ragmint 0.2.1__py3-none-any.whl → 0.2.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,284 @@
1
+ # Ragmint
2
+
3
+ ![Python](https://img.shields.io/badge/python-3.9%2B-blue)
4
+ ![License](https://img.shields.io/badge/license-Apache%202.0-green)
5
+ ![Tests](https://github.com/andyolivers/ragmint/actions/workflows/tests.yml/badge.svg)
6
+ ![Optuna](https://img.shields.io/badge/Optuna-Integrated-orange)
7
+ ![Status](https://img.shields.io/badge/Status-Active-success)
8
+
9
+ ![](/assets/images/ragmint-banner.png)
10
+
11
+ **Ragmint** (Retrieval-Augmented Generation Model Inspection & Tuning) is a modular, developer-friendly Python library for **evaluating, optimizing, and tuning RAG (Retrieval-Augmented Generation) pipelines**.
12
+
13
+ It provides a complete toolkit for **retriever selection**, **embedding model tuning**, and **automated RAG evaluation** with support for **Optuna-based Bayesian optimization**, **Auto-RAG tuning**, and **explainability** through Gemini or Claude.
14
+
15
+ ---
16
+
17
+ ## ✨ Features
18
+
19
+ - ✅ **Automated hyperparameter optimization** (Grid, Random, Bayesian via Optuna)
20
+ - 🤖 **Auto-RAG Tuner** — dynamically recommends retriever–embedding pairs based on corpus size
21
+ - 🧠 **Explainability Layer** — interprets RAG performance via Gemini or Claude APIs
22
+ - 🏆 **Leaderboard Tracking** — stores and ranks experiment runs via JSON or external DB
23
+ - 🔍 **Built-in RAG evaluation metrics** — faithfulness, recall, BLEU, ROUGE, latency
24
+ - ⚙️ **Retrievers** — FAISS, Chroma, ElasticSearch
25
+ - 🧩 **Embeddings** — OpenAI, HuggingFace
26
+ - 💾 **Caching, experiment tracking, and reproducibility** out of the box
27
+ - 🧰 **Clean modular structure** for easy integration in research and production setups
28
+
29
+ ---
30
+
31
+ ## 🚀 Quick Start
32
+
33
+ ### 1️⃣ Installation
34
+
35
+ ```bash
36
+ git clone https://github.com/andyolivers/ragmint.git
37
+ cd ragmint
38
+ pip install -e .
39
+ ```
40
+
41
+ > The `-e` flag installs Ragmint in editable (development) mode.
42
+ > Requires **Python ≥ 3.9**.
43
+
44
+ ---
45
+
46
+ ### 2️⃣ Run a RAG Optimization Experiment
47
+
48
+ ```bash
49
+ python ragmint/main.py --config configs/default.yaml --search bayesian
50
+ ```
51
+
52
+ Example `configs/default.yaml`:
53
+ ```yaml
54
+ retriever: faiss
55
+ embedding_model: text-embedding-3-small
56
+ reranker:
57
+ mode: mmr
58
+ lambda_param: 0.5
59
+ optimization:
60
+ search_method: bayesian
61
+ n_trials: 20
62
+ ```
63
+
64
+ ---
65
+
66
+ ### 3️⃣ Manual Pipeline Usage
67
+
68
+ ```python
69
+ from ragmint.core.pipeline import RAGPipeline
70
+
71
+ pipeline = RAGPipeline({
72
+ "embedding_model": "text-embedding-3-small",
73
+ "retriever": "faiss",
74
+ })
75
+
76
+ result = pipeline.run("What is retrieval-augmented generation?")
77
+ print(result)
78
+ ```
79
+
80
+ ---
81
+
82
+ ## 🧪 Dataset Options
83
+
84
+ Ragmint can automatically load evaluation datasets for your RAG pipeline:
85
+
86
+ | Mode | Example | Description |
87
+ |------|----------|-------------|
88
+ | 🧱 **Default** | `validation_set=None` | Uses built-in `experiments/validation_qa.json` |
89
+ | 📁 **Custom File** | `validation_set="data/my_eval.json"` | Load your own QA dataset (JSON or CSV) |
90
+ | 🌐 **Hugging Face Dataset** | `validation_set="squad"` | Automatically downloads benchmark datasets (requires `pip install datasets`) |
91
+
92
+ ### Example
93
+
94
+ ```python
95
+ from ragmint.tuner import RAGMint
96
+
97
+ ragmint = RAGMint(
98
+ docs_path="data/docs/",
99
+ retrievers=["faiss", "chroma"],
100
+ embeddings=["text-embedding-3-small"],
101
+ rerankers=["mmr"],
102
+ )
103
+
104
+ # Use built-in default
105
+ ragmint.optimize(validation_set=None)
106
+
107
+ # Use Hugging Face benchmark
108
+ ragmint.optimize(validation_set="squad")
109
+
110
+ # Use your own dataset
111
+ ragmint.optimize(validation_set="data/custom_qa.json")
112
+ ```
113
+
114
+ ---
115
+
116
+ ## 🧠 Auto-RAG Tuner
117
+
118
+ The **AutoRAGTuner** automatically recommends retriever–embedding combinations
119
+ based on corpus size and average document length.
120
+
121
+ ```python
122
+ from ragmint.autotuner import AutoRAGTuner
123
+
124
+ corpus_stats = {"size": 5000, "avg_len": 250}
125
+ tuner = AutoRAGTuner(corpus_stats)
126
+ recommendation = tuner.recommend()
127
+ print(recommendation)
128
+ # Example output: {"retriever": "Chroma", "embedding_model": "SentenceTransformers"}
129
+ ```
130
+
131
+ ---
132
+
133
+ ## 🏆 Leaderboard Tracking
134
+
135
+ Track and visualize your best experiments across runs.
136
+
137
+ ```python
138
+ from ragmint.leaderboard import Leaderboard
139
+
140
+ lb = Leaderboard("experiments/leaderboard.json")
141
+ lb.add_entry({"trial": 1, "faithfulness": 0.87, "latency": 0.12})
142
+ lb.show_top(3)
143
+ ```
144
+
145
+ ---
146
+
147
+ ## 🧠 Explainability with Gemini / Claude
148
+
149
+ Compare two RAG configurations and receive natural language insights
150
+ on **why** one performs better.
151
+
152
+ ```python
153
+ from ragmint.explainer import explain_results
154
+
155
+ config_a = {"retriever": "FAISS", "embedding_model": "OpenAI"}
156
+ config_b = {"retriever": "Chroma", "embedding_model": "SentenceTransformers"}
157
+
158
+ explanation = explain_results(config_a, config_b, model="gemini")
159
+ print(explanation)
160
+ ```
161
+
162
+ > Set your API keys in a `.env` file or via environment variables:
163
+ > ```
164
+ > export GOOGLE_API_KEY="your_gemini_key"
165
+ > export ANTHROPIC_API_KEY="your_claude_key"
166
+ > ```
167
+
168
+ ---
169
+
170
+ ## 🧩 Folder Structure
171
+
172
+ ```
173
+ ragmint/
174
+ ├── core/
175
+ │ ├── pipeline.py
176
+ │ ├── retriever.py
177
+ │ ├── reranker.py
178
+ │ ├── embedding.py
179
+ │ └── evaluation.py
180
+ ├── autotuner.py
181
+ ├── explainer.py
182
+ ├── leaderboard.py
183
+ ├── tuner.py
184
+ ├── utils/
185
+ ├── configs/
186
+ ├── experiments/
187
+ ├── tests/
188
+ └── main.py
189
+ ```
190
+
191
+ ---
192
+
193
+ ## 🧪 Running Tests
194
+
195
+ ```bash
196
+ pytest -v
197
+ ```
198
+
199
+ To include integration tests with Gemini or Claude APIs:
200
+ ```bash
201
+ pytest -m integration
202
+ ```
203
+
204
+ ---
205
+
206
+ ## ⚙️ Configuration via `pyproject.toml`
207
+
208
+ Your `pyproject.toml` includes all required dependencies:
209
+
210
+ ```toml
211
+ [project]
212
+ name = "ragmint"
213
+ version = "0.1.0"
214
+ dependencies = [
215
+ "numpy",
216
+ "optuna",
217
+ "scikit-learn",
218
+ "faiss-cpu",
219
+ "chromadb",
220
+ "pytest",
221
+ "openai",
222
+ "tqdm",
223
+ "google-generativeai",
224
+ "google-genai",
225
+ ]
226
+ ```
227
+
228
+ ---
229
+
230
+ ## 📊 Example Experiment Workflow
231
+
232
+ 1. Define your retriever, embedding, and reranker setup
233
+ 2. Launch optimization (Grid, Random, Bayesian) or AutoTune
234
+ 3. Compare performance with explainability
235
+ 4. Persist results to leaderboard for later inspection
236
+
237
+ ---
238
+
239
+ ## 🧬 Architecture Overview
240
+
241
+ ```mermaid
242
+ flowchart TD
243
+ A[Query] --> B[Embedder]
244
+ B --> C[Retriever]
245
+ C --> D[Reranker]
246
+ D --> E[Generator]
247
+ E --> F[Evaluation]
248
+ F --> G[Optuna / AutoRAGTuner]
249
+ G -->|Best Params| B
250
+ ```
251
+
252
+ ---
253
+
254
+ ## 📘 Example Output
255
+
256
+ ```
257
+ [INFO] Starting Bayesian optimization with Optuna
258
+ [INFO] Trial 7 finished: faithfulness=0.83, latency=0.42s
259
+ [INFO] Best parameters: {'lambda_param': 0.6, 'retriever': 'faiss'}
260
+ [INFO] AutoRAGTuner: Suggested retriever=Chroma for medium corpus
261
+ ```
262
+
263
+ ---
264
+
265
+ ## 🧠 Why Ragmint?
266
+
267
+ - Built for **RAG researchers**, **AI engineers**, and **LLM ops**
268
+ - Works with **LangChain**, **LlamaIndex**, or standalone setups
269
+ - Designed for **extensibility** — plug in your own retrievers, models, or metrics
270
+ - Integrated **explainability and leaderboard** modules for research and production
271
+
272
+ ---
273
+
274
+ ## ⚖️ License
275
+
276
+ Licensed under the **Apache License 2.0** — free for personal, research, and commercial use.
277
+
278
+ ---
279
+
280
+ ## 👤 Author
281
+
282
+ **André Oliveira**
283
+ [andyolivers.com](https://andyolivers.com)
284
+ Data Scientist | AI Engineer
@@ -0,0 +1,312 @@
1
+ Metadata-Version: 2.4
2
+ Name: ragmint
3
+ Version: 0.2.3
4
+ Summary: A modular framework for evaluating and optimizing RAG pipelines.
5
+ Author-email: Andre Oliveira <oandreoliveira@outlook.com>
6
+ License: Apache License 2.0
7
+ Project-URL: Homepage, https://github.com/andyolivers/ragmint
8
+ Project-URL: Documentation, https://andyolivers.com
9
+ Project-URL: Issues, https://github.com/andyolivers/ragmint/issues
10
+ Keywords: RAG,LLM,retrieval,optimization,AI,evaluation
11
+ Requires-Python: >=3.9
12
+ Description-Content-Type: text/markdown
13
+ License-File: LICENSE
14
+ Requires-Dist: numpy>=1.23
15
+ Requires-Dist: pandas>=2.0
16
+ Requires-Dist: scikit-learn>=1.3
17
+ Requires-Dist: openai>=1.0
18
+ Requires-Dist: tqdm
19
+ Requires-Dist: pyyaml
20
+ Requires-Dist: chromadb>=0.4
21
+ Requires-Dist: faiss-cpu; sys_platform != "darwin"
22
+ Requires-Dist: optuna>=3.0
23
+ Requires-Dist: pytest
24
+ Requires-Dist: colorama
25
+ Requires-Dist: google-generativeai>=0.8.0
26
+ Requires-Dist: supabase>=2.4.0
27
+ Dynamic: license-file
28
+
29
+ # Ragmint
30
+
31
+ ![Python](https://img.shields.io/badge/python-3.9%2B-blue)
32
+ ![License](https://img.shields.io/badge/license-Apache%202.0-green)
33
+ ![Tests](https://github.com/andyolivers/ragmint/actions/workflows/tests.yml/badge.svg)
34
+ ![Optuna](https://img.shields.io/badge/Optuna-Integrated-orange)
35
+ ![Status](https://img.shields.io/badge/Status-Active-success)
36
+
37
+ ![](/assets/images/ragmint-banner.png)
38
+
39
+ **Ragmint** (Retrieval-Augmented Generation Model Inspection & Tuning) is a modular, developer-friendly Python library for **evaluating, optimizing, and tuning RAG (Retrieval-Augmented Generation) pipelines**.
40
+
41
+ It provides a complete toolkit for **retriever selection**, **embedding model tuning**, and **automated RAG evaluation** with support for **Optuna-based Bayesian optimization**, **Auto-RAG tuning**, and **explainability** through Gemini or Claude.
42
+
43
+ ---
44
+
45
+ ## ✨ Features
46
+
47
+ - ✅ **Automated hyperparameter optimization** (Grid, Random, Bayesian via Optuna)
48
+ - 🤖 **Auto-RAG Tuner** — dynamically recommends retriever–embedding pairs based on corpus size
49
+ - 🧠 **Explainability Layer** — interprets RAG performance via Gemini or Claude APIs
50
+ - 🏆 **Leaderboard Tracking** — stores and ranks experiment runs via JSON or external DB
51
+ - 🔍 **Built-in RAG evaluation metrics** — faithfulness, recall, BLEU, ROUGE, latency
52
+ - ⚙️ **Retrievers** — FAISS, Chroma, ElasticSearch
53
+ - 🧩 **Embeddings** — OpenAI, HuggingFace
54
+ - 💾 **Caching, experiment tracking, and reproducibility** out of the box
55
+ - 🧰 **Clean modular structure** for easy integration in research and production setups
56
+
57
+ ---
58
+
59
+ ## 🚀 Quick Start
60
+
61
+ ### 1️⃣ Installation
62
+
63
+ ```bash
64
+ git clone https://github.com/andyolivers/ragmint.git
65
+ cd ragmint
66
+ pip install -e .
67
+ ```
68
+
69
+ > The `-e` flag installs Ragmint in editable (development) mode.
70
+ > Requires **Python ≥ 3.9**.
71
+
72
+ ---
73
+
74
+ ### 2️⃣ Run a RAG Optimization Experiment
75
+
76
+ ```bash
77
+ python ragmint/main.py --config configs/default.yaml --search bayesian
78
+ ```
79
+
80
+ Example `configs/default.yaml`:
81
+ ```yaml
82
+ retriever: faiss
83
+ embedding_model: text-embedding-3-small
84
+ reranker:
85
+ mode: mmr
86
+ lambda_param: 0.5
87
+ optimization:
88
+ search_method: bayesian
89
+ n_trials: 20
90
+ ```
91
+
92
+ ---
93
+
94
+ ### 3️⃣ Manual Pipeline Usage
95
+
96
+ ```python
97
+ from ragmint.core.pipeline import RAGPipeline
98
+
99
+ pipeline = RAGPipeline({
100
+ "embedding_model": "text-embedding-3-small",
101
+ "retriever": "faiss",
102
+ })
103
+
104
+ result = pipeline.run("What is retrieval-augmented generation?")
105
+ print(result)
106
+ ```
107
+
108
+ ---
109
+
110
+ ## 🧪 Dataset Options
111
+
112
+ Ragmint can automatically load evaluation datasets for your RAG pipeline:
113
+
114
+ | Mode | Example | Description |
115
+ |------|----------|-------------|
116
+ | 🧱 **Default** | `validation_set=None` | Uses built-in `experiments/validation_qa.json` |
117
+ | 📁 **Custom File** | `validation_set="data/my_eval.json"` | Load your own QA dataset (JSON or CSV) |
118
+ | 🌐 **Hugging Face Dataset** | `validation_set="squad"` | Automatically downloads benchmark datasets (requires `pip install datasets`) |
119
+
120
+ ### Example
121
+
122
+ ```python
123
+ from ragmint.tuner import RAGMint
124
+
125
+ ragmint = RAGMint(
126
+ docs_path="data/docs/",
127
+ retrievers=["faiss", "chroma"],
128
+ embeddings=["text-embedding-3-small"],
129
+ rerankers=["mmr"],
130
+ )
131
+
132
+ # Use built-in default
133
+ ragmint.optimize(validation_set=None)
134
+
135
+ # Use Hugging Face benchmark
136
+ ragmint.optimize(validation_set="squad")
137
+
138
+ # Use your own dataset
139
+ ragmint.optimize(validation_set="data/custom_qa.json")
140
+ ```
141
+
142
+ ---
143
+
144
+ ## 🧠 Auto-RAG Tuner
145
+
146
+ The **AutoRAGTuner** automatically recommends retriever–embedding combinations
147
+ based on corpus size and average document length.
148
+
149
+ ```python
150
+ from ragmint.autotuner import AutoRAGTuner
151
+
152
+ corpus_stats = {"size": 5000, "avg_len": 250}
153
+ tuner = AutoRAGTuner(corpus_stats)
154
+ recommendation = tuner.recommend()
155
+ print(recommendation)
156
+ # Example output: {"retriever": "Chroma", "embedding_model": "SentenceTransformers"}
157
+ ```
158
+
159
+ ---
160
+
161
+ ## 🏆 Leaderboard Tracking
162
+
163
+ Track and visualize your best experiments across runs.
164
+
165
+ ```python
166
+ from ragmint.leaderboard import Leaderboard
167
+
168
+ lb = Leaderboard("experiments/leaderboard.json")
169
+ lb.add_entry({"trial": 1, "faithfulness": 0.87, "latency": 0.12})
170
+ lb.show_top(3)
171
+ ```
172
+
173
+ ---
174
+
175
+ ## 🧠 Explainability with Gemini / Claude
176
+
177
+ Compare two RAG configurations and receive natural language insights
178
+ on **why** one performs better.
179
+
180
+ ```python
181
+ from ragmint.explainer import explain_results
182
+
183
+ config_a = {"retriever": "FAISS", "embedding_model": "OpenAI"}
184
+ config_b = {"retriever": "Chroma", "embedding_model": "SentenceTransformers"}
185
+
186
+ explanation = explain_results(config_a, config_b, model="gemini")
187
+ print(explanation)
188
+ ```
189
+
190
+ > Set your API keys in a `.env` file or via environment variables:
191
+ > ```
192
+ > export GOOGLE_API_KEY="your_gemini_key"
193
+ > export ANTHROPIC_API_KEY="your_claude_key"
194
+ > ```
195
+
196
+ ---
197
+
198
+ ## 🧩 Folder Structure
199
+
200
+ ```
201
+ ragmint/
202
+ ├── core/
203
+ │ ├── pipeline.py
204
+ │ ├── retriever.py
205
+ │ ├── reranker.py
206
+ │ ├── embedding.py
207
+ │ └── evaluation.py
208
+ ├── autotuner.py
209
+ ├── explainer.py
210
+ ├── leaderboard.py
211
+ ├── tuner.py
212
+ ├── utils/
213
+ ├── configs/
214
+ ├── experiments/
215
+ ├── tests/
216
+ └── main.py
217
+ ```
218
+
219
+ ---
220
+
221
+ ## 🧪 Running Tests
222
+
223
+ ```bash
224
+ pytest -v
225
+ ```
226
+
227
+ To include integration tests with Gemini or Claude APIs:
228
+ ```bash
229
+ pytest -m integration
230
+ ```
231
+
232
+ ---
233
+
234
+ ## ⚙️ Configuration via `pyproject.toml`
235
+
236
+ Your `pyproject.toml` includes all required dependencies:
237
+
238
+ ```toml
239
+ [project]
240
+ name = "ragmint"
241
+ version = "0.1.0"
242
+ dependencies = [
243
+ "numpy",
244
+ "optuna",
245
+ "scikit-learn",
246
+ "faiss-cpu",
247
+ "chromadb",
248
+ "pytest",
249
+ "openai",
250
+ "tqdm",
251
+ "google-generativeai",
252
+ "google-genai",
253
+ ]
254
+ ```
255
+
256
+ ---
257
+
258
+ ## 📊 Example Experiment Workflow
259
+
260
+ 1. Define your retriever, embedding, and reranker setup
261
+ 2. Launch optimization (Grid, Random, Bayesian) or AutoTune
262
+ 3. Compare performance with explainability
263
+ 4. Persist results to leaderboard for later inspection
264
+
265
+ ---
266
+
267
+ ## 🧬 Architecture Overview
268
+
269
+ ```mermaid
270
+ flowchart TD
271
+ A[Query] --> B[Embedder]
272
+ B --> C[Retriever]
273
+ C --> D[Reranker]
274
+ D --> E[Generator]
275
+ E --> F[Evaluation]
276
+ F --> G[Optuna / AutoRAGTuner]
277
+ G -->|Best Params| B
278
+ ```
279
+
280
+ ---
281
+
282
+ ## 📘 Example Output
283
+
284
+ ```
285
+ [INFO] Starting Bayesian optimization with Optuna
286
+ [INFO] Trial 7 finished: faithfulness=0.83, latency=0.42s
287
+ [INFO] Best parameters: {'lambda_param': 0.6, 'retriever': 'faiss'}
288
+ [INFO] AutoRAGTuner: Suggested retriever=Chroma for medium corpus
289
+ ```
290
+
291
+ ---
292
+
293
+ ## 🧠 Why Ragmint?
294
+
295
+ - Built for **RAG researchers**, **AI engineers**, and **LLM ops**
296
+ - Works with **LangChain**, **LlamaIndex**, or standalone setups
297
+ - Designed for **extensibility** — plug in your own retrievers, models, or metrics
298
+ - Integrated **explainability and leaderboard** modules for research and production
299
+
300
+ ---
301
+
302
+ ## ⚖️ License
303
+
304
+ Licensed under the **Apache License 2.0** — free for personal, research, and commercial use.
305
+
306
+ ---
307
+
308
+ ## 👤 Author
309
+
310
+ **André Oliveira**
311
+ [andyolivers.com](https://andyolivers.com)
312
+ Data Scientist | AI Engineer
@@ -31,8 +31,10 @@ ragmint/utils/caching.py,sha256=LPE2JorOQ90BgVf6NUiS0-bdt-FGpNxDy7FnuwEHzy0,1060
31
31
  ragmint/utils/data_loader.py,sha256=GXU9Nc3o0UWxtBeRwiskD1aCjSiNNuRoAokIUODn7q8,2024
32
32
  ragmint/utils/logger.py,sha256=X7hTNb3st3fUeQIzSghuoV5B8FWXzm_O3DRkSfJvhmI,1033
33
33
  ragmint/utils/metrics.py,sha256=DR8mrdumHtQerK0VrugwYKIG1oNptEcsFqodXq3i2kY,717
34
- ragmint-0.2.1.dist-info/licenses/LICENSE,sha256=ahkhYfFLI8tGrdxdO2_GaT6OJW2eNwyFT3kYi85QQhc,692
35
- ragmint-0.2.1.dist-info/METADATA,sha256=sR31_9qGCaarWLNqTc2uNjO4aklKq9nxaGEjtcy5ipU,936
36
- ragmint-0.2.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
37
- ragmint-0.2.1.dist-info/top_level.txt,sha256=K2ulzMHuvFm6xayvvJdGABeRJAvKDBn6M3EI-3SbYLw,8
38
- ragmint-0.2.1.dist-info/RECORD,,
34
+ ragmint-0.2.3.data/data/LICENSE,sha256=ahkhYfFLI8tGrdxdO2_GaT6OJW2eNwyFT3kYi85QQhc,692
35
+ ragmint-0.2.3.data/data/README.md,sha256=4rubaB58cFz_LhuWk1JUVBAyQAYbTBwXX8eAZFBocoQ,7010
36
+ ragmint-0.2.3.dist-info/licenses/LICENSE,sha256=ahkhYfFLI8tGrdxdO2_GaT6OJW2eNwyFT3kYi85QQhc,692
37
+ ragmint-0.2.3.dist-info/METADATA,sha256=g1ES-pCYCZJUNY01_1jhEkzpW8hqrZ3gwF9kKGPtgec,7948
38
+ ragmint-0.2.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
39
+ ragmint-0.2.3.dist-info/top_level.txt,sha256=K2ulzMHuvFm6xayvvJdGABeRJAvKDBn6M3EI-3SbYLw,8
40
+ ragmint-0.2.3.dist-info/RECORD,,
@@ -0,0 +1,19 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ Copyright 2025 André Oliveira
8
+
9
+ Licensed under the Apache License, Version 2.0 (the "License");
10
+ you may not use this file except in compliance with the License.
11
+ You may obtain a copy of the License at
12
+
13
+ http://www.apache.org/licenses/LICENSE-2.0
14
+
15
+ Unless required by applicable law or agreed to in writing, software
16
+ distributed under the License is distributed on an "AS IS" BASIS,
17
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ See the License for the specific language governing permissions and
19
+ limitations under the License.
@@ -1,27 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: ragmint
3
- Version: 0.2.1
4
- Summary: A modular framework for evaluating and optimizing RAG pipelines.
5
- Author-email: Andre Oliveira <oandreoliveira@outlook.com>
6
- License: Apache License 2.0
7
- Project-URL: Homepage, https://github.com/andyolivers/ragmint
8
- Project-URL: Documentation, https://andyolivers.com
9
- Project-URL: Issues, https://github.com/andyolivers/ragmint/issues
10
- Keywords: RAG,LLM,retrieval,optimization,AI,evaluation
11
- Requires-Python: >=3.9
12
- Description-Content-Type: text/markdown
13
- License-File: LICENSE
14
- Requires-Dist: numpy>=1.23
15
- Requires-Dist: pandas>=2.0
16
- Requires-Dist: scikit-learn>=1.3
17
- Requires-Dist: openai>=1.0
18
- Requires-Dist: tqdm
19
- Requires-Dist: pyyaml
20
- Requires-Dist: chromadb>=0.4
21
- Requires-Dist: faiss-cpu; sys_platform != "darwin"
22
- Requires-Dist: optuna>=3.0
23
- Requires-Dist: pytest
24
- Requires-Dist: colorama
25
- Requires-Dist: google-generativeai>=0.8.0
26
- Requires-Dist: supabase>=2.4.0
27
- Dynamic: license-file