ragmint 0.1.0__py3-none-any.whl → 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ragmint might be problematic. Click here for more details.
- ragmint/autotuner.py +33 -0
- ragmint/core/evaluation.py +11 -0
- ragmint/explainer.py +61 -0
- ragmint/leaderboard.py +45 -0
- ragmint/tests/conftest.py +16 -0
- ragmint/tests/test_autotuner.py +42 -0
- ragmint/tests/test_explainer.py +20 -0
- ragmint/tests/test_explainer_integration.py +18 -0
- ragmint/tests/test_integration_autotuner_ragmint.py +60 -0
- ragmint/tests/test_leaderboard.py +39 -0
- ragmint/tests/test_tuner.py +38 -5
- ragmint/tuner.py +1 -1
- ragmint/utils/data_loader.py +33 -3
- {ragmint-0.1.0.dist-info → ragmint-0.2.0.dist-info}/METADATA +124 -30
- {ragmint-0.1.0.dist-info → ragmint-0.2.0.dist-info}/RECORD +18 -9
- {ragmint-0.1.0.dist-info → ragmint-0.2.0.dist-info}/WHEEL +0 -0
- {ragmint-0.1.0.dist-info → ragmint-0.2.0.dist-info}/licenses/LICENSE +0 -0
- {ragmint-0.1.0.dist-info → ragmint-0.2.0.dist-info}/top_level.txt +0 -0
ragmint/autotuner.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Auto-RAG Tuner
|
|
3
|
+
--------------
|
|
4
|
+
Recommends retriever–embedding pairs dynamically based on corpus size
|
|
5
|
+
and dataset characteristics. Integrates seamlessly with RAGMint evaluator.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from .core.evaluation import evaluate_config
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class AutoRAGTuner:
|
|
12
|
+
def __init__(self, corpus_stats: dict):
|
|
13
|
+
"""
|
|
14
|
+
corpus_stats: dict
|
|
15
|
+
Example: {'size': 12000, 'avg_len': 240}
|
|
16
|
+
"""
|
|
17
|
+
self.corpus_stats = corpus_stats
|
|
18
|
+
|
|
19
|
+
def recommend(self):
|
|
20
|
+
size = self.corpus_stats.get("size", 0)
|
|
21
|
+
avg_len = self.corpus_stats.get("avg_len", 0)
|
|
22
|
+
|
|
23
|
+
if size < 1000:
|
|
24
|
+
return {"retriever": "BM25", "embedding_model": "OpenAI"}
|
|
25
|
+
elif size < 10000:
|
|
26
|
+
return {"retriever": "Chroma", "embedding_model": "SentenceTransformers"}
|
|
27
|
+
else:
|
|
28
|
+
return {"retriever": "FAISS", "embedding_model": "InstructorXL"}
|
|
29
|
+
|
|
30
|
+
def auto_tune(self, validation_data):
|
|
31
|
+
config = self.recommend()
|
|
32
|
+
results = evaluate_config(config, validation_data)
|
|
33
|
+
return {"recommended": config, "results": results}
|
ragmint/core/evaluation.py
CHANGED
|
@@ -25,3 +25,14 @@ class Evaluator:
|
|
|
25
25
|
|
|
26
26
|
def _similarity(self, a: str, b: str) -> float:
|
|
27
27
|
return SequenceMatcher(None, a, b).ratio()
|
|
28
|
+
|
|
29
|
+
def evaluate_config(config, validation_data):
|
|
30
|
+
evaluator = Evaluator()
|
|
31
|
+
results = []
|
|
32
|
+
for sample in validation_data:
|
|
33
|
+
query = sample.get("query", "")
|
|
34
|
+
answer = sample.get("answer", "")
|
|
35
|
+
context = sample.get("context", "")
|
|
36
|
+
results.append(evaluator.evaluate(query, answer, context))
|
|
37
|
+
return results
|
|
38
|
+
|
ragmint/explainer.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Interpretability Layer
|
|
3
|
+
----------------------
|
|
4
|
+
Uses Gemini or Anthropic Claude to explain why one RAG configuration
|
|
5
|
+
outperforms another. Falls back gracefully if no API key is provided.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import os
|
|
9
|
+
import json
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def explain_results(results_a: dict, results_b: dict, model: str = "gemini-1.5-pro") -> str:
|
|
13
|
+
"""
|
|
14
|
+
Generate a natural-language explanation comparing two RAG experiment results.
|
|
15
|
+
Priority:
|
|
16
|
+
1. Anthropic Claude (if ANTHROPIC_API_KEY is set)
|
|
17
|
+
2. Google Gemini (if GOOGLE_API_KEY is set)
|
|
18
|
+
3. Fallback text message
|
|
19
|
+
"""
|
|
20
|
+
prompt = f"""
|
|
21
|
+
You are an AI evaluation expert.
|
|
22
|
+
Compare these two RAG experiment results and explain why one performs better.
|
|
23
|
+
Metrics A: {json.dumps(results_a, indent=2)}
|
|
24
|
+
Metrics B: {json.dumps(results_b, indent=2)}
|
|
25
|
+
Provide a concise, human-friendly explanation and practical improvement tips.
|
|
26
|
+
"""
|
|
27
|
+
|
|
28
|
+
anthropic_key = os.getenv("ANTHROPIC_API_KEY")
|
|
29
|
+
google_key = os.getenv("GEMINI_API_KEY")
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
# 1️⃣ Try Anthropic Claude first
|
|
33
|
+
if anthropic_key:
|
|
34
|
+
try:
|
|
35
|
+
from anthropic import Anthropic
|
|
36
|
+
client = Anthropic(api_key=anthropic_key)
|
|
37
|
+
response = client.messages.create(
|
|
38
|
+
model="claude-3-opus-20240229",
|
|
39
|
+
max_tokens=300,
|
|
40
|
+
messages=[{"role": "user", "content": prompt}],
|
|
41
|
+
)
|
|
42
|
+
return response.content[0].text
|
|
43
|
+
except Exception as e:
|
|
44
|
+
return f"[Claude unavailable] {e}"
|
|
45
|
+
|
|
46
|
+
# 2️⃣ Fallback to Google Gemini
|
|
47
|
+
elif google_key:
|
|
48
|
+
try:
|
|
49
|
+
import google.generativeai as genai
|
|
50
|
+
genai.configure(api_key=google_key)
|
|
51
|
+
response = genai.GenerativeModel(model).generate_content(prompt)
|
|
52
|
+
return response.text
|
|
53
|
+
except Exception as e:
|
|
54
|
+
return f"[Gemini unavailable] {e}"
|
|
55
|
+
|
|
56
|
+
# 3️⃣ Fallback if neither key is available
|
|
57
|
+
else:
|
|
58
|
+
return (
|
|
59
|
+
"[No LLM available] Please set ANTHROPIC_API_KEY or GOOGLE_API_KEY "
|
|
60
|
+
"to enable interpretability via Claude or Gemini."
|
|
61
|
+
)
|
ragmint/leaderboard.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import json
|
|
3
|
+
from datetime import datetime
|
|
4
|
+
from typing import Dict, Any, Optional
|
|
5
|
+
from supabase import create_client
|
|
6
|
+
|
|
7
|
+
class Leaderboard:
|
|
8
|
+
def __init__(self, storage_path: Optional[str] = None):
|
|
9
|
+
self.storage_path = storage_path
|
|
10
|
+
url = os.getenv("SUPABASE_URL")
|
|
11
|
+
key = os.getenv("SUPABASE_KEY")
|
|
12
|
+
self.client = None
|
|
13
|
+
if url and key:
|
|
14
|
+
self.client = create_client(url, key)
|
|
15
|
+
elif not storage_path:
|
|
16
|
+
raise EnvironmentError("Set SUPABASE_URL/SUPABASE_KEY or pass storage_path")
|
|
17
|
+
|
|
18
|
+
def upload(self, run_id: str, config: Dict[str, Any], score: float):
|
|
19
|
+
data = {
|
|
20
|
+
"run_id": run_id,
|
|
21
|
+
"config": config,
|
|
22
|
+
"score": score,
|
|
23
|
+
"timestamp": datetime.utcnow().isoformat(),
|
|
24
|
+
}
|
|
25
|
+
if self.client:
|
|
26
|
+
return self.client.table("experiments").insert(data).execute()
|
|
27
|
+
else:
|
|
28
|
+
os.makedirs(os.path.dirname(self.storage_path), exist_ok=True)
|
|
29
|
+
with open(self.storage_path, "a", encoding="utf-8") as f:
|
|
30
|
+
f.write(json.dumps(data) + "\n")
|
|
31
|
+
return data
|
|
32
|
+
|
|
33
|
+
def top_results(self, limit: int = 10):
|
|
34
|
+
if self.client:
|
|
35
|
+
return (
|
|
36
|
+
self.client.table("experiments")
|
|
37
|
+
.select("*")
|
|
38
|
+
.order("score", desc=True)
|
|
39
|
+
.limit(limit)
|
|
40
|
+
.execute()
|
|
41
|
+
)
|
|
42
|
+
else:
|
|
43
|
+
with open(self.storage_path, "r", encoding="utf-8") as f:
|
|
44
|
+
lines = [json.loads(line) for line in f]
|
|
45
|
+
return sorted(lines, key=lambda x: x["score"], reverse=True)[:limit]
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
# src/ragmint/tests/conftest.py
|
|
2
|
+
import os
|
|
3
|
+
from dotenv import load_dotenv
|
|
4
|
+
import pytest
|
|
5
|
+
|
|
6
|
+
# Load .env from project root
|
|
7
|
+
load_dotenv(dotenv_path=os.path.join(os.path.dirname(__file__), "../../../.env"))
|
|
8
|
+
|
|
9
|
+
def pytest_configure(config):
|
|
10
|
+
"""Print which keys are loaded (debug)."""
|
|
11
|
+
google = os.getenv("GEMINI_API_KEY")
|
|
12
|
+
anthropic = os.getenv("ANTHROPIC_API_KEY")
|
|
13
|
+
if google:
|
|
14
|
+
print("✅ GOOGLE_API_KEY loaded")
|
|
15
|
+
if anthropic:
|
|
16
|
+
print("✅ ANTHROPIC_API_KEY loaded")
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
import pytest
|
|
2
|
+
from ragmint.autotuner import AutoRAGTuner
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def test_autorag_recommend_small():
|
|
6
|
+
"""Small corpus should trigger BM25 + OpenAI."""
|
|
7
|
+
tuner = AutoRAGTuner({"size": 500, "avg_len": 150})
|
|
8
|
+
rec = tuner.recommend()
|
|
9
|
+
assert rec["retriever"] == "BM25"
|
|
10
|
+
assert rec["embedding_model"] == "OpenAI"
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def test_autorag_recommend_medium():
|
|
14
|
+
"""Medium corpus should trigger Chroma + SentenceTransformers."""
|
|
15
|
+
tuner = AutoRAGTuner({"size": 5000, "avg_len": 200})
|
|
16
|
+
rec = tuner.recommend()
|
|
17
|
+
assert rec["retriever"] == "Chroma"
|
|
18
|
+
assert rec["embedding_model"] == "SentenceTransformers"
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def test_autorag_recommend_large():
|
|
22
|
+
"""Large corpus should trigger FAISS + InstructorXL."""
|
|
23
|
+
tuner = AutoRAGTuner({"size": 50000, "avg_len": 300})
|
|
24
|
+
rec = tuner.recommend()
|
|
25
|
+
assert rec["retriever"] == "FAISS"
|
|
26
|
+
assert rec["embedding_model"] == "InstructorXL"
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def test_autorag_auto_tune(monkeypatch):
|
|
30
|
+
"""Test auto_tune with a mock validation dataset."""
|
|
31
|
+
tuner = AutoRAGTuner({"size": 12000, "avg_len": 250})
|
|
32
|
+
|
|
33
|
+
# Monkeypatch evaluate_config inside autotuner
|
|
34
|
+
import ragmint.autotuner as autotuner
|
|
35
|
+
def mock_eval(config, data):
|
|
36
|
+
return {"faithfulness": 0.9, "latency": 0.01}
|
|
37
|
+
monkeypatch.setattr(autotuner, "evaluate_config", mock_eval)
|
|
38
|
+
|
|
39
|
+
result = tuner.auto_tune([{"question": "What is AI?", "answer": "Artificial Intelligence"}])
|
|
40
|
+
assert "recommended" in result
|
|
41
|
+
assert "results" in result
|
|
42
|
+
assert isinstance(result["results"], dict)
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
import pytest
|
|
2
|
+
from ragmint.explainer import explain_results
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def test_explain_results_gemini():
|
|
6
|
+
"""Gemini explanation should contain model-specific phrasing."""
|
|
7
|
+
config_a = {"retriever": "FAISS", "embedding_model": "OpenAI"}
|
|
8
|
+
config_b = {"retriever": "Chroma", "embedding_model": "SentenceTransformers"}
|
|
9
|
+
result = explain_results(config_a, config_b, model="gemini")
|
|
10
|
+
assert isinstance(result, str)
|
|
11
|
+
assert "Gemini" in result or "gemini" in result
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def test_explain_results_claude():
|
|
15
|
+
"""Claude explanation should contain model-specific phrasing."""
|
|
16
|
+
config_a = {"retriever": "FAISS"}
|
|
17
|
+
config_b = {"retriever": "Chroma"}
|
|
18
|
+
result = explain_results(config_a, config_b, model="claude")
|
|
19
|
+
assert isinstance(result, str)
|
|
20
|
+
assert "Claude" in result or "claude" in result
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import pytest
|
|
3
|
+
from ragmint.explainer import explain_results
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
@pytest.mark.integration
|
|
7
|
+
def test_real_gemini_explanation():
|
|
8
|
+
"""Run real Gemini call if GOOGLE_API_KEY is set."""
|
|
9
|
+
if not os.getenv("GEMINI_API_KEY"):
|
|
10
|
+
pytest.skip("GOOGLE_API_KEY not set")
|
|
11
|
+
|
|
12
|
+
config_a = {"retriever": "FAISS", "embedding_model": "OpenAI"}
|
|
13
|
+
config_b = {"retriever": "Chroma", "embedding_model": "SentenceTransformers"}
|
|
14
|
+
|
|
15
|
+
result = explain_results(config_a, config_b, model="gemini-1.5-pro")
|
|
16
|
+
assert isinstance(result, str)
|
|
17
|
+
assert len(result) > 0
|
|
18
|
+
print("\n[Gemini explanation]:", result[:200], "...")
|
|
@@ -0,0 +1,60 @@
|
|
|
1
|
+
import pytest
|
|
2
|
+
from ragmint.tuner import RAGMint
|
|
3
|
+
from ragmint.autotuner import AutoRAGTuner
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def test_integration_ragmint_autotune(monkeypatch, tmp_path):
|
|
7
|
+
"""
|
|
8
|
+
Smoke test for integration between AutoRAGTuner and RAGMint.
|
|
9
|
+
Ensures end-to-end flow runs without real retrievers or embeddings.
|
|
10
|
+
"""
|
|
11
|
+
|
|
12
|
+
# --- Mock corpus and validation data ---
|
|
13
|
+
corpus = tmp_path / "docs"
|
|
14
|
+
corpus.mkdir()
|
|
15
|
+
(corpus / "doc1.txt").write_text("This is an AI document.")
|
|
16
|
+
validation_data = [{"question": "What is AI?", "answer": "Artificial Intelligence"}]
|
|
17
|
+
|
|
18
|
+
# --- Mock RAGMint.optimize() to avoid real model work ---
|
|
19
|
+
def mock_optimize(self, validation_set=None, metric="faithfulness", trials=2):
|
|
20
|
+
return (
|
|
21
|
+
{"retriever": "FAISS", "embedding_model": "OpenAI", "score": 0.88},
|
|
22
|
+
[{"trial": 1, "score": 0.88}],
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
monkeypatch.setattr(RAGMint, "optimize", mock_optimize)
|
|
26
|
+
|
|
27
|
+
# --- Mock evaluation used by AutoRAGTuner ---
|
|
28
|
+
def mock_evaluate_config(config, data):
|
|
29
|
+
return {"faithfulness": 0.9, "latency": 0.01}
|
|
30
|
+
|
|
31
|
+
import ragmint.autotuner as autotuner
|
|
32
|
+
monkeypatch.setattr(autotuner, "evaluate_config", mock_evaluate_config)
|
|
33
|
+
|
|
34
|
+
# --- Create AutoRAGTuner and RAGMint instances ---
|
|
35
|
+
ragmint = RAGMint(
|
|
36
|
+
docs_path=str(corpus),
|
|
37
|
+
retrievers=["faiss", "chroma"],
|
|
38
|
+
embeddings=["text-embedding-3-small"],
|
|
39
|
+
rerankers=["mmr"],
|
|
40
|
+
)
|
|
41
|
+
|
|
42
|
+
tuner = AutoRAGTuner({"size": 2000, "avg_len": 150})
|
|
43
|
+
|
|
44
|
+
# --- Run Auto-Tune and RAG Optimization ---
|
|
45
|
+
recommendation = tuner.recommend()
|
|
46
|
+
assert "retriever" in recommendation
|
|
47
|
+
assert "embedding_model" in recommendation
|
|
48
|
+
|
|
49
|
+
tuning_results = tuner.auto_tune(validation_data)
|
|
50
|
+
assert "results" in tuning_results
|
|
51
|
+
assert isinstance(tuning_results["results"], dict)
|
|
52
|
+
|
|
53
|
+
# --- Run RAGMint optimization flow (mocked) ---
|
|
54
|
+
best_config, results = ragmint.optimize(validation_set=validation_data, trials=2)
|
|
55
|
+
assert isinstance(best_config, dict)
|
|
56
|
+
assert "score" in best_config
|
|
57
|
+
assert isinstance(results, list)
|
|
58
|
+
|
|
59
|
+
# --- Integration Success ---
|
|
60
|
+
print(f"Integration OK: AutoRAG recommended {recommendation}, RAGMint best {best_config}")
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
import json
|
|
2
|
+
import tempfile
|
|
3
|
+
from pathlib import Path
|
|
4
|
+
from ragmint.leaderboard import Leaderboard
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def test_leaderboard_add_and_top(tmp_path):
|
|
8
|
+
"""Ensure local leaderboard persistence works without Supabase."""
|
|
9
|
+
file_path = tmp_path / "leaderboard.jsonl"
|
|
10
|
+
lb = Leaderboard(storage_path=str(file_path))
|
|
11
|
+
|
|
12
|
+
# Add two runs
|
|
13
|
+
lb.upload("run1", {"retriever": "FAISS"}, 0.91)
|
|
14
|
+
lb.upload("run2", {"retriever": "Chroma"}, 0.85)
|
|
15
|
+
|
|
16
|
+
# Verify file content
|
|
17
|
+
assert file_path.exists()
|
|
18
|
+
with open(file_path, "r", encoding="utf-8") as f:
|
|
19
|
+
lines = [json.loads(line) for line in f]
|
|
20
|
+
assert len(lines) == 2
|
|
21
|
+
|
|
22
|
+
# Get top results
|
|
23
|
+
top = lb.top_results(limit=1)
|
|
24
|
+
assert isinstance(top, list)
|
|
25
|
+
assert len(top) == 1
|
|
26
|
+
assert "score" in top[0]
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def test_leaderboard_append_existing(tmp_path):
|
|
30
|
+
"""Ensure multiple uploads append properly."""
|
|
31
|
+
file_path = tmp_path / "leaderboard.jsonl"
|
|
32
|
+
lb = Leaderboard(storage_path=str(file_path))
|
|
33
|
+
|
|
34
|
+
for i in range(3):
|
|
35
|
+
lb.upload(f"run{i}", {"retriever": "BM25"}, 0.8 + i * 0.05)
|
|
36
|
+
|
|
37
|
+
top = lb.top_results(limit=2)
|
|
38
|
+
assert len(top) == 2
|
|
39
|
+
assert top[0]["score"] >= top[1]["score"]
|
ragmint/tests/test_tuner.py
CHANGED
|
@@ -1,9 +1,11 @@
|
|
|
1
1
|
import os
|
|
2
2
|
import json
|
|
3
|
+
import pytest
|
|
3
4
|
from ragmint.tuner import RAGMint
|
|
4
5
|
|
|
5
6
|
|
|
6
7
|
def setup_validation_file(tmp_path):
|
|
8
|
+
"""Create a temporary validation QA dataset."""
|
|
7
9
|
data = [
|
|
8
10
|
{"question": "What is AI?", "answer": "Artificial Intelligence"},
|
|
9
11
|
{"question": "Define ML", "answer": "Machine Learning"}
|
|
@@ -15,6 +17,7 @@ def setup_validation_file(tmp_path):
|
|
|
15
17
|
|
|
16
18
|
|
|
17
19
|
def setup_docs(tmp_path):
|
|
20
|
+
"""Create a small document corpus for testing."""
|
|
18
21
|
corpus = tmp_path / "corpus"
|
|
19
22
|
corpus.mkdir()
|
|
20
23
|
(corpus / "doc1.txt").write_text("This is about Artificial Intelligence.")
|
|
@@ -22,17 +25,47 @@ def setup_docs(tmp_path):
|
|
|
22
25
|
return str(corpus)
|
|
23
26
|
|
|
24
27
|
|
|
25
|
-
|
|
28
|
+
@pytest.mark.parametrize("validation_mode", [
|
|
29
|
+
None, # Built-in dataset
|
|
30
|
+
"data/custom_eval.json", # Custom dataset path (mocked below)
|
|
31
|
+
])
|
|
32
|
+
def test_optimize_ragmint(tmp_path, validation_mode, monkeypatch):
|
|
33
|
+
"""Test RAGMint.optimize() with different dataset modes."""
|
|
26
34
|
docs_path = setup_docs(tmp_path)
|
|
27
35
|
val_file = setup_validation_file(tmp_path)
|
|
28
36
|
|
|
37
|
+
# If using custom dataset, mock the path
|
|
38
|
+
if validation_mode and "custom_eval" in validation_mode:
|
|
39
|
+
custom_path = tmp_path / "custom_eval.json"
|
|
40
|
+
os.rename(val_file, custom_path)
|
|
41
|
+
validation_mode = str(custom_path)
|
|
42
|
+
|
|
43
|
+
metric = "faithfulness"
|
|
44
|
+
|
|
45
|
+
# Initialize RAGMint
|
|
29
46
|
rag = RAGMint(
|
|
30
47
|
docs_path=docs_path,
|
|
31
48
|
retrievers=["faiss"],
|
|
32
|
-
embeddings=["
|
|
49
|
+
embeddings=["text-embedding-3-small"],
|
|
33
50
|
rerankers=["mmr"]
|
|
34
51
|
)
|
|
35
52
|
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
53
|
+
# Run optimization
|
|
54
|
+
best, results = rag.optimize(
|
|
55
|
+
validation_set=validation_mode,
|
|
56
|
+
metric=metric,
|
|
57
|
+
trials=2
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
# Validate results
|
|
61
|
+
assert isinstance(best, dict), "Best config should be a dict"
|
|
62
|
+
assert isinstance(results, list), "Results should be a list of trials"
|
|
63
|
+
assert len(results) > 0, "Optimization should produce results"
|
|
64
|
+
|
|
65
|
+
# The best result can expose either 'score' or the metric name (e.g. 'faithfulness')
|
|
66
|
+
assert any(k in best for k in ("score", metric)), \
|
|
67
|
+
f"Best config should include either 'score' or '{metric}'"
|
|
68
|
+
|
|
69
|
+
# Ensure the metric value is valid
|
|
70
|
+
assert best.get(metric, best.get("score")) >= 0, \
|
|
71
|
+
f"{metric} score should be non-negative"
|
ragmint/tuner.py
CHANGED
|
@@ -90,7 +90,7 @@ class RAGMint:
|
|
|
90
90
|
search_type: str = "random",
|
|
91
91
|
trials: int = 10,
|
|
92
92
|
) -> Tuple[Dict[str, Any], List[Dict[str, Any]]]:
|
|
93
|
-
validation = load_validation_set(validation_set)
|
|
93
|
+
validation = load_validation_set(validation_set or "default")
|
|
94
94
|
|
|
95
95
|
search_space = {
|
|
96
96
|
"retriever": self.retrievers,
|
ragmint/utils/data_loader.py
CHANGED
|
@@ -2,6 +2,14 @@ import json
|
|
|
2
2
|
import csv
|
|
3
3
|
from typing import List, Dict
|
|
4
4
|
from pathlib import Path
|
|
5
|
+
import os
|
|
6
|
+
|
|
7
|
+
try:
|
|
8
|
+
from datasets import load_dataset
|
|
9
|
+
except ImportError:
|
|
10
|
+
load_dataset = None # optional dependency
|
|
11
|
+
|
|
12
|
+
DEFAULT_VALIDATION_PATH = Path(__file__).parent.parent / "experiments" / "validation_qa.json"
|
|
5
13
|
|
|
6
14
|
|
|
7
15
|
def load_json(path: str) -> List[Dict]:
|
|
@@ -19,10 +27,32 @@ def save_json(path: str, data: Dict):
|
|
|
19
27
|
with open(path, "w", encoding="utf-8") as f:
|
|
20
28
|
json.dump(data, f, ensure_ascii=False, indent=2)
|
|
21
29
|
|
|
22
|
-
def load_validation_set(path: str) -> List[Dict]:
|
|
30
|
+
def load_validation_set(path: str | None = None) -> List[Dict]:
|
|
23
31
|
"""
|
|
24
|
-
Loads a validation dataset (QA pairs) from
|
|
32
|
+
Loads a validation dataset (QA pairs) from:
|
|
33
|
+
- Built-in default JSON file
|
|
34
|
+
- User-provided JSON or CSV
|
|
35
|
+
- Hugging Face dataset by name
|
|
25
36
|
"""
|
|
37
|
+
# Default behavior
|
|
38
|
+
if path is None or path == "default":
|
|
39
|
+
if not DEFAULT_VALIDATION_PATH.exists():
|
|
40
|
+
raise FileNotFoundError(f"Default validation set not found at {DEFAULT_VALIDATION_PATH}")
|
|
41
|
+
return load_json(DEFAULT_VALIDATION_PATH)
|
|
42
|
+
|
|
43
|
+
# Hugging Face dataset
|
|
44
|
+
if not os.path.exists(path) and load_dataset:
|
|
45
|
+
try:
|
|
46
|
+
dataset = load_dataset(path, split="validation")
|
|
47
|
+
data = [
|
|
48
|
+
{"question": q, "answer": a}
|
|
49
|
+
for q, a in zip(dataset["question"], dataset["answers"])
|
|
50
|
+
]
|
|
51
|
+
return data
|
|
52
|
+
except Exception:
|
|
53
|
+
pass # fall through to file loading
|
|
54
|
+
|
|
55
|
+
# Local file
|
|
26
56
|
p = Path(path)
|
|
27
57
|
if not p.exists():
|
|
28
58
|
raise FileNotFoundError(f"Validation file not found: {path}")
|
|
@@ -32,4 +62,4 @@ def load_validation_set(path: str) -> List[Dict]:
|
|
|
32
62
|
elif p.suffix.lower() in [".csv", ".tsv"]:
|
|
33
63
|
return load_csv(path)
|
|
34
64
|
else:
|
|
35
|
-
raise ValueError("Unsupported validation set format. Use JSON or
|
|
65
|
+
raise ValueError("Unsupported validation set format. Use JSON, CSV, or a Hugging Face dataset name.")
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: ragmint
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.2.0
|
|
4
4
|
Summary: A modular framework for evaluating and optimizing RAG pipelines.
|
|
5
5
|
Author-email: Andre Oliveira <oandreoliveira@outlook.com>
|
|
6
6
|
License: Apache License 2.0
|
|
@@ -22,6 +22,8 @@ Requires-Dist: faiss-cpu; sys_platform != "darwin"
|
|
|
22
22
|
Requires-Dist: optuna>=3.0
|
|
23
23
|
Requires-Dist: pytest
|
|
24
24
|
Requires-Dist: colorama
|
|
25
|
+
Requires-Dist: google-generativeai>=0.8.0
|
|
26
|
+
Requires-Dist: supabase>=2.4.0
|
|
25
27
|
Dynamic: license-file
|
|
26
28
|
|
|
27
29
|
# Ragmint
|
|
@@ -36,17 +38,19 @@ Dynamic: license-file
|
|
|
36
38
|
|
|
37
39
|
**Ragmint** (Retrieval-Augmented Generation Model Inspection & Tuning) is a modular, developer-friendly Python library for **evaluating, optimizing, and tuning RAG (Retrieval-Augmented Generation) pipelines**.
|
|
38
40
|
|
|
39
|
-
It provides a complete toolkit for **retriever selection**, **embedding model tuning**, and **automated RAG evaluation** with support for **Optuna-based Bayesian optimization
|
|
41
|
+
It provides a complete toolkit for **retriever selection**, **embedding model tuning**, and **automated RAG evaluation** with support for **Optuna-based Bayesian optimization**, **Auto-RAG tuning**, and **explainability** through Gemini or Claude.
|
|
40
42
|
|
|
41
43
|
---
|
|
42
44
|
|
|
43
45
|
## ✨ Features
|
|
44
46
|
|
|
45
47
|
- ✅ **Automated hyperparameter optimization** (Grid, Random, Bayesian via Optuna)
|
|
48
|
+
- 🤖 **Auto-RAG Tuner** — dynamically recommends retriever–embedding pairs based on corpus size
|
|
49
|
+
- 🧠 **Explainability Layer** — interprets RAG performance via Gemini or Claude APIs
|
|
50
|
+
- 🏆 **Leaderboard Tracking** — stores and ranks experiment runs via JSON or external DB
|
|
46
51
|
- 🔍 **Built-in RAG evaluation metrics** — faithfulness, recall, BLEU, ROUGE, latency
|
|
47
52
|
- ⚙️ **Retrievers** — FAISS, Chroma, ElasticSearch
|
|
48
53
|
- 🧩 **Embeddings** — OpenAI, HuggingFace
|
|
49
|
-
- 🧠 **Rerankers** — MMR, CrossEncoder (extensible via plugin interface)
|
|
50
54
|
- 💾 **Caching, experiment tracking, and reproducibility** out of the box
|
|
51
55
|
- 🧰 **Clean modular structure** for easy integration in research and production setups
|
|
52
56
|
|
|
@@ -103,47 +107,133 @@ print(result)
|
|
|
103
107
|
|
|
104
108
|
---
|
|
105
109
|
|
|
110
|
+
## 🧪 Dataset Options
|
|
111
|
+
|
|
112
|
+
Ragmint can automatically load evaluation datasets for your RAG pipeline:
|
|
113
|
+
|
|
114
|
+
| Mode | Example | Description |
|
|
115
|
+
|------|----------|-------------|
|
|
116
|
+
| 🧱 **Default** | `validation_set=None` | Uses built-in `experiments/validation_qa.json` |
|
|
117
|
+
| 📁 **Custom File** | `validation_set="data/my_eval.json"` | Load your own QA dataset (JSON or CSV) |
|
|
118
|
+
| 🌐 **Hugging Face Dataset** | `validation_set="squad"` | Automatically downloads benchmark datasets (requires `pip install datasets`) |
|
|
119
|
+
|
|
120
|
+
### Example
|
|
121
|
+
|
|
122
|
+
```python
|
|
123
|
+
from ragmint.tuner import RAGMint
|
|
124
|
+
|
|
125
|
+
ragmint = RAGMint(
|
|
126
|
+
docs_path="data/docs/",
|
|
127
|
+
retrievers=["faiss", "chroma"],
|
|
128
|
+
embeddings=["text-embedding-3-small"],
|
|
129
|
+
rerankers=["mmr"],
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
# Use built-in default
|
|
133
|
+
ragmint.optimize(validation_set=None)
|
|
134
|
+
|
|
135
|
+
# Use Hugging Face benchmark
|
|
136
|
+
ragmint.optimize(validation_set="squad")
|
|
137
|
+
|
|
138
|
+
# Use your own dataset
|
|
139
|
+
ragmint.optimize(validation_set="data/custom_qa.json")
|
|
140
|
+
```
|
|
141
|
+
|
|
142
|
+
---
|
|
143
|
+
|
|
144
|
+
## 🧠 Auto-RAG Tuner
|
|
145
|
+
|
|
146
|
+
The **AutoRAGTuner** automatically recommends retriever–embedding combinations
|
|
147
|
+
based on corpus size and average document length.
|
|
148
|
+
|
|
149
|
+
```python
|
|
150
|
+
from ragmint.autotuner import AutoRAGTuner
|
|
151
|
+
|
|
152
|
+
corpus_stats = {"size": 5000, "avg_len": 250}
|
|
153
|
+
tuner = AutoRAGTuner(corpus_stats)
|
|
154
|
+
recommendation = tuner.recommend()
|
|
155
|
+
print(recommendation)
|
|
156
|
+
# Example output: {"retriever": "Chroma", "embedding_model": "SentenceTransformers"}
|
|
157
|
+
```
|
|
158
|
+
|
|
159
|
+
---
|
|
160
|
+
|
|
161
|
+
## 🏆 Leaderboard Tracking
|
|
162
|
+
|
|
163
|
+
Track and visualize your best experiments across runs.
|
|
164
|
+
|
|
165
|
+
```python
|
|
166
|
+
from ragmint.leaderboard import Leaderboard
|
|
167
|
+
|
|
168
|
+
lb = Leaderboard("experiments/leaderboard.json")
|
|
169
|
+
lb.add_entry({"trial": 1, "faithfulness": 0.87, "latency": 0.12})
|
|
170
|
+
lb.show_top(3)
|
|
171
|
+
```
|
|
172
|
+
|
|
173
|
+
---
|
|
174
|
+
|
|
175
|
+
## 🧠 Explainability with Gemini / Claude
|
|
176
|
+
|
|
177
|
+
Compare two RAG configurations and receive natural language insights
|
|
178
|
+
on **why** one performs better.
|
|
179
|
+
|
|
180
|
+
```python
|
|
181
|
+
from ragmint.explainer import explain_results
|
|
182
|
+
|
|
183
|
+
config_a = {"retriever": "FAISS", "embedding_model": "OpenAI"}
|
|
184
|
+
config_b = {"retriever": "Chroma", "embedding_model": "SentenceTransformers"}
|
|
185
|
+
|
|
186
|
+
explanation = explain_results(config_a, config_b, model="gemini")
|
|
187
|
+
print(explanation)
|
|
188
|
+
```
|
|
189
|
+
|
|
190
|
+
> Set your API keys in a `.env` file or via environment variables:
|
|
191
|
+
> ```
|
|
192
|
+
> export GOOGLE_API_KEY="your_gemini_key"
|
|
193
|
+
> export ANTHROPIC_API_KEY="your_claude_key"
|
|
194
|
+
> ```
|
|
195
|
+
|
|
196
|
+
---
|
|
197
|
+
|
|
106
198
|
## 🧩 Folder Structure
|
|
107
199
|
|
|
108
200
|
```
|
|
109
201
|
ragmint/
|
|
110
202
|
├── core/
|
|
111
|
-
│ ├── pipeline.py
|
|
112
|
-
│ ├── retriever.py
|
|
113
|
-
│ ├── reranker.py
|
|
114
|
-
│
|
|
115
|
-
|
|
116
|
-
├──
|
|
117
|
-
├──
|
|
118
|
-
├──
|
|
119
|
-
├──
|
|
120
|
-
├──
|
|
121
|
-
|
|
203
|
+
│ ├── pipeline.py
|
|
204
|
+
│ ├── retriever.py
|
|
205
|
+
│ ├── reranker.py
|
|
206
|
+
│ ├── embedding.py
|
|
207
|
+
│ └── evaluation.py
|
|
208
|
+
├── autotuner.py
|
|
209
|
+
├── explainer.py
|
|
210
|
+
├── leaderboard.py
|
|
211
|
+
├── tuner.py
|
|
212
|
+
├── utils/
|
|
213
|
+
├── configs/
|
|
214
|
+
├── experiments/
|
|
215
|
+
├── tests/
|
|
216
|
+
└── main.py
|
|
122
217
|
```
|
|
123
218
|
|
|
124
219
|
---
|
|
125
220
|
|
|
126
221
|
## 🧪 Running Tests
|
|
127
222
|
|
|
128
|
-
To verify your setup:
|
|
129
|
-
|
|
130
223
|
```bash
|
|
131
224
|
pytest -v
|
|
132
225
|
```
|
|
133
226
|
|
|
134
|
-
|
|
135
|
-
|
|
227
|
+
To include integration tests with Gemini or Claude APIs:
|
|
136
228
|
```bash
|
|
137
|
-
pytest
|
|
229
|
+
pytest -m integration
|
|
138
230
|
```
|
|
139
231
|
|
|
140
|
-
All tests are designed for **Pytest** and run with lightweight mock data.
|
|
141
|
-
|
|
142
232
|
---
|
|
143
233
|
|
|
144
234
|
## ⚙️ Configuration via `pyproject.toml`
|
|
145
235
|
|
|
146
|
-
Your `pyproject.toml`
|
|
236
|
+
Your `pyproject.toml` includes all required dependencies:
|
|
147
237
|
|
|
148
238
|
```toml
|
|
149
239
|
[project]
|
|
@@ -158,6 +248,8 @@ dependencies = [
|
|
|
158
248
|
"pytest",
|
|
159
249
|
"openai",
|
|
160
250
|
"tqdm",
|
|
251
|
+
"google-generativeai",
|
|
252
|
+
"google-genai",
|
|
161
253
|
]
|
|
162
254
|
```
|
|
163
255
|
|
|
@@ -165,10 +257,10 @@ dependencies = [
|
|
|
165
257
|
|
|
166
258
|
## 📊 Example Experiment Workflow
|
|
167
259
|
|
|
168
|
-
1. Define your retriever and reranker
|
|
169
|
-
2. Launch
|
|
170
|
-
3.
|
|
171
|
-
4.
|
|
260
|
+
1. Define your retriever, embedding, and reranker setup
|
|
261
|
+
2. Launch optimization (Grid, Random, Bayesian) or AutoTune
|
|
262
|
+
3. Compare performance with explainability
|
|
263
|
+
4. Persist results to leaderboard for later inspection
|
|
172
264
|
|
|
173
265
|
---
|
|
174
266
|
|
|
@@ -181,7 +273,7 @@ flowchart TD
|
|
|
181
273
|
C --> D[Reranker]
|
|
182
274
|
D --> E[Generator]
|
|
183
275
|
E --> F[Evaluation]
|
|
184
|
-
F --> G[Optuna
|
|
276
|
+
F --> G[Optuna / AutoRAGTuner]
|
|
185
277
|
G -->|Best Params| B
|
|
186
278
|
```
|
|
187
279
|
|
|
@@ -191,8 +283,9 @@ flowchart TD
|
|
|
191
283
|
|
|
192
284
|
```
|
|
193
285
|
[INFO] Starting Bayesian optimization with Optuna
|
|
194
|
-
[INFO] Trial 7 finished:
|
|
286
|
+
[INFO] Trial 7 finished: faithfulness=0.83, latency=0.42s
|
|
195
287
|
[INFO] Best parameters: {'lambda_param': 0.6, 'retriever': 'faiss'}
|
|
288
|
+
[INFO] AutoRAGTuner: Suggested retriever=Chroma for medium corpus
|
|
196
289
|
```
|
|
197
290
|
|
|
198
291
|
---
|
|
@@ -200,8 +293,9 @@ flowchart TD
|
|
|
200
293
|
## 🧠 Why Ragmint?
|
|
201
294
|
|
|
202
295
|
- Built for **RAG researchers**, **AI engineers**, and **LLM ops**
|
|
203
|
-
- Works with **LangChain**, **LlamaIndex**, or standalone
|
|
204
|
-
- Designed for **extensibility** — plug in your own
|
|
296
|
+
- Works with **LangChain**, **LlamaIndex**, or standalone setups
|
|
297
|
+
- Designed for **extensibility** — plug in your own retrievers, models, or metrics
|
|
298
|
+
- Integrated **explainability and leaderboard** modules for research and production
|
|
205
299
|
|
|
206
300
|
---
|
|
207
301
|
|
|
@@ -1,10 +1,13 @@
|
|
|
1
1
|
ragmint/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
2
|
ragmint/__main__.py,sha256=q7hBn56Z1xAckbs03i8ynsuOzJVUXmod2qHddX7gkpc,729
|
|
3
|
-
ragmint/
|
|
3
|
+
ragmint/autotuner.py,sha256=eXEH4e_3Os9FPX9y_0N7GnIQsmoHxmFbtjj7xanu17g,1064
|
|
4
|
+
ragmint/explainer.py,sha256=1glGNdC4GlwR6Qs8Bj1oOol7f5_db7Ksnh07HAp-A2c,2077
|
|
5
|
+
ragmint/leaderboard.py,sha256=nILQ5QR63RpZtCrZ__RFfwHXy4bkUIMUcSfH92OQ93Y,1628
|
|
6
|
+
ragmint/tuner.py,sha256=BLPZ66sVk3dh3Wj-GVUYRVmVtgXYTzv3oTQtKJeDlgE,4442
|
|
4
7
|
ragmint/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
5
8
|
ragmint/core/chunking.py,sha256=Dy9RYyapGSS6ik6Vg9lqbUPCFqSraU1JKpHbYUTkaFo,576
|
|
6
9
|
ragmint/core/embeddings.py,sha256=6wJjfZ5ukr8G5bJJ1evjIqj0_FMbs_gq4xC-sBBqNlA,566
|
|
7
|
-
ragmint/core/evaluation.py,sha256=
|
|
10
|
+
ragmint/core/evaluation.py,sha256=3OFcZU2zZyaP53d9S2zdpknV0CYfTq0KoRB3a_dtjM4,1022
|
|
8
11
|
ragmint/core/pipeline.py,sha256=2qwGKuG0Du7gtIpieLFn71h_RcwBpjcV-h9PQz2ZOsc,1169
|
|
9
12
|
ragmint/core/reranker.py,sha256=B2-NDExqpd9jdXHkEHOXC0B_6-FMJm5vdi-_ZbxC3Os,2303
|
|
10
13
|
ragmint/core/retriever.py,sha256=jbpKy_fGdDq736y0es_utQuLqY9eiWNd71Q8JbU0Sko,1259
|
|
@@ -12,17 +15,23 @@ ragmint/experiments/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSu
|
|
|
12
15
|
ragmint/optimization/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
13
16
|
ragmint/optimization/search.py,sha256=uiLJeoO_jaLCQEw99L6uI1rnqHHx_rTY81WxfMmlALs,1623
|
|
14
17
|
ragmint/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
18
|
+
ragmint/tests/conftest.py,sha256=QhYPp5nrQ_DbZlsVH3nLjDgjPATAnLwzJkwl-Y-xrmM,488
|
|
19
|
+
ragmint/tests/test_autotuner.py,sha256=k5nsIH6MYB5zaocR_Wn1wTX-QDYfhH6ugx2chZu9Q8U,1500
|
|
20
|
+
ragmint/tests/test_explainer.py,sha256=K_DRnGGl34WcTA2yaQGmfzWkVi1uEkzjpsTPeZxXeIg,802
|
|
21
|
+
ragmint/tests/test_explainer_integration.py,sha256=tYT62fYqk616bjQ1VxHADVRfJ9vdF_CiF3cz4A9BdbE,620
|
|
22
|
+
ragmint/tests/test_integration_autotuner_ragmint.py,sha256=YCGge0_KOijAdB7VNDGHl2VRJjiOyl_-sJNRLjAXGLw,2182
|
|
23
|
+
ragmint/tests/test_leaderboard.py,sha256=ay81YK6KxAUU6mcG6n1_xV8GPYkBgjzJj9iAIyAzIzA,1163
|
|
15
24
|
ragmint/tests/test_pipeline.py,sha256=MIMkEKelh-POlbXzbCc4ClMk8XCGzfuj569xXltziic,615
|
|
16
25
|
ragmint/tests/test_retriever.py,sha256=Ag0uGW8-iMzKA4nJNnsjuzlQHa79sN-T-K1g1cdin-A,421
|
|
17
26
|
ragmint/tests/test_search.py,sha256=FcC-DEnw9veAEyMnFoRw9DAwzqJC9F6-r63Nqo2nO58,598
|
|
18
|
-
ragmint/tests/test_tuner.py,sha256=
|
|
27
|
+
ragmint/tests/test_tuner.py,sha256=LOvtIxAbUsoRHQudZ23UVr60FYAU0a1SBNvAN0mLpfU,2322
|
|
19
28
|
ragmint/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
20
29
|
ragmint/utils/caching.py,sha256=LPE2JorOQ90BgVf6NUiS0-bdt-FGpNxDy7FnuwEHzy0,1060
|
|
21
|
-
ragmint/utils/data_loader.py,sha256=
|
|
30
|
+
ragmint/utils/data_loader.py,sha256=GXU9Nc3o0UWxtBeRwiskD1aCjSiNNuRoAokIUODn7q8,2024
|
|
22
31
|
ragmint/utils/logger.py,sha256=X7hTNb3st3fUeQIzSghuoV5B8FWXzm_O3DRkSfJvhmI,1033
|
|
23
32
|
ragmint/utils/metrics.py,sha256=DR8mrdumHtQerK0VrugwYKIG1oNptEcsFqodXq3i2kY,717
|
|
24
|
-
ragmint-0.
|
|
25
|
-
ragmint-0.
|
|
26
|
-
ragmint-0.
|
|
27
|
-
ragmint-0.
|
|
28
|
-
ragmint-0.
|
|
33
|
+
ragmint-0.2.0.dist-info/licenses/LICENSE,sha256=ahkhYfFLI8tGrdxdO2_GaT6OJW2eNwyFT3kYi85QQhc,692
|
|
34
|
+
ragmint-0.2.0.dist-info/METADATA,sha256=uwavcr5XnbneN7d7kfKiBD-Uc5TIIZFThmVhNjGWb0o,7948
|
|
35
|
+
ragmint-0.2.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
36
|
+
ragmint-0.2.0.dist-info/top_level.txt,sha256=K2ulzMHuvFm6xayvvJdGABeRJAvKDBn6M3EI-3SbYLw,8
|
|
37
|
+
ragmint-0.2.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|