ragaai-catalyst 2.1.5b3__py3-none-any.whl → 2.1.5b5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -5223,6 +5223,24 @@
5223
5223
  "mode": "chat",
5224
5224
  "supports_system_messages": true
5225
5225
  },
5226
+ "ai21.jamba-1-5-large-v1:0": {
5227
+ "max_tokens": 256000,
5228
+ "max_input_tokens": 256000,
5229
+ "max_output_tokens": 256000,
5230
+ "input_cost_per_token": 2e-06,
5231
+ "output_cost_per_token": 8e-06,
5232
+ "litellm_provider": "bedrock",
5233
+ "mode": "chat"
5234
+ },
5235
+ "ai21.jamba-1-5-mini-v1:0": {
5236
+ "max_tokens": 256000,
5237
+ "max_input_tokens": 256000,
5238
+ "max_output_tokens": 256000,
5239
+ "input_cost_per_token": 2e-07,
5240
+ "output_cost_per_token": 4e-07,
5241
+ "litellm_provider": "bedrock",
5242
+ "mode": "chat"
5243
+ },
5226
5244
  "amazon.titan-text-lite-v1": {
5227
5245
  "max_tokens": 4000,
5228
5246
  "max_input_tokens": 42000,
@@ -5541,8 +5559,8 @@
5541
5559
  "max_tokens": 8192,
5542
5560
  "max_input_tokens": 200000,
5543
5561
  "max_output_tokens": 8192,
5544
- "input_cost_per_token": 1e-06,
5545
- "output_cost_per_token": 5e-06,
5562
+ "input_cost_per_token": 8e-07,
5563
+ "output_cost_per_token": 4e-06,
5546
5564
  "litellm_provider": "bedrock",
5547
5565
  "mode": "chat",
5548
5566
  "supports_assistant_prefill": true,
@@ -5611,8 +5629,8 @@
5611
5629
  "max_tokens": 8192,
5612
5630
  "max_input_tokens": 200000,
5613
5631
  "max_output_tokens": 8192,
5614
- "input_cost_per_token": 1e-06,
5615
- "output_cost_per_token": 5e-06,
5632
+ "input_cost_per_token": 8e-07,
5633
+ "output_cost_per_token": 4e-06,
5616
5634
  "litellm_provider": "bedrock",
5617
5635
  "mode": "chat",
5618
5636
  "supports_assistant_prefill": true,
@@ -5681,8 +5699,8 @@
5681
5699
  "max_tokens": 8192,
5682
5700
  "max_input_tokens": 200000,
5683
5701
  "max_output_tokens": 8192,
5684
- "input_cost_per_token": 1e-06,
5685
- "output_cost_per_token": 5e-06,
5702
+ "input_cost_per_token": 2.5e-07,
5703
+ "output_cost_per_token": 1.25e-06,
5686
5704
  "litellm_provider": "bedrock",
5687
5705
  "mode": "chat",
5688
5706
  "supports_function_calling": true,
@@ -6056,8 +6074,8 @@
6056
6074
  "max_tokens": 8191,
6057
6075
  "max_input_tokens": 100000,
6058
6076
  "max_output_tokens": 8191,
6059
- "input_cost_per_token": 1.63e-06,
6060
- "output_cost_per_token": 5.51e-06,
6077
+ "input_cost_per_token": 8e-07,
6078
+ "output_cost_per_token": 2.4e-06,
6061
6079
  "litellm_provider": "bedrock",
6062
6080
  "mode": "chat"
6063
6081
  },
@@ -0,0 +1,568 @@
1
+ from typing import Any, Dict, List, Optional, Union, Sequence
2
+
3
+ import attr
4
+ from langchain.callbacks.base import BaseCallbackHandler
5
+ from langchain.schema import LLMResult, AgentAction, AgentFinish, BaseMessage
6
+ from datetime import datetime
7
+ import json
8
+ import os
9
+ from uuid import UUID
10
+ from functools import wraps
11
+ import asyncio
12
+ from langchain_core.documents import Document
13
+ import logging
14
+ import tempfile
15
+
16
+ logging.basicConfig(level=logging.INFO)
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ class LangchainTracer(BaseCallbackHandler):
21
+ """
22
+ An enhanced callback handler for LangChain that traces all actions and saves them to a JSON file.
23
+ Includes improved error handling, async support, and configuration options.
24
+ """
25
+
26
+ def __init__(
27
+ self,
28
+ output_path: str = tempfile.gettempdir(),
29
+ trace_all: bool = True,
30
+ save_interval: Optional[int] = None,
31
+ log_level: int = logging.INFO,
32
+ ):
33
+ """
34
+ Initialize the tracer with enhanced configuration options.
35
+
36
+ Args:
37
+ output_path (str): Directory where trace files will be saved
38
+ trace_all (bool): Whether to trace all components or only specific ones
39
+ save_interval (Optional[int]): Interval in seconds to auto-save traces
40
+ log_level (int): Logging level for the tracer
41
+ """
42
+ super().__init__()
43
+ self.output_path = output_path
44
+ self.trace_all = trace_all
45
+ self.save_interval = save_interval
46
+ self._active = False
47
+ self._original_inits = {}
48
+ self._original_methods = {}
49
+ self.additional_metadata = {}
50
+ self._save_task = None
51
+ self._current_query = None # Add this line to track the current query
52
+ self.filepath = None
53
+ logger.setLevel(log_level)
54
+
55
+ if not os.path.exists(output_path):
56
+ os.makedirs(output_path)
57
+
58
+ self.reset_trace()
59
+
60
+
61
+ def __enter__(self):
62
+ """Context manager entry"""
63
+ self.start()
64
+ return self
65
+
66
+ def __exit__(self, exc_type, exc_val, exc_tb):
67
+ """Context manager exit"""
68
+
69
+ self.stop()
70
+ if exc_type:
71
+ logger.error(f"Error in context manager: {exc_val}")
72
+ return False
73
+ return True
74
+
75
+ def reset_trace(self):
76
+ """Reset the current trace to initial state with enhanced structure"""
77
+ self.current_trace: Dict[str, Any] = {
78
+ "start_time": None,
79
+ "end_time": None,
80
+ "actions": [],
81
+ "llm_calls": [],
82
+ "chain_starts": [],
83
+ "chain_ends": [],
84
+ "agent_actions": [],
85
+ "chat_model_calls": [],
86
+ "retriever_actions": [],
87
+ "tokens": [],
88
+ "errors": [],
89
+ "query": self._current_query, # Add this line to include the query in the trace
90
+ "metadata": {
91
+ "version": "2.0",
92
+ "trace_all": self.trace_all,
93
+ "save_interval": self.save_interval,
94
+ },
95
+ }
96
+
97
+ async def _periodic_save(self):
98
+ """Periodically save traces if save_interval is set"""
99
+ while self._active and self.save_interval:
100
+ await asyncio.sleep(self.save_interval)
101
+ await self._async_save_trace()
102
+
103
+ async def _async_save_trace(self, force: bool = False):
104
+ """Asynchronously save the current trace to a JSON file"""
105
+ if not self.current_trace["start_time"] and not force:
106
+ return
107
+
108
+ try:
109
+ self.current_trace["end_time"] = datetime.now()
110
+
111
+ # Use the query from the trace or fallback to a default
112
+ safe_query = self._current_query or "unknown"
113
+
114
+ # Sanitize the query for filename
115
+ safe_query = ''.join(c for c in safe_query if c.isalnum() or c.isspace())[:50].strip()
116
+
117
+ # Add a timestamp to ensure unique filenames
118
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
119
+ filename = f"langchain_callback_traces.json"
120
+ filepath = os.path.join(self.output_path, filename)
121
+ self.filepath = filepath
122
+
123
+ trace_to_save = self.current_trace.copy()
124
+ trace_to_save["start_time"] = str(trace_to_save["start_time"])
125
+ trace_to_save["end_time"] = str(trace_to_save["end_time"])
126
+
127
+ # Save if there are meaningful events or if force is True
128
+ if (
129
+ len(trace_to_save["llm_calls"]) > 0
130
+ or len(trace_to_save["chain_starts"]) > 0
131
+ or len(trace_to_save["chain_ends"]) > 0
132
+ or len(trace_to_save["errors"]) > 0
133
+ or force
134
+ ):
135
+ async with asyncio.Lock():
136
+ with open(filepath, "w", encoding="utf-8") as f:
137
+ json.dump(trace_to_save, f, indent=2, default=str)
138
+
139
+ logger.info(f"Trace saved to: {filepath}")
140
+
141
+ # Reset the current query after saving
142
+ self._current_query = None
143
+
144
+ # Reset the trace
145
+ self.reset_trace()
146
+
147
+ except Exception as e:
148
+ logger.error(f"Error saving trace: {e}")
149
+ self.on_error(e, context="save_trace")
150
+
151
+ def _save_trace(self, force: bool = False):
152
+ """Synchronous version of trace saving"""
153
+ if asyncio.get_event_loop().is_running():
154
+ asyncio.create_task(self._async_save_trace(force))
155
+ else:
156
+ asyncio.run(self._async_save_trace(force))
157
+
158
+ def _create_safe_wrapper(self, original_func, component_name):
159
+ """Create a safely wrapped version of an original function with enhanced error handling"""
160
+
161
+ @wraps(original_func)
162
+ def wrapped(*args, **kwargs):
163
+ if not self._active:
164
+ return original_func(*args, **kwargs)
165
+
166
+ try:
167
+ # Deep copy kwargs to avoid modifying the original
168
+ kwargs_copy = kwargs.copy() if kwargs is not None else {}
169
+
170
+ # Handle different calling conventions
171
+ if 'callbacks' not in kwargs_copy:
172
+ kwargs_copy['callbacks'] = [self]
173
+ elif self not in kwargs_copy['callbacks']:
174
+ kwargs_copy['callbacks'].append(self)
175
+
176
+ # Try different method signatures
177
+ try:
178
+ # First, try calling with modified kwargs
179
+ return original_func(*args, **kwargs_copy)
180
+ except TypeError:
181
+ # If that fails, try without kwargs
182
+ try:
183
+ return original_func(*args)
184
+ except Exception as e:
185
+ # If all else fails, use original call
186
+ logger.error(f"Failed to invoke {component_name} with modified callbacks: {e}")
187
+ return original_func(*args, **kwargs)
188
+
189
+ except Exception as e:
190
+ # Log any errors that occur during the function call
191
+ logger.error(f"Error in {component_name} wrapper: {e}")
192
+
193
+ # Record the error using the tracer's error handling method
194
+ self.on_error(e, context=f"wrapper_{component_name}")
195
+
196
+ # Fallback to calling the original function without modifications
197
+ return original_func(*args, **kwargs)
198
+
199
+ return wrapped
200
+
201
+
202
+ def _monkey_patch(self):
203
+ """Enhanced monkey-patching with comprehensive component support"""
204
+ from langchain.llms import OpenAI
205
+ # from langchain_groq import ChatGroq
206
+ # from langchain_google_genai import ChatGoogleGenerativeAI
207
+ # from langchain_anthropic import ChatAnthropic
208
+ from langchain_community.chat_models import ChatLiteLLM
209
+ # from langchain_cohere import ChatCohere
210
+ from langchain_openai import ChatOpenAI as ChatOpenAI_LangchainOpenAI
211
+ from langchain.chat_models import ChatOpenAI as ChatOpenAI_ChatModels
212
+ from langchain.chains import create_retrieval_chain, RetrievalQA
213
+
214
+ components_to_patch = {
215
+ "OpenAI": (OpenAI, "__init__"),
216
+ # "ChatGroq": (ChatGroq, "__init__"),
217
+ # "ChatGoogleGenerativeAI": (ChatGoogleGenerativeAI, "__init__"),
218
+ # "ChatAnthropic": (ChatAnthropic, "__init__"),
219
+ "ChatLiteLLM": (ChatLiteLLM, "__init__"),
220
+ # "ChatCohere": (ChatCohere, "__init__"),
221
+ "ChatOpenAI_LangchainOpenAI": (ChatOpenAI_LangchainOpenAI, "__init__"),
222
+ "ChatOpenAI_ChatModels": (ChatOpenAI_ChatModels, "__init__"),
223
+ "RetrievalQA": (RetrievalQA, "from_chain_type"),
224
+ "create_retrieval_chain": (create_retrieval_chain, None),
225
+ }
226
+
227
+ for name, (component, method_name) in components_to_patch.items():
228
+ try:
229
+ if method_name == "__init__":
230
+ original = component.__init__
231
+ self._original_inits[name] = original
232
+ component.__init__ = self._create_safe_wrapper(original, name)
233
+ elif method_name:
234
+ original = getattr(component, method_name)
235
+ self._original_methods[name] = original
236
+ if isinstance(original, classmethod):
237
+ wrapped = classmethod(
238
+ self._create_safe_wrapper(original.__func__, name)
239
+ )
240
+ else:
241
+ wrapped = self._create_safe_wrapper(original, name)
242
+ setattr(component, method_name, wrapped)
243
+ else:
244
+ self._original_methods[name] = component
245
+ globals()[name] = self._create_safe_wrapper(component, name)
246
+ except Exception as e:
247
+ logger.error(f"Error patching {name}: {e}")
248
+ self.on_error(e, context=f"patch_{name}")
249
+
250
+ def _restore_original_methods(self):
251
+ """Restore all original methods and functions with enhanced error handling"""
252
+ from langchain.llms import OpenAI
253
+ # from langchain_groq import ChatGroq
254
+ # from langchain_google_genai import ChatGoogleGenerativeAI
255
+ # from langchain_anthropic import ChatAnthropic
256
+ from langchain_community.chat_models import ChatLiteLLM
257
+ # from langchain_cohere import ChatCohere
258
+ from langchain_openai import ChatOpenAI as ChatOpenAI_LangchainOpenAI
259
+ from langchain.chat_models import ChatOpenAI as ChatOpenAI_ChatModels
260
+ from langchain.chains import create_retrieval_chain, RetrievalQA
261
+
262
+
263
+ for name, original in self._original_inits.items():
264
+ try:
265
+ component = eval(name)
266
+ component.__init__ = original
267
+ except Exception as e:
268
+ logger.error(f"Error restoring {name}: {e}")
269
+ self.on_error(e, context=f"restore_{name}")
270
+
271
+ for name, original in self._original_methods.items():
272
+ try:
273
+ if "." in name:
274
+ module_name, method_name = name.rsplit(".", 1)
275
+ module = eval(module_name)
276
+ setattr(module, method_name, original)
277
+ else:
278
+ globals()[name] = original
279
+ except Exception as e:
280
+ logger.error(f"Error restoring {name}: {e}")
281
+ self.on_error(e, context=f"restore_{name}")
282
+
283
+ def start(self):
284
+ """Start tracing with enhanced error handling and async support"""
285
+ try:
286
+ self.reset_trace()
287
+ self.current_trace["start_time"] = datetime.now()
288
+ self._active = True
289
+ self._monkey_patch()
290
+
291
+ if self.save_interval:
292
+ loop = asyncio.get_event_loop()
293
+ self._save_task = loop.create_task(self._periodic_save())
294
+
295
+ logger.info("Tracing started")
296
+ except Exception as e:
297
+ logger.error(f"Error starting tracer: {e}")
298
+ self.on_error(e, context="start")
299
+ raise
300
+
301
+ def stop(self):
302
+ """Stop tracing with enhanced cleanup"""
303
+ try:
304
+ self._active = False
305
+ if self._save_task:
306
+ self._save_task.cancel()
307
+ self._restore_original_methods()
308
+ # self._save_trace(force=True)
309
+
310
+ return self.current_trace.copy(), self.additional_metadata
311
+
312
+ logger.info("Tracing stopped")
313
+ except Exception as e:
314
+ logger.error(f"Error stopping tracer: {e}")
315
+ self.on_error(e, context="stop")
316
+ raise
317
+ finally:
318
+ self._original_inits.clear()
319
+ self._original_methods.clear()
320
+
321
+ def force_save(self):
322
+ """Force save the current trace"""
323
+ self._save_trace(force=True)
324
+
325
+ # Callback methods with enhanced error handling and logging
326
+ def on_llm_start(
327
+ self,
328
+ serialized: Dict[str, Any],
329
+ prompts: List[str],
330
+ run_id: UUID,
331
+ **kwargs: Any,
332
+ ) -> None:
333
+ try:
334
+ if not self.current_trace["start_time"]:
335
+ self.current_trace["start_time"] = datetime.now()
336
+
337
+ self.current_trace["llm_calls"].append(
338
+ {
339
+ "timestamp": datetime.now(),
340
+ "event": "llm_start",
341
+ "serialized": serialized,
342
+ "prompts": prompts,
343
+ "run_id": str(run_id),
344
+ "additional_kwargs": kwargs,
345
+ }
346
+ )
347
+ except Exception as e:
348
+ self.on_error(e, context="llm_start")
349
+
350
+ def on_llm_end(self, response: LLMResult, *, run_id: UUID, **kwargs: Any) -> None:
351
+ try:
352
+ self.current_trace["llm_calls"].append(
353
+ {
354
+ "timestamp": datetime.now(),
355
+ "event": "llm_end",
356
+ "response": response.dict(),
357
+ "run_id": str(run_id),
358
+ "additional_kwargs": kwargs,
359
+ }
360
+ )
361
+
362
+ end_time = datetime.now()
363
+ self.additional_metadata["latency"] = (end_time - self.current_trace["start_time"]).total_seconds()
364
+
365
+ if response and response.llm_output:
366
+ self.additional_metadata["model_name"] = response.llm_output.get("model_name", "")
367
+ self.additional_metadata["tokens"] = {}
368
+ if response.llm_output.get("token_usage"):
369
+ self.additional_metadata["tokens"]["total"] = response.llm_output["token_usage"].get("total_tokens", 0)
370
+ self.additional_metadata["tokens"]["prompt"] = response.llm_output["token_usage"].get("prompt_tokens", 0)
371
+ self.additional_metadata["tokens"]["completion"] = response.llm_output["token_usage"].get("completion_tokens", 0)
372
+ except Exception as e:
373
+ self.on_error(e, context="llm_end")
374
+
375
+ def on_chat_model_start(
376
+ self,
377
+ serialized: Dict[str, Any],
378
+ messages: List[List[BaseMessage]],
379
+ *,
380
+ run_id: UUID,
381
+ **kwargs: Any,
382
+ ) -> None:
383
+ try:
384
+ messages_dict = [
385
+ [
386
+ {
387
+ "type": msg.type,
388
+ "content": msg.content,
389
+ "additional_kwargs": msg.additional_kwargs,
390
+ }
391
+ for msg in batch
392
+ ]
393
+ for batch in messages
394
+ ]
395
+
396
+ self.current_trace["chat_model_calls"].append(
397
+ {
398
+ "timestamp": datetime.now(),
399
+ "event": "chat_model_start",
400
+ "serialized": serialized,
401
+ "messages": messages_dict,
402
+ "run_id": str(run_id),
403
+ "additional_kwargs": kwargs,
404
+ }
405
+ )
406
+ except Exception as e:
407
+ self.on_error(e, context="chat_model_start")
408
+
409
+ def on_chain_start(
410
+ self,
411
+ serialized: Dict[str, Any],
412
+ inputs: Dict[str, Any],
413
+ *,
414
+ run_id: UUID,
415
+ **kwargs: Any,
416
+ ) -> None:
417
+ try:
418
+ context = ""
419
+ query = ""
420
+ if isinstance(inputs, dict):
421
+ if "context" in inputs:
422
+ if isinstance(inputs["context"], Document):
423
+ context = inputs["context"].page_content
424
+ elif isinstance(inputs["context"], list):
425
+ context = "\n".join(
426
+ doc.page_content if isinstance(doc, Document) else str(doc)
427
+ for doc in inputs["context"]
428
+ )
429
+ elif isinstance(inputs["context"], str):
430
+ context = inputs["context"]
431
+
432
+ query = inputs.get("question", inputs.get("input", ""))
433
+
434
+ # Set the current query
435
+ self._current_query = query
436
+
437
+ chain_event = {
438
+ "timestamp": datetime.now(),
439
+ "serialized": serialized,
440
+ "context": context,
441
+ "query": inputs.get("question", inputs.get("input", "")),
442
+ "run_id": str(run_id),
443
+ "additional_kwargs": kwargs,
444
+ }
445
+
446
+ self.current_trace["chain_starts"].append(chain_event)
447
+ except Exception as e:
448
+ self.on_error(e, context="chain_start")
449
+
450
+ def on_chain_end(
451
+ self, outputs: Dict[str, Any], *, run_id: UUID, **kwargs: Any
452
+ ) -> None:
453
+ try:
454
+ self.current_trace["chain_ends"].append(
455
+ {
456
+ "timestamp": datetime.now(),
457
+ "outputs": outputs,
458
+ "run_id": str(run_id),
459
+ "additional_kwargs": kwargs,
460
+ }
461
+ )
462
+ except Exception as e:
463
+ self.on_error(e, context="chain_end")
464
+
465
+ def on_agent_action(self, action: AgentAction, run_id: UUID, **kwargs: Any) -> None:
466
+ try:
467
+ self.current_trace["agent_actions"].append(
468
+ {
469
+ "timestamp": datetime.now(),
470
+ "action": action.dict(),
471
+ "run_id": str(run_id),
472
+ "additional_kwargs": kwargs,
473
+ }
474
+ )
475
+ except Exception as e:
476
+ self.on_error(e, context="agent_action")
477
+
478
+ def on_agent_finish(self, finish: AgentFinish, run_id: UUID, **kwargs: Any) -> None:
479
+ try:
480
+ self.current_trace["agent_actions"].append(
481
+ {
482
+ "timestamp": datetime.now(),
483
+ "event": "agent_finish",
484
+ "finish": finish.dict(),
485
+ "run_id": str(run_id),
486
+ "additional_kwargs": kwargs,
487
+ }
488
+ )
489
+ except Exception as e:
490
+ self.on_error(e, context="agent_finish")
491
+
492
+ def on_retriever_start(
493
+ self, serialized: Dict[str, Any], query: str, *, run_id: UUID, **kwargs: Any
494
+ ) -> None:
495
+ try:
496
+ retriever_event = {
497
+ "timestamp": datetime.now(),
498
+ "event": "retriever_start",
499
+ "serialized": serialized,
500
+ "query": query,
501
+ "run_id": str(run_id),
502
+ "additional_kwargs": kwargs,
503
+ }
504
+
505
+ self.current_trace["retriever_actions"].append(retriever_event)
506
+ except Exception as e:
507
+ self.on_error(e, context="retriever_start")
508
+
509
+ def on_retriever_end(
510
+ self, documents: Sequence[Document], *, run_id: UUID, **kwargs: Any
511
+ ) -> None:
512
+ try:
513
+ processed_documents = [
514
+ {"page_content": doc.page_content, "metadata": doc.metadata}
515
+ for doc in documents
516
+ ]
517
+
518
+ retriever_event = {
519
+ "timestamp": datetime.now(),
520
+ "event": "retriever_end",
521
+ "documents": processed_documents,
522
+ "run_id": str(run_id),
523
+ "additional_kwargs": kwargs,
524
+ }
525
+
526
+ self.current_trace["retriever_actions"].append(retriever_event)
527
+ except Exception as e:
528
+ self.on_error(e, context="retriever_end")
529
+
530
+ def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
531
+ try:
532
+ self.current_trace["tokens"].append(
533
+ {
534
+ "timestamp": datetime.now(),
535
+ "event": "new_token",
536
+ "token": token,
537
+ "additional_kwargs": kwargs,
538
+ }
539
+ )
540
+ except Exception as e:
541
+ self.on_error(e, context="llm_new_token")
542
+
543
+ def on_error(self, error: Exception, context: str = "", **kwargs: Any) -> None:
544
+ """Enhanced error handling with context"""
545
+ try:
546
+ error_event = {
547
+ "timestamp": datetime.now(),
548
+ "error": str(error),
549
+ "error_type": type(error).__name__,
550
+ "context": context,
551
+ "additional_kwargs": kwargs,
552
+ }
553
+ self.current_trace["errors"].append(error_event)
554
+ logger.error(f"Error in {context}: {error}")
555
+ except Exception as e:
556
+ logger.critical(f"Error in error handler: {e}")
557
+
558
+ def on_chain_error(self, error: Exception, **kwargs: Any) -> None:
559
+ self.on_error(error, context="chain", **kwargs)
560
+
561
+ def on_llm_error(self, error: Exception, **kwargs: Any) -> None:
562
+ self.on_error(error, context="llm", **kwargs)
563
+
564
+ def on_tool_error(self, error: Exception, **kwargs: Any) -> None:
565
+ self.on_error(error, context="tool", **kwargs)
566
+
567
+ def on_retriever_error(self, error: Exception, **kwargs: Any) -> None:
568
+ self.on_error(error, context="retriever", **kwargs)
@@ -283,20 +283,20 @@ class Tracer(AgenticTracing):
283
283
  data, additional_metadata = self.langchain_tracer.stop()
284
284
 
285
285
  # Add cost if possible
286
- # import pdb; pdb.set_trace()
287
- if additional_metadata['model_name']:
286
+ if additional_metadata.get('model_name'):
288
287
  try:
289
288
  model_cost_data = self.model_cost_dict[additional_metadata['model_name']]
290
- prompt_cost = additional_metadata["tokens"]["prompt"]*model_cost_data["input_cost_per_token"]
291
- completion_cost = additional_metadata["tokens"]["completion"]*model_cost_data["output_cost_per_token"]
292
- # additional_metadata.setdefault('cost', {})["prompt_cost"] = prompt_cost
293
- # additional_metadata.setdefault('cost', {})["completion_cost"] = completion_cost
294
- additional_metadata.setdefault('cost', {})["total_cost"] = prompt_cost + completion_cost
289
+ if 'tokens' in additional_metadata and all(k in additional_metadata['tokens'] for k in ['prompt', 'completion']):
290
+ prompt_cost = additional_metadata["tokens"]["prompt"]*model_cost_data["input_cost_per_token"]
291
+ completion_cost = additional_metadata["tokens"]["completion"]*model_cost_data["output_cost_per_token"]
292
+ additional_metadata.setdefault('cost', {})["total_cost"] = prompt_cost + completion_cost
293
+ else:
294
+ logger.warning("Token information missing in additional_metadata")
295
295
  except Exception as e:
296
296
  logger.warning(f"Error adding cost: {e}")
297
-
298
- # with open(filepath, 'r') as f:
299
- # data = json.load(f)
297
+ else:
298
+ logger.debug("Model name not available in additional_metadata, skipping cost calculation")
299
+
300
300
  additional_metadata["total_tokens"] = additional_metadata["tokens"]["total"]
301
301
  additional_metadata["total_cost"] = additional_metadata["cost"]["total_cost"]
302
302
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: ragaai_catalyst
3
- Version: 2.1.5b3
3
+ Version: 2.1.5b5
4
4
  Summary: RAGA AI CATALYST
5
5
  Author-email: Kiran Scaria <kiran.scaria@raga.ai>, Kedar Gaikwad <kedar.gaikwad@raga.ai>, Dushyant Mahajan <dushyant.mahajan@raga.ai>, Siddhartha Kosti <siddhartha.kosti@raga.ai>, Ritika Goel <ritika.goel@raga.ai>, Vijay Chaurasia <vijay.chaurasia@raga.ai>
6
6
  Requires-Python: <3.13,>=3.9
@@ -13,8 +13,9 @@ ragaai_catalyst/synthetic_data_generation.py,sha256=uDV9tNwto2xSkWg5XHXUvjErW-4P
13
13
  ragaai_catalyst/utils.py,sha256=TlhEFwLyRU690HvANbyoRycR3nQ67lxVUQoUOfTPYQ0,3772
14
14
  ragaai_catalyst/tracers/__init__.py,sha256=LfgTes-nHpazssbGKnn8kyLZNr49kIPrlkrqqoTFTfc,301
15
15
  ragaai_catalyst/tracers/distributed.py,sha256=AIRvS5Ur4jbFDXsUkYuCTmtGoHHx3LOG4n5tWOh610U,10330
16
+ ragaai_catalyst/tracers/langchain_callback.py,sha256=LvMBhgvAX8ftyBQ9Naeui46EoDa2nHQZq48Ra6nL-Qg,21991
16
17
  ragaai_catalyst/tracers/llamaindex_callback.py,sha256=ZY0BJrrlz-P9Mg2dX-ZkVKG3gSvzwqBtk7JL_05MiYA,14028
17
- ragaai_catalyst/tracers/tracer.py,sha256=k2HjH6ONaabbPvoX6xJRck-A2l-9GVW7Nueimuu-Ua8,19096
18
+ ragaai_catalyst/tracers/tracer.py,sha256=spAiNQ85vpMntckHIgn0w7h33gxqWg5WoxOEcvT-e7U,19179
18
19
  ragaai_catalyst/tracers/upload_traces.py,sha256=2TWdRTN6FMaX-dqDv8BJWQS0xrCGYKkXEYOi2kK3Z3Y,5487
19
20
  ragaai_catalyst/tracers/agentic_tracing/README.md,sha256=X4QwLb7-Jg7GQMIXj-SerZIgDETfw-7VgYlczOR8ZeQ,4508
20
21
  ragaai_catalyst/tracers/agentic_tracing/__init__.py,sha256=yf6SKvOPSpH-9LiKaoLKXwqj5sez8F_5wkOb91yp0oE,260
@@ -47,7 +48,7 @@ ragaai_catalyst/tracers/agentic_tracing/utils/file_name_tracker.py,sha256=515NND
47
48
  ragaai_catalyst/tracers/agentic_tracing/utils/generic.py,sha256=WwXT01xmp8MSr7KinuDCSK9a1ifpLcT7ajFkvYviG_A,1190
48
49
  ragaai_catalyst/tracers/agentic_tracing/utils/get_user_trace_metrics.py,sha256=vPZ4dn4EHFW0kqd1GyRpsYXbfrRrd0DXCmh-pzsDBNE,1109
49
50
  ragaai_catalyst/tracers/agentic_tracing/utils/llm_utils.py,sha256=wlXCuaRe81s-7FWdJ_MquXFGRZZfNrZxLIIxl-Ohbqk,15541
50
- ragaai_catalyst/tracers/agentic_tracing/utils/model_costs.json,sha256=GXV1s349reRMpYF_EkK-b6peSb4SY-17WnlkvpuQ4sM,294430
51
+ ragaai_catalyst/tracers/agentic_tracing/utils/model_costs.json,sha256=E_uKa1SSrigaorCiAShZr4inKNMc54jcEy4B_7pT4DA,295002
51
52
  ragaai_catalyst/tracers/agentic_tracing/utils/span_attributes.py,sha256=MqeRNGxzeuh9qTK0NbYMftl9V9Z0V7gMgBoHkrXP56k,1592
52
53
  ragaai_catalyst/tracers/agentic_tracing/utils/system_monitor.py,sha256=H8WNsk4v_5T6OUw4TFOzlDLjQhJwjh1nAMyMAoqMEi4,6946
53
54
  ragaai_catalyst/tracers/agentic_tracing/utils/trace_utils.py,sha256=RciiDdo2riibEoM8X0FKHaXi78y3bWwNkV8U0leqigk,3508
@@ -64,8 +65,8 @@ ragaai_catalyst/tracers/utils/__init__.py,sha256=KeMaZtYaTojilpLv65qH08QmpYclfpa
64
65
  ragaai_catalyst/tracers/utils/convert_langchain_callbacks_output.py,sha256=ofrNrxf2b1hpjDh_zeaxiYq86azn1MF3kW8-ViYPEg0,1641
65
66
  ragaai_catalyst/tracers/utils/langchain_tracer_extraction_logic.py,sha256=cghjCuUe8w-2MZdh9xgtRGe3y219u26GGzpnuY4Wt6Q,3047
66
67
  ragaai_catalyst/tracers/utils/utils.py,sha256=ViygfJ7vZ7U0CTSA1lbxVloHp4NSlmfDzBRNCJuMhis,2374
67
- ragaai_catalyst-2.1.5b3.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
68
- ragaai_catalyst-2.1.5b3.dist-info/METADATA,sha256=i-IVw7tVuDCXGNCIBH8Lsovatn4x67VrhV-hf-HYWYQ,12764
69
- ragaai_catalyst-2.1.5b3.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
70
- ragaai_catalyst-2.1.5b3.dist-info/top_level.txt,sha256=HpgsdRgEJMk8nqrU6qdCYk3di7MJkDL0B19lkc7dLfM,16
71
- ragaai_catalyst-2.1.5b3.dist-info/RECORD,,
68
+ ragaai_catalyst-2.1.5b5.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
69
+ ragaai_catalyst-2.1.5b5.dist-info/METADATA,sha256=ShN_vaYhKMLho8Q49eBzlWYUNEQD3U6w9qgRtiMYsiM,12764
70
+ ragaai_catalyst-2.1.5b5.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
71
+ ragaai_catalyst-2.1.5b5.dist-info/top_level.txt,sha256=HpgsdRgEJMk8nqrU6qdCYk3di7MJkDL0B19lkc7dLfM,16
72
+ ragaai_catalyst-2.1.5b5.dist-info/RECORD,,