ragit 0.8__py3-none-any.whl → 0.8.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,176 +0,0 @@
1
- Metadata-Version: 2.2
2
- Name: ragit
3
- Version: 0.8
4
- Home-page: https://github.com/stsfaroz/ragit
5
- Author: Salman Faroz
6
- License: MIT
7
- Description-Content-Type: text/markdown
8
- License-File: LICENSE
9
- Requires-Dist: sentence-transformers>=3.4.1
10
- Requires-Dist: pandas>=2.2.3
11
- Requires-Dist: chromadb>=0.6.3
12
- Requires-Dist: setuptools>=75.8.0
13
- Requires-Dist: wheel>=0.45.1
14
- Requires-Dist: twine>=6.1.0
15
- Dynamic: author
16
- Dynamic: description
17
- Dynamic: description-content-type
18
- Dynamic: home-page
19
- Dynamic: license
20
- Dynamic: requires-dist
21
-
22
-
23
- # Ragit
24
- 🚀 Smart, Fast, Scalable Search 🚀
25
-
26
- ## Installation
27
- ```
28
- pip install ragit
29
- ```
30
-
31
- **ragit** is a lightweight Python library that simplifies the management of vector databases. With **ragit**, you can easily create, update, query, and manage your vector database, all from CSV files containing text data.
32
-
33
- ## Features
34
-
35
- - **Create a Vector Database:** Build your database from a CSV file with two required columns: `id` and `text`.
36
- - **Add New Entries:** Insert additional entries from CSV files or add them individually.
37
- - **Similarity Search:** Find nearby texts using various distance metrics (e.g., cosine, L2) with similarity scores.
38
- - **Data Retrieval:** Fetch entries by IDs or exact text matches.
39
- - **Deletion:** Remove single entries or entire collections when needed.
40
-
41
- ## CSV File Format
42
- ragit expects your CSV file to have exactly two columns: `id` and `text`. **Note:** Each `id` must be unique.
43
-
44
- ## Example CSV (`data.csv`):
45
-
46
- ```csv
47
- id,text
48
- 1,The quick brown fox jumps over the lazy dog.
49
- 2,Another sample entry for testing.
50
- ```
51
-
52
- ## Usage
53
- Below are some examples that demonstrate how to use `ragit`. The examples cover creating a database, adding entries, performing similarity searches, and more.
54
-
55
- ### 1. Importing and Initializing
56
- First, import the `VectorDBManager` class from `ragit` and initialize it:
57
-
58
- ```python
59
- from ragit import VectorDBManager
60
-
61
- # Initialize the vector database manager with a custom persistence directory and model
62
- db_manager = VectorDBManager(
63
- persist_directory="./my_vector_db", # Optional # default : "./vector_db"
64
- provider="sentence_transformer", # Optional # default : "sentence_transformer"
65
- model_name="all-mpnet-base-v2" # Optional # default : "all-mpnet-base-v2"
66
- )
67
- ```
68
-
69
- ### 2. Creating a Database
70
- Create a new collection (named `my_collection`) using your CSV file. In this example, the `distance_metric` is set to "cosine"(available options: l2, cosine, ip, l1) :
71
-
72
- ```python
73
- db_manager.create_database(
74
- csv_path="data.csv",
75
- collection_name="my_collection",
76
- distance_metric="cosine" # Optional # default : l2
77
- )
78
- ```
79
- ### Reloading Your Database
80
-
81
- To reuse your existing vector database, initialize VectorDBManager with the same parameters that were used when creating the database.
82
-
83
- ```python
84
- from ragit import VectorDBManager
85
-
86
- db_manager = VectorDBManager(
87
- persist_directory="./my_vector_db",
88
- provider="sentence_transformer",
89
- model_name="all-mpnet-base-v2"
90
- )
91
- ```
92
-
93
- ### 3. Adding a Single Entry
94
- Add an individual entry to the collection:
95
-
96
- ```python
97
- db_manager.add_single_row(
98
- id_="101",
99
- text="This is a new test entry for the database.",
100
- collection_name="my_collection"
101
- )
102
- ```
103
-
104
- ### 4. Adding Multiple Entries from CSV
105
- You can also add multiple entries from a CSV file. This function skips any entries that already exist in the collection:
106
-
107
- ```python
108
- stats = db_manager.add_values_from_csv(
109
- csv_path="data.csv",
110
- collection_name="my_collection"
111
- )
112
- print(f"Added {stats['new_entries_added']} new entries")
113
- ```
114
-
115
- ### 5. Retrieving Collection Information
116
- Fetch and display information about your collection:
117
-
118
- ```python
119
- info = db_manager.get_collection_info("my_collection")
120
- print(f"Collection size: {info['count']} entries")
121
- ```
122
-
123
- ### 6. Performing a Similarity Search
124
- Find texts that are similar to your query. In this example, the query text is "ai", and the search is filtered using the string "Artificial intelligence". The top 2 results are returned:
125
-
126
- ```python
127
- results = db_manager.find_nearby_texts(
128
- text="ai",
129
- collection_name="my_collection",
130
- k=2,
131
- search_string="Artificial intelligence" # Optional
132
- )
133
-
134
- print("Results:")
135
- for item in results:
136
- print(f"\nID: {item['id']}")
137
- print(f"Text: {item['text']}")
138
- print(f"Similarity: {item['similarity']}%")
139
- print(f"Distance ({item['metric']}): {item['raw_distance']}")
140
- ```
141
-
142
- ### 7. Fetching Texts by IDs
143
- Retrieve text entries for a list of IDs:
144
-
145
- ```python
146
- ids_to_fetch = ["1", "2", "3"]
147
- texts = db_manager.get_by_ids(ids_to_fetch, "my_collection")
148
- print("Texts:", texts)
149
- ```
150
-
151
- ### 8. Deleting a Row / Collection
152
-
153
- Remove an entry from the collection by its ID:
154
-
155
- ```python
156
- db_manager.delete_entry_by_id(
157
- id_="1",
158
- collection_name="my_collection"
159
- )
160
- ```
161
-
162
-
163
- Delete an entire collection. **Note:** You must pass `confirmation="yes"` to proceed with deletion.
164
-
165
- ```python
166
- db_manager.delete_collection(
167
- collection_name="my_collection",
168
- confirmation="yes"
169
- )
170
- ```
171
-
172
- ## Contributing
173
- Contributions are welcome! If you encounter any issues or have suggestions for improvements, please feel free to open an issue or submit a pull request on GitHub.
174
-
175
- ## License
176
- This project is licensed under the MIT License. See the `LICENSE` file for details.
@@ -1,7 +0,0 @@
1
- ragit/__init__.py,sha256=GECJxYFL_0PMy6tbcVFpW9Fhe1JiI2uXH4iJWhUHpKs,48
2
- ragit/main.py,sha256=f2kDfZPxP26DBvzmP7aF6VhnNAE1hC-ZONU5ZH6RVBM,11774
3
- ragit-0.8.dist-info/LICENSE,sha256=L8f7hg7lQm80qoZhSCoW1ACAKph-FpJaNaa9MyNDBqo,1069
4
- ragit-0.8.dist-info/METADATA,sha256=H73xJZU_viExL4wcb-knClT7-BmMvhtlAaeQ07gliXM,5230
5
- ragit-0.8.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
6
- ragit-0.8.dist-info/top_level.txt,sha256=pkPbG7yrw61wt9_y_xcLE2vq2a55fzockASD0yq0g4s,6
7
- ragit-0.8.dist-info/RECORD,,