ragmint 0.3.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ragmint might be problematic. Click here for more details.

Files changed (46) hide show
  1. ragmint/__init__.py +0 -0
  2. ragmint/__main__.py +28 -0
  3. ragmint/autotuner.py +138 -0
  4. ragmint/core/__init__.py +0 -0
  5. ragmint/core/chunking.py +86 -0
  6. ragmint/core/embeddings.py +55 -0
  7. ragmint/core/evaluation.py +38 -0
  8. ragmint/core/pipeline.py +62 -0
  9. ragmint/core/reranker.py +62 -0
  10. ragmint/core/retriever.py +165 -0
  11. ragmint/experiments/__init__.py +0 -0
  12. ragmint/experiments/validation_qa.json +14 -0
  13. ragmint/explainer.py +63 -0
  14. ragmint/integrations/__init__.py +0 -0
  15. ragmint/integrations/config_adapter.py +96 -0
  16. ragmint/integrations/langchain_prebuilder.py +99 -0
  17. ragmint/leaderboard.py +45 -0
  18. ragmint/optimization/__init__.py +0 -0
  19. ragmint/optimization/search.py +48 -0
  20. ragmint/tests/__init__.py +0 -0
  21. ragmint/tests/conftest.py +16 -0
  22. ragmint/tests/test_autotuner.py +51 -0
  23. ragmint/tests/test_config_adapter.py +39 -0
  24. ragmint/tests/test_embeddings.py +46 -0
  25. ragmint/tests/test_explainer.py +20 -0
  26. ragmint/tests/test_explainer_integration.py +18 -0
  27. ragmint/tests/test_integration_autotuner_ragmint.py +47 -0
  28. ragmint/tests/test_langchain_prebuilder.py +82 -0
  29. ragmint/tests/test_leaderboard.py +39 -0
  30. ragmint/tests/test_pipeline.py +20 -0
  31. ragmint/tests/test_retriever.py +15 -0
  32. ragmint/tests/test_search.py +17 -0
  33. ragmint/tests/test_tuner.py +71 -0
  34. ragmint/tuner.py +189 -0
  35. ragmint/utils/__init__.py +0 -0
  36. ragmint/utils/caching.py +37 -0
  37. ragmint/utils/data_loader.py +65 -0
  38. ragmint/utils/logger.py +36 -0
  39. ragmint/utils/metrics.py +27 -0
  40. ragmint-0.3.1.data/data/LICENSE +19 -0
  41. ragmint-0.3.1.data/data/README.md +397 -0
  42. ragmint-0.3.1.dist-info/METADATA +441 -0
  43. ragmint-0.3.1.dist-info/RECORD +46 -0
  44. ragmint-0.3.1.dist-info/WHEEL +5 -0
  45. ragmint-0.3.1.dist-info/licenses/LICENSE +19 -0
  46. ragmint-0.3.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,441 @@
1
+ Metadata-Version: 2.4
2
+ Name: ragmint
3
+ Version: 0.3.1
4
+ Summary: A modular framework for evaluating and optimizing RAG pipelines.
5
+ Author-email: Andre Oliveira <oandreoliveira@outlook.com>
6
+ License: Apache License 2.0
7
+ Project-URL: Homepage, https://github.com/andyolivers/ragmint
8
+ Project-URL: Documentation, https://andyolivers.com
9
+ Project-URL: Issues, https://github.com/andyolivers/ragmint/issues
10
+ Keywords: RAG,LLM,retrieval,optimization,AI,evaluation,chunking,autotuning
11
+ Requires-Python: >=3.9
12
+ Description-Content-Type: text/markdown
13
+ License-File: LICENSE
14
+ Requires-Dist: numpy<2.0.0
15
+ Requires-Dist: pandas>=2.0
16
+ Requires-Dist: scikit-learn>=1.3
17
+ Requires-Dist: sentence-transformers>=2.2.2
18
+ Requires-Dist: chromadb>=0.3.1
19
+ Requires-Dist: faiss-cpu; sys_platform != "darwin"
20
+ Requires-Dist: faiss-cpu==1.7.4; sys_platform == "darwin"
21
+ Requires-Dist: rank-bm25>=0.2.2
22
+ Requires-Dist: optuna>=3.0
23
+ Requires-Dist: tqdm
24
+ Requires-Dist: colorama
25
+ Requires-Dist: pyyaml
26
+ Requires-Dist: python-dotenv
27
+ Requires-Dist: openai>=1.0.0
28
+ Requires-Dist: google-generativeai>=0.8.0
29
+ Requires-Dist: anthropic>=0.25.0
30
+ Requires-Dist: supabase>=2.4.0
31
+ Requires-Dist: pytest
32
+ Requires-Dist: langchain>=0.2.5
33
+ Requires-Dist: langchain-community>=0.2.5
34
+ Requires-Dist: langchain-text-splitters>=0.2.1
35
+ Provides-Extra: dev
36
+ Requires-Dist: black; extra == "dev"
37
+ Requires-Dist: flake8; extra == "dev"
38
+ Requires-Dist: isort; extra == "dev"
39
+ Requires-Dist: pytest-cov; extra == "dev"
40
+ Provides-Extra: docs
41
+ Requires-Dist: mkdocs; extra == "docs"
42
+ Requires-Dist: mkdocs-material; extra == "docs"
43
+ Dynamic: license-file
44
+
45
+ # Ragmint
46
+
47
+ ![Python](https://img.shields.io/badge/python-3.9%2B-blue)
48
+ ![License](https://img.shields.io/badge/license-Apache%202.0-green)
49
+ ![Tests](https://github.com/andyolivers/ragmint/actions/workflows/tests.yml/badge.svg)
50
+ ![Optuna](https://img.shields.io/badge/Optuna-Integrated-orange)
51
+ ![Status](https://img.shields.io/badge/Status-Active-success)
52
+
53
+ ![](/assets/images/ragmint-banner.png)
54
+
55
+ **Ragmint** (Retrieval-Augmented Generation Model Inspection & Tuning) is a modular, developer-friendly Python library for **evaluating, optimizing, and tuning RAG (Retrieval-Augmented Generation) pipelines**.
56
+
57
+ It provides a complete toolkit for **retriever selection**, **embedding model tuning**, **automated RAG evaluation**, and **config-driven prebuilding** of pipelines with support for **Optuna-based Bayesian optimization**, **Auto-RAG tuning**, **chunking**, and **explainability** through Gemini or Claude.
58
+
59
+ ---
60
+
61
+ ## ✨ Features
62
+
63
+ - ✅ **Automated hyperparameter optimization** (Grid, Random, Bayesian via Optuna)
64
+ - 🤖 **Auto-RAG Tuner** — dynamically recommends retriever–embedding pairs based on corpus size
65
+ - 🧠 **Explainability Layer** — interprets RAG performance via Gemini or Claude APIs
66
+ - 🏆 **Leaderboard Tracking** — stores and ranks experiment runs via JSON or external DB
67
+ - 🔍 **Built-in RAG evaluation metrics** — faithfulness, recall, BLEU, ROUGE, latency
68
+ - ⚙️ **Retrievers** — FAISS, Chroma, scikit-learn
69
+ - 🧩 **Embeddings** — Hugging Face
70
+ - 💾 **Caching, experiment tracking, and reproducibility** out of the box
71
+ - 🧰 **Clean modular structure** for easy integration in research and production setups
72
+ - 📦 **Chunking system** — automatic or configurable chunk_size and overlap for documents
73
+ - 🏗️ **Langchain Prebuilder** — prepares pipelines, applies chunking, embeddings, and vector store creation automatically
74
+ - ⚙️ **Config Adapter (LangchainConfigAdapter)** — normalizes configuration, fills defaults, validates retrievers
75
+
76
+ ---
77
+
78
+ ## 🚀 Quick Start
79
+
80
+ ### 1️⃣ Installation
81
+
82
+ ```bash
83
+ git clone https://github.com/andyolivers/ragmint.git
84
+ cd ragmint
85
+ pip install -e .
86
+ ```
87
+
88
+ > The `-e` flag installs Ragmint in editable (development) mode.
89
+ > Requires **Python ≥ 3.9**.
90
+
91
+ ---
92
+
93
+ ### 2️⃣ Run a RAG Optimization Experiment
94
+
95
+ ```bash
96
+ python ragmint/main.py --config configs/default.yaml --search bayesian
97
+ ```
98
+
99
+ Example `configs/default.yaml`:
100
+ ```yaml
101
+ retriever: faiss
102
+ embedding_model: text-embedding-3-small
103
+ chunk_size: 500
104
+ overlap: 100
105
+ reranker:
106
+ mode: mmr
107
+ lambda_param: 0.5
108
+ optimization:
109
+ search_method: bayesian
110
+ n_trials: 20
111
+ ```
112
+
113
+ ---
114
+
115
+ ### 3️⃣ Manual Pipeline Usage
116
+
117
+ ```python
118
+ from ragmint.prebuilder import PreBuilder
119
+ from ragmint.tuner import RAGMint
120
+
121
+ # Prebuild pipeline (chunking, embeddings, vector store)
122
+ prebuilder = PreBuilder(
123
+ docs_path="data/docs/",
124
+ config_path="configs/default.yaml"
125
+ )
126
+ pipeline = prebuilder.build_pipeline()
127
+
128
+ # Initialize RAGMint with prebuilt components
129
+ rag = RAGMint(pipeline=pipeline)
130
+
131
+ # Run optimization
132
+ best, results = rag.optimize(validation_set=None, metric="faithfulness", trials=3)
133
+ print("Best configuration:", best)
134
+
135
+ ```
136
+ ---
137
+ # 🧩 Embeddings and Retrievers
138
+
139
+ **Ragmint** supports a flexible set of embeddings and retrievers, allowing you to adapt easily to various **RAG architectures**.
140
+
141
+ ---
142
+ ## 🧩 Chunking System
143
+
144
+ * **Automatically splits documents** into chunks with `chunk_size` and `overlap` parameters.
145
+ * **Supports default values** if not provided in configuration.
146
+ * **Optimized** for downstream **retrieval and embeddings**.
147
+ * **Enables adaptive chunking strategies** in future releases.
148
+
149
+ ---
150
+ ## 🧩 Langchain Config Adapter
151
+
152
+ * **Ensures consistent configuration** across pipeline components.
153
+ * **Normalizes retriever and embedding names** (e.g., `faiss`, `sentence-transformers/...`).
154
+ * **Adds default chunk parameters** when missing.
155
+ * **Validates retriever backends** and **raises clear errors** for unsupported options.
156
+
157
+ ---
158
+ ## 🧩 Langchain Prebuilder
159
+
160
+ **Automates pipeline preparation:**
161
+ 1. Reads documents
162
+ 2. Applies chunking
163
+ 3. Creates embeddings
164
+ 4. Initializes retriever / vector store
165
+ 5. Returns ready-to-use pipeline** for RAGMint or custom usage.
166
+
167
+ ---
168
+
169
+ ## 🔤 Available Embeddings (Hugging Face)
170
+
171
+ You can select from the following models:
172
+
173
+ * `sentence-transformers/all-MiniLM-L6-v2` — **lightweight**, general-purpose
174
+ * `sentence-transformers/all-mpnet-base-v2` — **higher accuracy**, slower
175
+ * `BAAI/bge-base-en-v1.5` — **multilingual**, dense embeddings
176
+ * `intfloat/multilingual-e5-base` — ideal for **multilingual corpora**
177
+
178
+
179
+
180
+ ### Configuration Example
181
+
182
+ Use the following format in your config file to specify the embedding model:
183
+
184
+ ```yaml
185
+ embedding_model: sentence-transformers/all-MiniLM-L6-v2
186
+ ```
187
+ ---
188
+
189
+ ## 🔍 Available Retrievers
190
+
191
+ **Ragmint** integrates multiple **retrieval backends** to suit different needs:
192
+
193
+ | Retriever | Description |
194
+ | :--- | :--- |
195
+ | **FAISS** | Fast vector similarity search; efficient for dense embeddings |
196
+ | **Chroma** | Persistent vector DB; works well for incremental updates |
197
+ | **scikit-learn (NearestNeighbors)** | Lightweight, zero-dependency local retriever |
198
+
199
+
200
+ ### Configuration Example
201
+
202
+ To specify the retriever in your configuration file, use the following format:
203
+
204
+ ```yaml
205
+ retriever: faiss
206
+ ```
207
+
208
+ ---
209
+
210
+ ## 🧪 Dataset Options
211
+
212
+ Ragmint can automatically load evaluation datasets for your RAG pipeline:
213
+
214
+ | Mode | Example | Description |
215
+ |------|----------|-------------|
216
+ | 🧱 **Default** | `validation_set=None` | Uses built-in `experiments/validation_qa.json` |
217
+ | 📁 **Custom File** | `validation_set="data/my_eval.json"` | Load your own QA dataset (JSON or CSV) |
218
+ | 🌐 **Hugging Face Dataset** | `validation_set="squad"` | Automatically downloads benchmark datasets (requires `pip install datasets`) |
219
+
220
+ ### Example
221
+
222
+ ```python
223
+ from ragmint.tuner import RAGMint
224
+
225
+ ragmint = RAGMint(
226
+ docs_path="data/docs/",
227
+ retrievers=["faiss", "chroma"],
228
+ embeddings=["text-embedding-3-small"],
229
+ rerankers=["mmr"],
230
+ )
231
+
232
+ # Use built-in default
233
+ ragmint.optimize(validation_set=None)
234
+
235
+ # Use Hugging Face benchmark
236
+ ragmint.optimize(validation_set="squad")
237
+
238
+ # Use your own dataset
239
+ ragmint.optimize(validation_set="data/custom_qa.json")
240
+ ```
241
+
242
+ ---
243
+
244
+ ## 🧠 Auto-RAG Tuner
245
+
246
+ The **AutoRAGTuner** automatically recommends retriever–embedding combinations
247
+ based on corpus size and average document length.
248
+
249
+ ```python
250
+ from ragmint.autotuner import AutoRAGTuner
251
+
252
+ corpus_stats = {"size": 5000, "avg_len": 250}
253
+ tuner = AutoRAGTuner(corpus_stats)
254
+ recommendation = tuner.recommend()
255
+ print(recommendation)
256
+ # Example output: {"retriever": "Chroma", "embedding_model": "SentenceTransformers"}
257
+ ```
258
+
259
+ ---
260
+
261
+ ## 🏆 Leaderboard Tracking
262
+
263
+ Track and visualize your best experiments across runs.
264
+
265
+ ```python
266
+ from ragmint.leaderboard import Leaderboard
267
+
268
+ lb = Leaderboard("experiments/leaderboard.json")
269
+ lb.add_entry({"trial": 1, "faithfulness": 0.87, "latency": 0.12})
270
+ lb.show_top(3)
271
+ ```
272
+
273
+ ---
274
+
275
+ ## 🧠 Explainability with Gemini / Claude
276
+
277
+ Compare two RAG configurations and receive **natural language insights** on why one performs better.
278
+
279
+ ```python
280
+ from ragmint.explainer import explain_results
281
+
282
+ config_a = {"retriever": "FAISS", "embedding_model": "OpenAI"}
283
+ config_b = {"retriever": "Chroma", "embedding_model": "SentenceTransformers"}
284
+
285
+ explanation = explain_results(config_a, config_b, model="gemini")
286
+ print(explanation)
287
+ ```
288
+
289
+ > Set your API keys in a `.env` file or via environment variables:
290
+ > ```
291
+ > export GEMINI_API_KEY="your_gemini_key"
292
+ > export ANTHROPIC_API_KEY="your_claude_key"
293
+ > ```
294
+
295
+ ---
296
+
297
+ ## 🧩 Folder Structure
298
+
299
+ ```
300
+ ragmint/
301
+ ├── core/
302
+ │ ├── pipeline.py
303
+ │ ├── retriever.py
304
+ │ ├── reranker.py
305
+ │ ├── embeddings.py
306
+ │ ├── chunking.py
307
+ │ └── evaluation.py
308
+ ├── integration/
309
+ │ ├── config_adapter.py
310
+ │ └── langchain_prebuilder.py
311
+ ├── autotuner.py
312
+ ├── explainer.py
313
+ ├── leaderboard.py
314
+ ├── tuner.py
315
+ ├── utils/
316
+ ├── configs/
317
+ ├── experiments/
318
+ ├── tests/
319
+ └── main.py
320
+ ```
321
+
322
+ ---
323
+
324
+ ## 🧪 Running Tests
325
+
326
+ ```bash
327
+ pytest -v
328
+ ```
329
+
330
+ To include integration tests with Gemini or Claude APIs:
331
+ ```bash
332
+ pytest -m integration
333
+ ```
334
+
335
+ ---
336
+
337
+ ## ⚙️ Configuration via `pyproject.toml`
338
+
339
+ Your `pyproject.toml` includes all required dependencies:
340
+
341
+ ```toml
342
+ [project]
343
+ name = "ragmint"
344
+ version = "0.1.0"
345
+ dependencies = [
346
+ # Core ML + Embeddings
347
+ "numpy<2.0.0",
348
+ "pandas>=2.0",
349
+ "scikit-learn>=1.3",
350
+ "sentence-transformers>=2.2.2",
351
+
352
+ # Retrieval backends
353
+ "chromadb>=0.4",
354
+ "faiss-cpu; sys_platform != 'darwin'", # For Linux/Windows
355
+ "faiss-cpu==1.7.4; sys_platform == 'darwin'", # Optional fix for macOS MPS
356
+ "rank-bm25>=0.2.2", # For BM25 retriever
357
+
358
+ # Optimization & evaluation
359
+ "optuna>=3.0",
360
+ "tqdm",
361
+ "colorama",
362
+
363
+ # RAG evaluation and data utils
364
+ "pyyaml",
365
+ "python-dotenv",
366
+
367
+ # Explainability and LLM APIs
368
+ "openai>=1.0.0",
369
+ "google-generativeai>=0.8.0",
370
+ "anthropic>=0.25.0",
371
+
372
+ # Integration / storage
373
+ "supabase>=2.4.0",
374
+
375
+ # Testing
376
+ "pytest",
377
+
378
+ # LangChain integration layer
379
+ "langchain>=0.2.5",
380
+ "langchain-community>=0.2.5",
381
+ "langchain-text-splitters>=0.2.1"
382
+ ]
383
+ ```
384
+
385
+ ---
386
+
387
+ ## 📊 Example Experiment Workflow
388
+
389
+ 1. Define your retriever, embedding, and reranker setup
390
+ 2. Launch optimization (Grid, Random, Bayesian) or AutoTune
391
+ 3. Compare performance with explainability
392
+ 4. Persist results to leaderboard for later inspection
393
+
394
+ ---
395
+
396
+ ## 🧬 Architecture Overview
397
+
398
+ ```mermaid
399
+ flowchart TD
400
+ A[Query] --> B[Embedder]
401
+ B --> C[Retriever]
402
+ C --> D[Reranker]
403
+ D --> E[Generator]
404
+ E --> F[Evaluation]
405
+ F --> G[Optuna / AutoRAGTuner]
406
+ G -->|Best Params| B
407
+ ```
408
+
409
+ ---
410
+
411
+ ## 📘 Example Output
412
+
413
+ ```
414
+ [INFO] Starting Bayesian optimization with Optuna
415
+ [INFO] Trial 7 finished: faithfulness=0.83, latency=0.42s
416
+ [INFO] Best parameters: {'lambda_param': 0.6, 'retriever': 'faiss'}
417
+ [INFO] AutoRAGTuner: Suggested retriever=Chroma for medium corpus
418
+ ```
419
+
420
+ ---
421
+
422
+ ## 🧠 Why Ragmint?
423
+
424
+ - Built for **RAG researchers**, **AI engineers**, and **LLM ops**
425
+ - Works with **LangChain**, **LlamaIndex**, or standalone setups
426
+ - Designed for **extensibility** — plug in your own retrievers, models, or metrics
427
+ - Integrated **explainability and leaderboard** modules for research and production
428
+
429
+ ---
430
+
431
+ ## ⚖️ License
432
+
433
+ Licensed under the **Apache License 2.0** — free for personal, research, and commercial use.
434
+
435
+ ---
436
+
437
+ ## 👤 Author
438
+
439
+ **André Oliveira**
440
+ [andyolivers.com](https://andyolivers.com)
441
+ Data Scientist | AI Engineer
@@ -0,0 +1,46 @@
1
+ ragmint/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ ragmint/__main__.py,sha256=q7hBn56Z1xAckbs03i8ynsuOzJVUXmod2qHddX7gkpc,729
3
+ ragmint/autotuner.py,sha256=0YGQP8TYMDJT64hxz08kJXyFu5Sf8S79lgNoViC_vB8,4653
4
+ ragmint/explainer.py,sha256=KT9ef4xUcHXPh2JaWhqzoxc64y7AB1LeyIDJz_ZXH_s,2203
5
+ ragmint/leaderboard.py,sha256=nILQ5QR63RpZtCrZ__RFfwHXy4bkUIMUcSfH92OQ93Y,1628
6
+ ragmint/tuner.py,sha256=Un5hWijEO-YtoJsgqUVn6SQwn5O-tSjpqtpC-gOVSms,6574
7
+ ragmint/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
+ ragmint/core/chunking.py,sha256=cwxRUTs1u8Pe4xQso0G5doA_9AFCMyxB5Hxe8GJUoE4,2711
9
+ ragmint/core/embeddings.py,sha256=WOd58_Z-xir66Q7tLAldfDO_x-wAieMKKXsMfhw7OF4,1875
10
+ ragmint/core/evaluation.py,sha256=3OFcZU2zZyaP53d9S2zdpknV0CYfTq0KoRB3a_dtjM4,1022
11
+ ragmint/core/pipeline.py,sha256=xqLE-NiMDoC5NYCP0O984-eoyQOD4nnCsu6nq4DQEdI,2058
12
+ ragmint/core/reranker.py,sha256=B2-NDExqpd9jdXHkEHOXC0B_6-FMJm5vdi-_ZbxC3Os,2303
13
+ ragmint/core/retriever.py,sha256=bKaJr9vfGPEMAjLBfRhCpAH1bzlJgjDKx0r6ZRWfyuY,6010
14
+ ragmint/experiments/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
+ ragmint/experiments/validation_qa.json,sha256=mQyGeMyvyAqN5yGjpjqW42JJ7FfhFYNki__paKVhQss,520
16
+ ragmint/integrations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
+ ragmint/integrations/config_adapter.py,sha256=gE6M4abT1cREDd648XaKR3qS11Nz-ULdtNgx9uCrjl4,3405
18
+ ragmint/integrations/langchain_prebuilder.py,sha256=B0_ht1f3cWZ5NStRLypIGs0G2eUDs1tEZPAXtwBvGVM,3495
19
+ ragmint/optimization/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
+ ragmint/optimization/search.py,sha256=uiLJeoO_jaLCQEw99L6uI1rnqHHx_rTY81WxfMmlALs,1623
21
+ ragmint/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
+ ragmint/tests/conftest.py,sha256=QhYPp5nrQ_DbZlsVH3nLjDgjPATAnLwzJkwl-Y-xrmM,488
23
+ ragmint/tests/test_autotuner.py,sha256=mxtV2pS4bSTWZ27Z1wpPMbj3s3WutlF7vSarfUc2rUM,1803
24
+ ragmint/tests/test_config_adapter.py,sha256=GlLlvVLQb2jMKTrLQgqzPiTsYvTGZZ8XOxCM9fdZhJI,1358
25
+ ragmint/tests/test_embeddings.py,sha256=KSqxdMy8e8Ekjh_JID5-Eb9gVDXDjOwZUIh36DoWBTw,1354
26
+ ragmint/tests/test_explainer.py,sha256=K_DRnGGl34WcTA2yaQGmfzWkVi1uEkzjpsTPeZxXeIg,802
27
+ ragmint/tests/test_explainer_integration.py,sha256=tmd61DBbSHDzdkXB6ccCmPcISBr6P-2fY7tc-3dXr-4,620
28
+ ragmint/tests/test_integration_autotuner_ragmint.py,sha256=_WQRl7rvd_4GXSiqp0Virz-3f5YqS8X550u0613RMlM,1678
29
+ ragmint/tests/test_langchain_prebuilder.py,sha256=5jjitN3muReqbdaD01sNl1h5GH8tfNjpj1UEq3XD5fo,3240
30
+ ragmint/tests/test_leaderboard.py,sha256=ay81YK6KxAUU6mcG6n1_xV8GPYkBgjzJj9iAIyAzIzA,1163
31
+ ragmint/tests/test_pipeline.py,sha256=wj7dEuqz6vnoMc-V05j0DifWsXfmO5xGzD5i24V8aQI,667
32
+ ragmint/tests/test_retriever.py,sha256=eMXtnH7T5Sgf439iCF0zg_DSNxly9cGJuLFzjaiuGIA,473
33
+ ragmint/tests/test_search.py,sha256=FcC-DEnw9veAEyMnFoRw9DAwzqJC9F6-r63Nqo2nO58,598
34
+ ragmint/tests/test_tuner.py,sha256=CylYlE7yC-wCCZo5P_tqFDtjfIiAz-LOW4ZmWDYT0Z8,2316
35
+ ragmint/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
+ ragmint/utils/caching.py,sha256=LPE2JorOQ90BgVf6NUiS0-bdt-FGpNxDy7FnuwEHzy0,1060
37
+ ragmint/utils/data_loader.py,sha256=GXU9Nc3o0UWxtBeRwiskD1aCjSiNNuRoAokIUODn7q8,2024
38
+ ragmint/utils/logger.py,sha256=X7hTNb3st3fUeQIzSghuoV5B8FWXzm_O3DRkSfJvhmI,1033
39
+ ragmint/utils/metrics.py,sha256=DR8mrdumHtQerK0VrugwYKIG1oNptEcsFqodXq3i2kY,717
40
+ ragmint-0.3.1.data/data/LICENSE,sha256=ahkhYfFLI8tGrdxdO2_GaT6OJW2eNwyFT3kYi85QQhc,692
41
+ ragmint-0.3.1.data/data/README.md,sha256=byLE6WSh8BaUoEt4j4ZEKHcsT52UqsCDhKEBidxhX3E,10615
42
+ ragmint-0.3.1.dist-info/licenses/LICENSE,sha256=ahkhYfFLI8tGrdxdO2_GaT6OJW2eNwyFT3kYi85QQhc,692
43
+ ragmint-0.3.1.dist-info/METADATA,sha256=-KIWu0HPayKR7EXmn7Y9HMw-FEBSMtgs78Oh9tC7DB0,12176
44
+ ragmint-0.3.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
45
+ ragmint-0.3.1.dist-info/top_level.txt,sha256=K2ulzMHuvFm6xayvvJdGABeRJAvKDBn6M3EI-3SbYLw,8
46
+ ragmint-0.3.1.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.9.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,19 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ Copyright 2025 André Oliveira
8
+
9
+ Licensed under the Apache License, Version 2.0 (the "License");
10
+ you may not use this file except in compliance with the License.
11
+ You may obtain a copy of the License at
12
+
13
+ http://www.apache.org/licenses/LICENSE-2.0
14
+
15
+ Unless required by applicable law or agreed to in writing, software
16
+ distributed under the License is distributed on an "AS IS" BASIS,
17
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ See the License for the specific language governing permissions and
19
+ limitations under the License.
@@ -0,0 +1 @@
1
+ ragmint