ragaai-catalyst 2.1.5b2__py3-none-any.whl → 2.1.5b3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2,7 +2,7 @@ import os
2
2
  import logging
3
3
  import requests
4
4
  from typing import Dict, Optional, Union
5
-
5
+ import re
6
6
  logger = logging.getLogger("RagaAICatalyst")
7
7
 
8
8
 
@@ -55,10 +55,11 @@ class RagaAICatalyst:
55
55
  self.api_keys = api_keys or {}
56
56
 
57
57
  if base_url:
58
- RagaAICatalyst.BASE_URL = base_url
58
+ RagaAICatalyst.BASE_URL = self._normalize_base_url(base_url)
59
59
  try:
60
+ #set the os.environ["RAGAAI_CATALYST_BASE_URL"] before getting the token as it is used in the get_token method
61
+ os.environ["RAGAAI_CATALYST_BASE_URL"] = RagaAICatalyst.BASE_URL
60
62
  self.get_token()
61
- os.environ["RAGAAI_CATALYST_BASE_URL"] = base_url
62
63
  except requests.exceptions.RequestException:
63
64
  raise ConnectionError(
64
65
  "The provided base_url is not accessible. Please re-check the base_url."
@@ -71,6 +72,14 @@ class RagaAICatalyst:
71
72
  if self.api_keys:
72
73
  self._upload_keys()
73
74
 
75
+ @staticmethod
76
+ def _normalize_base_url(url):
77
+ url = re.sub(r'(?<!:)//+', '/', url) # Ignore the `://` part of URLs and remove extra // if any
78
+ url = url.rstrip("/") # To remove trailing slashes
79
+ if not url.endswith("/api"): # To ensure it ends with /api
80
+ url = f"{url}/api"
81
+ return url
82
+
74
83
  def _set_access_key_secret_key(self, access_key, secret_key):
75
84
  os.environ["RAGAAI_CATALYST_ACCESS_KEY"] = access_key
76
85
  os.environ["RAGAAI_CATALYST_SECRET_KEY"] = secret_key
@@ -150,6 +150,8 @@ class LLMTracerMixin:
150
150
  beta_module = openai_module.beta
151
151
 
152
152
  # Patch openai.beta.threads
153
+ import openai
154
+ openai.api_type = "openai"
153
155
  if hasattr(beta_module, "threads"):
154
156
  threads_obj = beta_module.threads
155
157
  # Patch top-level methods on openai.beta.threads
@@ -1,4 +1,6 @@
1
+ from audioop import add
1
2
  import os
3
+ import uuid
2
4
  import datetime
3
5
  import logging
4
6
  import asyncio
@@ -6,6 +8,13 @@ import aiohttp
6
8
  import requests
7
9
  from contextlib import contextmanager
8
10
  from concurrent.futures import ThreadPoolExecutor
11
+ from ragaai_catalyst.tracers.langchain_callback import LangchainTracer
12
+ from ragaai_catalyst.tracers.utils.convert_langchain_callbacks_output import convert_langchain_callbacks_output
13
+
14
+ from ragaai_catalyst.tracers.utils.langchain_tracer_extraction_logic import langchain_tracer_extraction
15
+ from ragaai_catalyst.tracers.upload_traces import UploadTraces
16
+ import tempfile
17
+ import json
9
18
 
10
19
  from opentelemetry.sdk import trace as trace_sdk
11
20
  from opentelemetry.sdk.trace.export import SimpleSpanProcessor
@@ -118,6 +127,7 @@ class Tracer(AgenticTracing):
118
127
  self.timeout = 30
119
128
  self.num_projects = 100
120
129
  self.start_time = datetime.datetime.now().astimezone().isoformat()
130
+ self.model_cost_dict = load_model_costs()
121
131
 
122
132
  if update_llm_cost:
123
133
  # First update the model costs file from GitHub
@@ -152,11 +162,12 @@ class Tracer(AgenticTracing):
152
162
  raise
153
163
 
154
164
  if tracer_type == "langchain":
155
- self.raga_client = RagaExporter(project_name=self.project_name, dataset_name=self.dataset_name)
165
+ # self.raga_client = RagaExporter(project_name=self.project_name, dataset_name=self.dataset_name)
156
166
 
157
- self._tracer_provider = self._setup_provider()
158
- self._instrumentor = self._setup_instrumentor(tracer_type)
159
- self.is_instrumented = False
167
+ # self._tracer_provider = self._setup_provider()
168
+ # self._instrumentor = self._setup_instrumentor(tracer_type)
169
+ # self.is_instrumented = False
170
+ # self._upload_task = None
160
171
  self._upload_task = None
161
172
  elif tracer_type == "llamaindex":
162
173
  self._upload_task = None
@@ -239,11 +250,12 @@ class Tracer(AgenticTracing):
239
250
  def start(self):
240
251
  """Start the tracer."""
241
252
  if self.tracer_type == "langchain":
242
- if not self.is_instrumented:
243
- self._instrumentor().instrument(tracer_provider=self._tracer_provider)
244
- self.is_instrumented = True
245
- print(f"Tracer started for project: {self.project_name}")
246
- return self
253
+ # if not self.is_instrumented:
254
+ # self._instrumentor().instrument(tracer_provider=self._tracer_provider)
255
+ # self.is_instrumented = True
256
+ # print(f"Tracer started for project: {self.project_name}")
257
+ self.langchain_tracer = LangchainTracer()
258
+ return self.langchain_tracer.start()
247
259
  elif self.tracer_type == "llamaindex":
248
260
  from ragaai_catalyst.tracers.llamaindex_callback import LlamaIndexTracer
249
261
  return LlamaIndexTracer(self._pass_user_data()).start()
@@ -254,17 +266,74 @@ class Tracer(AgenticTracing):
254
266
  def stop(self):
255
267
  """Stop the tracer and initiate trace upload."""
256
268
  if self.tracer_type == "langchain":
257
- if not self.is_instrumented:
258
- logger.warning("Tracer was not started. No traces to upload.")
259
- return "No traces to upload"
260
-
261
- print("Stopping tracer and initiating trace upload...")
262
- self._cleanup()
263
- self._upload_task = self._run_async(self._upload_traces())
264
- self.is_active = False
265
- self.dataset_name = None
269
+ # if not self.is_instrumented:
270
+ # logger.warning("Tracer was not started. No traces to upload.")
271
+ # return "No traces to upload"
272
+
273
+ # print("Stopping tracer and initiating trace upload...")
274
+ # self._cleanup()
275
+ # self._upload_task = self._run_async(self._upload_traces())
276
+ # self.is_active = False
277
+ # self.dataset_name = None
278
+
279
+ # filename = f"langchain_callback_traces.json"
280
+ # filepath = os.path.join(tempfile.gettempdir(), filename)
281
+
282
+ user_detail = self._pass_user_data()
283
+ data, additional_metadata = self.langchain_tracer.stop()
284
+
285
+ # Add cost if possible
286
+ # import pdb; pdb.set_trace()
287
+ if additional_metadata['model_name']:
288
+ try:
289
+ model_cost_data = self.model_cost_dict[additional_metadata['model_name']]
290
+ prompt_cost = additional_metadata["tokens"]["prompt"]*model_cost_data["input_cost_per_token"]
291
+ completion_cost = additional_metadata["tokens"]["completion"]*model_cost_data["output_cost_per_token"]
292
+ # additional_metadata.setdefault('cost', {})["prompt_cost"] = prompt_cost
293
+ # additional_metadata.setdefault('cost', {})["completion_cost"] = completion_cost
294
+ additional_metadata.setdefault('cost', {})["total_cost"] = prompt_cost + completion_cost
295
+ except Exception as e:
296
+ logger.warning(f"Error adding cost: {e}")
297
+
298
+ # with open(filepath, 'r') as f:
299
+ # data = json.load(f)
300
+ additional_metadata["total_tokens"] = additional_metadata["tokens"]["total"]
301
+ additional_metadata["total_cost"] = additional_metadata["cost"]["total_cost"]
302
+
303
+ del additional_metadata["tokens"]
304
+ del additional_metadata["cost"]
305
+
306
+ combined_metadata = user_detail['trace_user_detail']['metadata'].copy()
307
+ combined_metadata.update(additional_metadata)
308
+ combined_metadata
309
+
310
+ langchain_traces = langchain_tracer_extraction(data)
311
+ final_result = convert_langchain_callbacks_output(langchain_traces)
312
+ final_result[0]['project_name'] = user_detail['project_name']
313
+ final_result[0]['trace_id'] = str(uuid.uuid4())
314
+ final_result[0]['session_id'] = None
315
+ final_result[0]['metadata'] = combined_metadata
316
+ final_result[0]['pipeline'] = user_detail['trace_user_detail']['pipeline']
317
+
318
+ filepath_3 = os.path.join(os.getcwd(), "final_result.json")
319
+ with open(filepath_3, 'w') as f:
320
+ json.dump(final_result, f, indent=2)
266
321
 
267
- return "Trace upload initiated. Use get_upload_status() to check the status."
322
+
323
+ print(filepath_3)
324
+
325
+ additional_metadata_keys = additional_metadata.keys() if additional_metadata else None
326
+
327
+ UploadTraces(json_file_path=filepath_3,
328
+ project_name=self.project_name,
329
+ project_id=self.project_id,
330
+ dataset_name=self.dataset_name,
331
+ user_detail=user_detail,
332
+ base_url=self.base_url
333
+ ).upload_traces(additional_metadata_keys=additional_metadata_keys)
334
+
335
+ return
336
+
268
337
  elif self.tracer_type == "llamaindex":
269
338
  from ragaai_catalyst.tracers.llamaindex_callback import LlamaIndexTracer
270
339
  return LlamaIndexTracer(self._pass_user_data()).stop()
@@ -20,7 +20,7 @@ class UploadTraces:
20
20
  self.base_url = base_url
21
21
  self.timeout = 10
22
22
 
23
- def _create_dataset_schema_with_trace(self):
23
+ def _create_dataset_schema_with_trace(self, additional_metadata_keys=None, additional_pipeline_keys=None):
24
24
  SCHEMA_MAPPING_NEW = {
25
25
  "trace_id": {"columnType": "traceId"},
26
26
  "trace_uri": {"columnType": "traceUri"},
@@ -34,6 +34,15 @@ class UploadTraces:
34
34
  "vector_store":{"columnType":"pipeline"},
35
35
  "feedback": {"columnType":"feedBack"}
36
36
  }
37
+
38
+ if additional_metadata_keys:
39
+ for key in additional_metadata_keys:
40
+ SCHEMA_MAPPING_NEW[key] = {"columnType": "metadata"}
41
+
42
+ if additional_pipeline_keys:
43
+ for key in additional_pipeline_keys:
44
+ SCHEMA_MAPPING_NEW[key] = {"columnType": "pipeline"}
45
+
37
46
  def make_request():
38
47
  headers = {
39
48
  "Content-Type": "application/json",
@@ -119,9 +128,14 @@ class UploadTraces:
119
128
  data=payload,
120
129
  timeout=self.timeout)
121
130
 
122
- def upload_traces(self):
123
- self._create_dataset_schema_with_trace()
124
- presignedUrl = self._get_presigned_url()
125
- self._put_presigned_url(presignedUrl, self.json_file_path)
126
- self._insert_traces(presignedUrl)
127
- print("Traces uploaded")
131
+ def upload_traces(self, additional_metadata_keys=None, additional_pipeline_keys=None):
132
+ try:
133
+ self._create_dataset_schema_with_trace(additional_metadata_keys, additional_pipeline_keys)
134
+ presignedUrl = self._get_presigned_url()
135
+ if presignedUrl is None:
136
+ return
137
+ self._put_presigned_url(presignedUrl, self.json_file_path)
138
+ self._insert_traces(presignedUrl)
139
+ print("Traces uploaded")
140
+ except Exception as e:
141
+ print(f"Error while uploading agentic traces: {e}")
@@ -0,0 +1,61 @@
1
+ import json
2
+
3
+ def convert_langchain_callbacks_output(result, project_name="", metadata="", pipeline=""):
4
+ initial_struc = [{
5
+ "project_name": project_name,
6
+ "trace_id": "NA",
7
+ "session_id": "NA",
8
+ "metadata" : metadata,
9
+ "pipeline" : pipeline,
10
+ "traces" : []
11
+ }]
12
+ traces_data = []
13
+
14
+ prompt = result["data"]["prompt"]
15
+ response = result["data"]["response"]
16
+ context = result["data"]["context"]
17
+ final_prompt = ""
18
+
19
+ prompt_structured_data = {
20
+ "traceloop.entity.input": json.dumps({
21
+ "kwargs": {
22
+ "input": prompt,
23
+ }
24
+ })
25
+ }
26
+ prompt_data = {
27
+ "name": "retrieve_documents.langchain.workflow",
28
+ "attributes": prompt_structured_data,
29
+ }
30
+
31
+ traces_data.append(prompt_data)
32
+
33
+ context_structured_data = {
34
+ "traceloop.entity.input": json.dumps({
35
+ "kwargs": {
36
+ "context": context
37
+ }
38
+ }),
39
+ "traceloop.entity.output": json.dumps({
40
+ "kwargs": {
41
+ "text": prompt
42
+ }
43
+ })
44
+ }
45
+ context_data = {
46
+ "name": "PromptTemplate.langchain.task",
47
+ "attributes": context_structured_data,
48
+ }
49
+ traces_data.append(context_data)
50
+
51
+ response_structured_data = {"gen_ai.completion.0.content": response,
52
+ "gen_ai.prompt.0.content": prompt}
53
+ response_data = {
54
+ "name": "ChatOpenAI.langchain.task",
55
+ "attributes" : response_structured_data
56
+ }
57
+ traces_data.append(response_data)
58
+
59
+ initial_struc[0]["traces"] = traces_data
60
+
61
+ return initial_struc
@@ -0,0 +1,81 @@
1
+ import json
2
+ import uuid
3
+
4
+ def langchain_tracer_extraction(data):
5
+ trace_aggregate = {}
6
+ import uuid
7
+
8
+ def generate_trace_id():
9
+ """
10
+ Generate a random trace ID using UUID4.
11
+ Returns a string representation of the UUID with no hyphens.
12
+ """
13
+ return '0x'+str(uuid.uuid4()).replace('-', '')
14
+
15
+ trace_aggregate["tracer_type"] = "langchain"
16
+ trace_aggregate['trace_id'] = generate_trace_id()
17
+ trace_aggregate['session_id'] = None
18
+ trace_aggregate["pipeline"] = {
19
+ 'llm_model': 'gpt-3.5-turbo',
20
+ 'vector_store': 'faiss',
21
+ 'embed_model': 'text-embedding-ada-002'
22
+ }
23
+ trace_aggregate["metadata"] = {
24
+ 'key1': 'value1',
25
+ 'key2': 'value2',
26
+ 'log_source': 'langchain_tracer',
27
+ 'recorded_on': '2024-06-14 08:57:27.324410'
28
+ }
29
+ trace_aggregate["prompt_length"] = 0
30
+ trace_aggregate["data"] = {}
31
+
32
+ def get_prompt(data):
33
+ # if "chain_starts" in data and data["chain_starts"] != []:
34
+ # for item in data["chain_starts"]:
35
+
36
+ if "chat_model_calls" in data and data["chat_model_calls"] != []:
37
+ for item in data["chat_model_calls"]:
38
+ messages = item["messages"][0]
39
+ for message in messages:
40
+ if message["type"]=="human":
41
+ human_messages = message["content"].strip()
42
+ return human_messages
43
+ if "llm_calls" in data and data["llm_calls"] != []:
44
+ if "llm_start" in data["llm_calls"][0]["event"]:
45
+ for item in data["llm_calls"]:
46
+ prompt = item["prompts"]
47
+ return prompt[0].strip()
48
+
49
+ def get_response(data):
50
+ for item in data["llm_calls"]:
51
+ if item["event"] == "llm_end":
52
+ # import pdb; pdb.set_trace()
53
+ llm_end_responses = item["response"]["generations"][0]
54
+ for llm_end_response in llm_end_responses:
55
+ response = llm_end_response["text"]
56
+ return response.strip()
57
+
58
+ def get_context(data):
59
+ if "retriever_actions" in data and data["retriever_actions"] != []:
60
+ for item in data["retriever_actions"]:
61
+ if item["event"] == "retriever_end":
62
+ context = item["documents"][0]["page_content"].replace('\n', ' ')
63
+ return context
64
+ if "chat_model_calls" in data and data["chat_model_calls"] != []:
65
+ for item in data["chat_model_calls"]:
66
+ messages = item["messages"][0]
67
+ for message in messages:
68
+ if message["type"]=="system":
69
+ content = message["content"].strip().replace('\n', ' ')
70
+ return content
71
+
72
+
73
+ prompt = get_prompt(data)
74
+ response = get_response(data)
75
+ context = get_context(data)
76
+
77
+ trace_aggregate["data"]["prompt"]=prompt
78
+ trace_aggregate["data"]["response"]=response
79
+ trace_aggregate["data"]["context"]=context
80
+
81
+ return trace_aggregate
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: ragaai_catalyst
3
- Version: 2.1.5b2
3
+ Version: 2.1.5b3
4
4
  Summary: RAGA AI CATALYST
5
5
  Author-email: Kiran Scaria <kiran.scaria@raga.ai>, Kedar Gaikwad <kedar.gaikwad@raga.ai>, Dushyant Mahajan <dushyant.mahajan@raga.ai>, Siddhartha Kosti <siddhartha.kosti@raga.ai>, Ritika Goel <ritika.goel@raga.ai>, Vijay Chaurasia <vijay.chaurasia@raga.ai>
6
6
  Requires-Python: <3.13,>=3.9
@@ -8,14 +8,14 @@ ragaai_catalyst/guardrails_manager.py,sha256=DILMOAASK57FH9BLq_8yC1AQzRJ8McMFLwC
8
8
  ragaai_catalyst/internal_api_completion.py,sha256=DdICI5yfEudiOAIC8L4oxH0Qz7kX-BZCdo9IWsi2gNo,2965
9
9
  ragaai_catalyst/prompt_manager.py,sha256=W8ypramzOprrJ7-22d5vkBXIuIQ8v9XAzKDGxKsTK28,16550
10
10
  ragaai_catalyst/proxy_call.py,sha256=CHxldeceZUaLU-to_hs_Kf1z_b2vHMssLS_cOBedu78,5499
11
- ragaai_catalyst/ragaai_catalyst.py,sha256=FdqMzwuQLqS2-3JJDsTQ8uh2itllOxfPrRUjb8Kwmn0,17428
11
+ ragaai_catalyst/ragaai_catalyst.py,sha256=5nVg3_-lcvhrXjNkPTeGhe3tdUjm_4ZIctOcqWXBkRA,17939
12
12
  ragaai_catalyst/synthetic_data_generation.py,sha256=uDV9tNwto2xSkWg5XHXUvjErW-4P34CTrxaJpRfezyA,19250
13
13
  ragaai_catalyst/utils.py,sha256=TlhEFwLyRU690HvANbyoRycR3nQ67lxVUQoUOfTPYQ0,3772
14
14
  ragaai_catalyst/tracers/__init__.py,sha256=LfgTes-nHpazssbGKnn8kyLZNr49kIPrlkrqqoTFTfc,301
15
15
  ragaai_catalyst/tracers/distributed.py,sha256=AIRvS5Ur4jbFDXsUkYuCTmtGoHHx3LOG4n5tWOh610U,10330
16
16
  ragaai_catalyst/tracers/llamaindex_callback.py,sha256=ZY0BJrrlz-P9Mg2dX-ZkVKG3gSvzwqBtk7JL_05MiYA,14028
17
- ragaai_catalyst/tracers/tracer.py,sha256=S_ANRm5zSMvQiUyQTRwyUepFci_T3AN26wAOXoURfyc,15648
18
- ragaai_catalyst/tracers/upload_traces.py,sha256=mT5rverNUL5Rcal9VR5_c75wHBAUrm2pvYetTZqP3ok,4796
17
+ ragaai_catalyst/tracers/tracer.py,sha256=k2HjH6ONaabbPvoX6xJRck-A2l-9GVW7Nueimuu-Ua8,19096
18
+ ragaai_catalyst/tracers/upload_traces.py,sha256=2TWdRTN6FMaX-dqDv8BJWQS0xrCGYKkXEYOi2kK3Z3Y,5487
19
19
  ragaai_catalyst/tracers/agentic_tracing/README.md,sha256=X4QwLb7-Jg7GQMIXj-SerZIgDETfw-7VgYlczOR8ZeQ,4508
20
20
  ragaai_catalyst/tracers/agentic_tracing/__init__.py,sha256=yf6SKvOPSpH-9LiKaoLKXwqj5sez8F_5wkOb91yp0oE,260
21
21
  ragaai_catalyst/tracers/agentic_tracing/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -31,7 +31,7 @@ ragaai_catalyst/tracers/agentic_tracing/tracers/agent_tracer.py,sha256=--wvhOJ-J
31
31
  ragaai_catalyst/tracers/agentic_tracing/tracers/base.py,sha256=88rX7OkOGEyVNECUrc4bYqODyulXve_-99d9ku5hBeQ,37373
32
32
  ragaai_catalyst/tracers/agentic_tracing/tracers/custom_tracer.py,sha256=l3x3uFO5ov93I7UUrUX1M06WVGy2ug2jEZ1G7o315z4,13075
33
33
  ragaai_catalyst/tracers/agentic_tracing/tracers/langgraph_tracer.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
- ragaai_catalyst/tracers/agentic_tracing/tracers/llm_tracer.py,sha256=91aWXJGb3GDfyDfJyA7Irnk3XSyfkQaQppW_NMORGJQ,31725
34
+ ragaai_catalyst/tracers/agentic_tracing/tracers/llm_tracer.py,sha256=s6BRoBteCRF8XrXGnmZ98ZWPrSONC5RObPXNaq-im3w,31782
35
35
  ragaai_catalyst/tracers/agentic_tracing/tracers/main_tracer.py,sha256=6hsg-Yw11v4qeELI1CWrdX8BXf-wJrTF5smBI5prgoo,15873
36
36
  ragaai_catalyst/tracers/agentic_tracing/tracers/network_tracer.py,sha256=m8CxYkl7iMiFya_lNwN1ykBc3Pmo-2pR_2HmpptwHWQ,10352
37
37
  ragaai_catalyst/tracers/agentic_tracing/tracers/tool_tracer.py,sha256=4rWL7fIJE5wN0nwh6fMWyh3OrrenZHJkNzyQXikyzQI,13771
@@ -61,9 +61,11 @@ ragaai_catalyst/tracers/instrumentators/langchain.py,sha256=yMN0qVF0pUVk6R5M1vJo
61
61
  ragaai_catalyst/tracers/instrumentators/llamaindex.py,sha256=SMrRlR4xM7k9HK43hakE8rkrWHxMlmtmWD-AX6TeByc,416
62
62
  ragaai_catalyst/tracers/instrumentators/openai.py,sha256=14R4KW9wQCR1xysLfsP_nxS7cqXrTPoD8En4MBAaZUU,379
63
63
  ragaai_catalyst/tracers/utils/__init__.py,sha256=KeMaZtYaTojilpLv65qH08QmpYclfpacDA0U3wg6Ybw,64
64
+ ragaai_catalyst/tracers/utils/convert_langchain_callbacks_output.py,sha256=ofrNrxf2b1hpjDh_zeaxiYq86azn1MF3kW8-ViYPEg0,1641
65
+ ragaai_catalyst/tracers/utils/langchain_tracer_extraction_logic.py,sha256=cghjCuUe8w-2MZdh9xgtRGe3y219u26GGzpnuY4Wt6Q,3047
64
66
  ragaai_catalyst/tracers/utils/utils.py,sha256=ViygfJ7vZ7U0CTSA1lbxVloHp4NSlmfDzBRNCJuMhis,2374
65
- ragaai_catalyst-2.1.5b2.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
66
- ragaai_catalyst-2.1.5b2.dist-info/METADATA,sha256=OtU5W4jpT4K2GVF82w9jYeaVglZOWOIwpPfXJNN_SmM,12764
67
- ragaai_catalyst-2.1.5b2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
68
- ragaai_catalyst-2.1.5b2.dist-info/top_level.txt,sha256=HpgsdRgEJMk8nqrU6qdCYk3di7MJkDL0B19lkc7dLfM,16
69
- ragaai_catalyst-2.1.5b2.dist-info/RECORD,,
67
+ ragaai_catalyst-2.1.5b3.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
68
+ ragaai_catalyst-2.1.5b3.dist-info/METADATA,sha256=i-IVw7tVuDCXGNCIBH8Lsovatn4x67VrhV-hf-HYWYQ,12764
69
+ ragaai_catalyst-2.1.5b3.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
70
+ ragaai_catalyst-2.1.5b3.dist-info/top_level.txt,sha256=HpgsdRgEJMk8nqrU6qdCYk3di7MJkDL0B19lkc7dLfM,16
71
+ ragaai_catalyst-2.1.5b3.dist-info/RECORD,,