_big.py,sha256=60RdSehVFi2V38G_8ByhGILfCGf4g6lSnKV42HdCAoQ,65005
47
+ rapidtide/tidepoolTemplate_big.ui,sha256=lJYAJHJA8iJYJTlnq5GllkW-VMRrpLhDL4kskwU14Xw,65552
48
+ rapidtide/tidepoolTemplate_big_qt6.py,sha256=iD8q4FhTyMknjhRy5H_EFQliW4cWIwyL43EE1v5Kujw,65828
49
+ rapidtide/tidepoolTemplate_qt6.py,sha256=MGgLo3q8RnvM4uuWIIEqNz0tRil7dGweyX5jF8lNUtQ,46899
49
50
  rapidtide/transformerdlfilter.py,sha256=oODhn4CVtlT7ua72ADWw0LYmkJznDfH8gB3YmlY_w00,4551
50
51
  rapidtide/util.py,sha256=Su9SUUR3_KVUzLyzTfCzXO9mDbdO-AD99MlIrn_YPoA,35926
51
52
  rapidtide/wiener.py,sha256=ls3jJvuTRlyJl1qL8SxYdct1vZD3yQ9Mhp8hb2lpx1E,4128
@@ -62,18 +63,21 @@ rapidtide/data/examples/src/testcomplex,sha256=PFY_d30eqYBx5K8cPP_WxsP2YPlYuawo8
62
63
  rapidtide/data/examples/src/testdecomp,sha256=xxxr510aOBjtpJy4aQNAFTyEFZD6QdHp6-Aa_esYalY,269
63
64
  rapidtide/data/examples/src/testfileorfloat,sha256=9r4mz7pBV_8iFZya9kmtfbnTRS3-94Cx9Q63Ni3mkZs,815
64
65
  rapidtide/data/examples/src/testfingerprint,sha256=RlAIC1lMDWMGzZKxY24DJRuaUEL0BenSFBey0gL5dqU,402
65
- rapidtide/data/examples/src/testfmri,sha256=vLftCOpC0rWy0QNNv-7FdWvDQLBRPOYIEYlViXn2r8g,3161
66
+ rapidtide/data/examples/src/testfmri,sha256=b76qgfPF3MhJt3lSN60glr8jdNQ63Y-Zxb8JsDl3lww,203
66
67
  rapidtide/data/examples/src/testfmridocker,sha256=jjL7bK29rrcog6uO9BtvcyAU3Sv8_5cbw2nqKoiZ95o,1193
67
68
  rapidtide/data/examples/src/testfrozen,sha256=K3qUWDRKPPiCXRgIFuPdwUUjUTzf4QBW8UUhR75NzDM,283
68
69
  rapidtide/data/examples/src/testfuncs,sha256=QmVJP8vjr-HqKCAaIz7McdADVZru6Nvwq16h5KPs9ek,1551
69
70
  rapidtide/data/examples/src/testglmfilt,sha256=LD2cTB-7yyCc31jAr8UtYksf-Cn-YLC3ScnV3olvpFE,3333
70
71
  rapidtide/data/examples/src/testhappy,sha256=7dKe3PM-nPRbsroGRq3RQFFABPdNuByS3aEddgu_Oyc,1712
72
+ rapidtide/data/examples/src/testinitdelay,sha256=ts_r5WZBLJDQ3UfPmJ9sfXlO0arO9dhGCQ_Y1wYvjMk,559
71
73
  rapidtide/data/examples/src/testlinfit,sha256=oPnkHJ6lcwsuJhnSMMK7Gx3DHSCf6JK7CIYuIMHbyNA,471
72
74
  rapidtide/data/examples/src/testlocalflow,sha256=hEwstisbWVuALr_29fBJ2nHETKkEF_9qK8wJ4kzuiJk,596
75
+ rapidtide/data/examples/src/testnewrefine,sha256=-Y2eK4LGPvPwYCeUt6nGRuuzk468dHsbnnSZplj6L_o,1100
73
76
  rapidtide/data/examples/src/testnoiseamp,sha256=ZRu3GstBhdnwZmDF7ExZynOXFFMElWiZuod8LbUKa-I,612
74
77
  rapidtide/data/examples/src/testoscorr,sha256=gsQcclL6Il5ir5X1QKZtvqeYBNtCkrYCcJ_3kOcQ2H0,591
75
78
  rapidtide/data/examples/src/testoutputsize,sha256=lkF3cWuHCVPn0IVdTaDt-CcKpkXUzusoESLCPriNfsY,1806
76
79
  rapidtide/data/examples/src/testpad,sha256=O4bgGWNTMjaitT_yT7UXRKwOl5UFS9nnXjcQTKtIBk0,717
80
+ rapidtide/data/examples/src/testrefineonly,sha256=PyYGqga3b25hgbscX1wrIqvyYDHJ8udD60c5tDPHFTs,595
77
81
  rapidtide/data/examples/src/testretro,sha256=6YkGcdCAqPZTgRGQTMMQeNEYmIqKl7wcGe1ip9iIeuM,2559
78
82
  rapidtide/data/examples/src/testretrolagtcs,sha256=w86cpMH4Cthx6f8HYNiTnkIL5b86QHb2z1Xq5AUkdiE,567
79
83
  rapidtide/data/examples/src/testsimdata,sha256=zqbuBMGMGvwnqfXcmPJoKksC0D4LoykP3s_JktoMyqI,1042
@@ -296,19 +300,19 @@ rapidtide/workflows/niftidecomp.py,sha256=_v4eLxPyQ5YKKjHB8vvqV47Uh3ITcQV4PRq2ks
296
300
  rapidtide/workflows/niftistats.py,sha256=jlvdmiat9OOxiWn31UNsxLd5s1_zbFsqU8wNrQ9uLYU,18231
297
301
  rapidtide/workflows/pairproc.py,sha256=B0TabhgYZiH4oMqi3n28a2UelaUylrRsHig8zLl3hFs,6584
298
302
  rapidtide/workflows/pairwisemergenifti.py,sha256=liE-Jkeh98JXTHU2eQFozuTOhkeMNaFaJ0wGtG1QiyQ,3751
299
- rapidtide/workflows/parser_funcs.py,sha256=wDghbN0jMIuMIoKGr-OxLkfvYVO10uNl35yS7PMgKwY,27609
303
+ rapidtide/workflows/parser_funcs.py,sha256=GIvkJ9fgk7Xkf6vE3M-sQfcCDMJDFjeCnTuI3nAlCMY,28163
300
304
  rapidtide/workflows/physiofreq.py,sha256=cpBaRTS1U4luBfuqtDI3S-lNkNmcIiFviTxMXba4P-E,5194
301
305
  rapidtide/workflows/pixelcomp.py,sha256=Z4MOr6b0MVqSvIvJMzV-DubYBgAicRSw47y4_t5vSX4,6545
302
306
  rapidtide/workflows/plethquality.py,sha256=ZNkMS6cGkM2UG796KwCrhiCC7mzEmFt62Nxy1-LsV3E,4021
303
307
  rapidtide/workflows/polyfitim.py,sha256=18pCkdk176_hyWdCgRe-B4AEP0wjHheWdPq25SsKy6w,10184
304
308
  rapidtide/workflows/proj2flow.py,sha256=MWtf0eTyQ7MfIbWRup4s6TLuk-vKbYgWkSZC9BOBYcM,7290
305
309
  rapidtide/workflows/rankimage.py,sha256=twZsGJaVd0raffzKlI0Tupy4DJxHyhBv8WqIUNEtiNM,3482
306
- rapidtide/workflows/rapidtide.py,sha256=fuc4dXb5_FogrkkbPknQYPw_mtULtQfW-aypue-I1k0,177741
310
+ rapidtide/workflows/rapidtide.py,sha256=lQAGLyalyLHDc--7O57TGkk1ppZF0D4AdIKDw2n_uT0,171455
307
311
  rapidtide/workflows/rapidtide2std.py,sha256=wGNwyAPnaI3sCG14ORWmlFQRgXmNn6uVVlPirwk1URg,10413
308
- rapidtide/workflows/rapidtide_parser.py,sha256=dolWcymDQ5w6j9BVotP1Dv9IimjIFRIn187ec2L48Tk,77445
312
+ rapidtide/workflows/rapidtide_parser.py,sha256=rmbJ-Wy9SUbb4iMeLTfZH2X2xBasPJc5ZK3SMY-MLLM,78508
309
313
  rapidtide/workflows/resamplenifti.py,sha256=48vf0JT0C4gjPty_R0RDMRd6opilUQ3stevzAvdKInc,4717
310
314
  rapidtide/workflows/resampletc.py,sha256=OZJOHnQAaN371pFt_qb8hY8JQ12WggHK6ZP7Q84rvOk,3959
311
- rapidtide/workflows/retroglm.py,sha256=CIacdcO7T25E3GJhydF77UaUTT-5HM0MU9RvK2CKzY4,37425
315
+ rapidtide/workflows/retroglm.py,sha256=cM3MBjUgrYcJfyaj6VoT3lBpvSaKeMKU7GzN5Pc9mY0,41453
312
316
  rapidtide/workflows/retrolagtcs.py,sha256=uewpP6ZpimLrmrRN_iZPjvzITUTWE-mNh1tipFWwVWA,10747
313
317
  rapidtide/workflows/roisummarize.py,sha256=hFYkkYV7fL3gNpAu6Diu1KhOUwLm0cNjWX7V2UNhy4M,6710
314
318
  rapidtide/workflows/runqualitycheck.py,sha256=zFjyhfh_9A5U5GIFIIkITuYa8XlwiEM_1dYg7IJgF6w,2434
@@ -325,12 +329,12 @@ rapidtide/workflows/spectrogram.py,sha256=ATe6baNL-Rv6rvV6rCcxcBO2naFu0v4UDJ2hX6
325
329
  rapidtide/workflows/synthASL.py,sha256=fRfu2lAQwC1Ahi_Sz-mvmp3yZCV_zUWFbu8F9-8RHxM,4971
326
330
  rapidtide/workflows/tcfrom2col.py,sha256=El9pjrCfxANFA3s60YvHOTUx3UYaavJgCOIYtMcvKlk,1936
327
331
  rapidtide/workflows/tcfrom3col.py,sha256=6tV2lGEtXpI4dn_8kcTCVzZxpJzmopuDwpXvOIE7vzQ,1938
328
- rapidtide/workflows/tidepool.py,sha256=14yrUQ87syFeTuU0lJBxVz3rBrwV9f4A4fGwVW5Bj_g,86399
332
+ rapidtide/workflows/tidepool.py,sha256=1nYPa_-Z-nYZR-fZNo_8dY9LoO_vl7kwiRC_reM2044,86395
329
333
  rapidtide/workflows/utils.py,sha256=k2m2F1-tWxhcUYvk5geO1yl-c5bKcDX7Jv7ohvJZaOk,5379
330
334
  rapidtide/workflows/variabilityizer.py,sha256=yQFDTBcGehxW44R_FQHeeKrTpeYrrh96xcW1uWbPtYo,3167
331
- rapidtide-3.0a11.dist-info/LICENSE,sha256=psuoW8kuDP96RQsdhzwOqi6fyWv0ct8CR6Jr7He_P_k,10173
332
- rapidtide-3.0a11.dist-info/METADATA,sha256=zVdYRWhcyzi1lh3_CiHvi_yduUOXQLzLep58HsqEQuA,15624
333
- rapidtide-3.0a11.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
334
- rapidtide-3.0a11.dist-info/entry_points.txt,sha256=76O4RdCVLd7YrASvmgJQWaRUlgmBzMDU5_XkGIlmuTk,3260
335
- rapidtide-3.0a11.dist-info/top_level.txt,sha256=MnNXGfbrIBc9RnAqzBHOWd3GQO-aIUDnRTz4_5VjH5g,16
336
- rapidtide-3.0a11.dist-info/RECORD,,
335
+ rapidtide-3.0a12.dist-info/LICENSE,sha256=psuoW8kuDP96RQsdhzwOqi6fyWv0ct8CR6Jr7He_P_k,10173
336
+ rapidtide-3.0a12.dist-info/METADATA,sha256=T2uFP-QmpBzvvF4DijO6gn0BpQB-292z6PLF3eEjtSo,15624
337
+ rapidtide-3.0a12.dist-info/WHEEL,sha256=beeZ86-EfXScwlR_HKu4SllMC9wUEj_8Z_4FJ3egI2w,91
338
+ rapidtide-3.0a12.dist-info/entry_points.txt,sha256=76O4RdCVLd7YrASvmgJQWaRUlgmBzMDU5_XkGIlmuTk,3260
339
+ rapidtide-3.0a12.dist-info/top_level.txt,sha256=MnNXGfbrIBc9RnAqzBHOWd3GQO-aIUDnRTz4_5VjH5g,16
340
+ rapidtide-3.0a12.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.2)
2
+ Generator: setuptools (76.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5