ragaai-catalyst 2.1.5b25__py3-none-any.whl → 2.1.5b26__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -29,6 +29,7 @@ from ragaai_catalyst.tracers.instrumentators import (
29
29
  )
30
30
  from ragaai_catalyst.tracers.utils import get_unique_key
31
31
  # from ragaai_catalyst.tracers.llamaindex_callback import LlamaIndexTracer
32
+ from ragaai_catalyst.tracers.llamaindex_instrumentation import LlamaIndexInstrumentationTracer
32
33
  from ragaai_catalyst import RagaAICatalyst
33
34
  from ragaai_catalyst.tracers.agentic_tracing import AgenticTracing, TrackName
34
35
  from ragaai_catalyst.tracers.agentic_tracing.tracers.llm_tracer import LLMTracerMixin
@@ -170,7 +171,6 @@ class Tracer(AgenticTracing):
170
171
  elif tracer_type == "llamaindex":
171
172
  self._upload_task = None
172
173
  self.llamaindex_tracer = None
173
- from ragaai_catalyst.tracers.llamaindex_callback import LlamaIndexTracer
174
174
 
175
175
  else:
176
176
  self._upload_task = None
@@ -256,8 +256,7 @@ class Tracer(AgenticTracing):
256
256
  self.langchain_tracer = LangchainTracer()
257
257
  return self.langchain_tracer.start()
258
258
  elif self.tracer_type == "llamaindex":
259
- from ragaai_catalyst.tracers.llamaindex_callback import LlamaIndexTracer
260
- self.llamaindex_tracer = LlamaIndexTracer(self._pass_user_data())
259
+ self.llamaindex_tracer = LlamaIndexInstrumentationTracer(self._pass_user_data())
261
260
  return self.llamaindex_tracer.start()
262
261
  else:
263
262
  super().start()
@@ -286,30 +285,31 @@ class Tracer(AgenticTracing):
286
285
  if 'tokens' in additional_metadata and all(k in additional_metadata['tokens'] for k in ['prompt', 'completion']):
287
286
  prompt_cost = additional_metadata["tokens"]["prompt"]*model_cost_data["input_cost_per_token"]
288
287
  completion_cost = additional_metadata["tokens"]["completion"]*model_cost_data["output_cost_per_token"]
289
- additional_metadata.setdefault('cost', {})["total_cost"] = prompt_cost + completion_cost
288
+ additional_metadata["cost"] = prompt_cost + completion_cost
289
+
290
+ additional_metadata["prompt_tokens"] = float(additional_metadata["tokens"].get("prompt", 0.0))
291
+ additional_metadata["completion_tokens"] = float(additional_metadata["tokens"].get("completion", 0.0))
292
+
293
+ logger.debug("Metadata added successfully")
290
294
  else:
291
295
  logger.warning("Token information missing in additional_metadata")
296
+
297
+ if 'cost' in additional_metadata:
298
+ additional_metadata["cost"] = float(additional_metadata["cost"])
299
+ else:
300
+ additional_metadata["cost"] = 0.0
301
+ logger.warning("Total cost information not available")
302
+
303
+
292
304
  except Exception as e:
293
305
  logger.warning(f"Error adding cost: {e}")
294
306
  else:
295
307
  logger.debug("Model name not available in additional_metadata, skipping cost calculation")
296
308
 
297
- # Safely get total tokens and cost
298
- if 'tokens' in additional_metadata and 'total' in additional_metadata['tokens']:
299
- additional_metadata["total_tokens"] = float(additional_metadata["tokens"]["total"])
300
- else:
301
- additional_metadata["total_tokens"] = 0.0
302
- logger.warning("Total tokens information not available")
303
-
304
- if 'cost' in additional_metadata and 'total_cost' in additional_metadata['cost']:
305
- additional_metadata["total_cost"] = float(additional_metadata["cost"]["total_cost"])
306
- else:
307
- additional_metadata["total_cost"] = 0.0
308
- logger.warning("Total cost information not available")
309
309
 
310
310
  # Safely remove tokens and cost dictionaries if they exist
311
311
  additional_metadata.pop("tokens", None)
312
- additional_metadata.pop("cost", None)
312
+ # additional_metadata.pop("cost", None)
313
313
 
314
314
  # Safely merge metadata
315
315
  combined_metadata = {}
@@ -337,7 +337,8 @@ class Tracer(AgenticTracing):
337
337
  else:
338
338
  logger.warning("No valid langchain traces found in final_result")
339
339
 
340
- additional_metadata_keys = list(additional_metadata.keys()) if additional_metadata else None
340
+ # additional_metadata_keys = list(additional_metadata.keys()) if additional_metadata else None
341
+ additional_metadata_dict = additional_metadata if additional_metadata else {}
341
342
 
342
343
  UploadTraces(json_file_path=filepath_3,
343
344
  project_name=self.project_name,
@@ -345,14 +346,30 @@ class Tracer(AgenticTracing):
345
346
  dataset_name=self.dataset_name,
346
347
  user_detail=user_detail,
347
348
  base_url=self.base_url
348
- ).upload_traces(additional_metadata_keys=additional_metadata_keys)
349
+ ).upload_traces(additional_metadata_keys=additional_metadata_dict)
349
350
 
350
351
  return
351
352
 
352
353
  elif self.tracer_type == "llamaindex":
353
354
  if self.llamaindex_tracer is None:
354
355
  raise ValueError("LlamaIndex tracer was not started")
355
- return self.llamaindex_tracer.stop()
356
+
357
+ user_detail = self._pass_user_data()
358
+ converted_back_to_callback = self.llamaindex_tracer.stop()
359
+
360
+ filepath_3 = os.path.join(os.getcwd(), "llama_final_result.json")
361
+ with open(filepath_3, 'w') as f:
362
+ json.dump(converted_back_to_callback, f, default=str, indent=2)
363
+
364
+ if converted_back_to_callback:
365
+ UploadTraces(json_file_path=filepath_3,
366
+ project_name=self.project_name,
367
+ project_id=self.project_id,
368
+ dataset_name=self.dataset_name,
369
+ user_detail=user_detail,
370
+ base_url=self.base_url
371
+ ).upload_traces()
372
+ return
356
373
  else:
357
374
  super().stop()
358
375
 
@@ -37,7 +37,10 @@ class UploadTraces:
37
37
 
38
38
  if additional_metadata_keys:
39
39
  for key in additional_metadata_keys:
40
- SCHEMA_MAPPING_NEW[key] = {"columnType": "metadata"}
40
+ if key == "model_name":
41
+ SCHEMA_MAPPING_NEW['response']["modelName"] = additional_metadata_keys[key]
42
+ else:
43
+ SCHEMA_MAPPING_NEW[key] = {"columnType": key, "parentColumn": "response"}
41
44
 
42
45
  if additional_pipeline_keys:
43
46
  for key in additional_pipeline_keys:
@@ -0,0 +1,69 @@
1
+ def convert_llamaindex_instrumentation_to_callback(data):
2
+ data = data[0]
3
+ initial_struc = [{
4
+ "trace_id": data["trace_id"],
5
+ "project_id": data["project_id"],
6
+ "session_id": data["session_id"],
7
+ "trace_type": data["trace_type"],
8
+ "metadata" : data["metadata"],
9
+ "pipeline" : data["pipeline"],
10
+ "traces" : []
11
+ }]
12
+
13
+ traces_data = []
14
+
15
+ prompt = data["data"]["prompt"]
16
+ response = data["data"]["response"]
17
+ context = data["data"]["context"]
18
+ system_prompt = data["data"]["system_prompt"]
19
+
20
+ prompt_structured_data = {
21
+ "event_type": "query",
22
+ "payload": {
23
+ "query_str": prompt
24
+ }
25
+ }
26
+ traces_data.append(prompt_structured_data)
27
+
28
+ response_structured_data = {
29
+ "event_type": "llm",
30
+ "payload": {
31
+ "response": {
32
+ "message": {
33
+ "content": response,
34
+ }
35
+ }
36
+ }
37
+ }
38
+ traces_data.append(response_structured_data)
39
+
40
+ context_structured_data = {
41
+ "event_type": "retrieve",
42
+ "payload": {
43
+ "nodes": [
44
+ {
45
+ "node": {
46
+ "text": context
47
+ }
48
+ }
49
+ ]
50
+ }
51
+ }
52
+ traces_data.append(context_structured_data)
53
+
54
+ system_prompt_structured_data = {
55
+ "event_type": "llm",
56
+ "payload": {
57
+ "messages": [
58
+ {
59
+ "role": "system",
60
+ "content": system_prompt
61
+ }
62
+ ]
63
+ }
64
+ }
65
+ traces_data.append(system_prompt_structured_data)
66
+
67
+ initial_struc[0]["traces"] = traces_data
68
+
69
+ return initial_struc
@@ -0,0 +1,74 @@
1
+ import json
2
+ from typing import Dict, Any, Optional
3
+
4
+
5
+ def extract_llama_index_data(data):
6
+ """
7
+ Transform llama_index trace data into standardized format
8
+ """
9
+ data = data[0]
10
+
11
+ # Extract top-level metadata
12
+ trace_data = {
13
+ "project_id": data.get("project_id"),
14
+ "trace_id": data.get("trace_id"),
15
+ "session_id": data.get("session_id"),
16
+ "trace_type": data.get("trace_type"),
17
+ "pipeline": data.get("pipeline"),
18
+ "metadata":data.get("metadata") ,
19
+ "prompt_length": 0,
20
+ "data": {
21
+ "prompt": None,
22
+ "context": None,
23
+ "response": None,
24
+ "system_prompt": None
25
+ }
26
+ }
27
+
28
+ def get_prompt(data):
29
+ for span in data:
30
+ if span["event_type"]=="QueryStartEvent":
31
+ prompt = span.get("query", "")
32
+ return prompt
33
+ if span["event_type"]=="QueryEndEvent":
34
+ prompt = span.get("query", "")
35
+ return prompt
36
+
37
+
38
+ def get_context(data):
39
+ for span in data:
40
+ if span["event_type"]=="RetrievalEndEvent":
41
+ context = span.get("text", "")
42
+ return context
43
+
44
+ def get_response(data):
45
+ for span in data:
46
+ if span["event_type"]=="QueryEndEvent":
47
+ response = span.get("response", "")
48
+ return response
49
+ # if span["event_type"]=="LLMPredictEndEvent":
50
+ # response = span.get("output", "")
51
+ # return response
52
+ # if span["event_type"]=="SynthesizeEndEvent":
53
+ # response = span.get("response", "")
54
+ # return response
55
+
56
+ def get_system_prompt(data):
57
+ for span in data:
58
+ if span["event_type"]=="LLMChatStartEvent":
59
+ response = span.get("messages", "")
60
+ response = response[0]
61
+ return response
62
+
63
+ # Process traces
64
+ if "traces" in data:
65
+ prompt = get_prompt(data["traces"])
66
+ context = get_context(data["traces"])
67
+ response = get_response(data["traces"])
68
+ system_prompt = get_system_prompt(data["traces"])
69
+
70
+ trace_data["data"]["prompt"] = prompt
71
+ trace_data["data"]["context"] = context
72
+ trace_data["data"]["response"] = response
73
+ trace_data["data"]["system_prompt"] = system_prompt
74
+ return [trace_data]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: ragaai_catalyst
3
- Version: 2.1.5b25
3
+ Version: 2.1.5b26
4
4
  Summary: RAGA AI CATALYST
5
5
  Author-email: Kiran Scaria <kiran.scaria@raga.ai>, Kedar Gaikwad <kedar.gaikwad@raga.ai>, Dushyant Mahajan <dushyant.mahajan@raga.ai>, Siddhartha Kosti <siddhartha.kosti@raga.ai>, Ritika Goel <ritika.goel@raga.ai>, Vijay Chaurasia <vijay.chaurasia@raga.ai>
6
6
  Requires-Python: <3.13,>=3.9
@@ -28,7 +28,7 @@ Requires-Dist: Markdown>=3.7
28
28
  Requires-Dist: litellm==1.51.1
29
29
  Requires-Dist: tenacity==8.3.0
30
30
  Requires-Dist: tqdm>=4.66.5
31
- Requires-Dist: llama-index<0.11.0,>=0.10.0
31
+ Requires-Dist: llama-index>=0.10.0
32
32
  Requires-Dist: pyopenssl>=24.2.1
33
33
  Requires-Dist: psutil~=6.0.0
34
34
  Requires-Dist: py-cpuinfo~=9.0.0
@@ -49,6 +49,8 @@ Requires-Dist: flake8; extra == "dev"
49
49
 
50
50
  RagaAI Catalyst is a comprehensive platform designed to enhance the management and optimization of LLM projects. It offers a wide range of features, including project management, dataset management, evaluation management, trace management, prompt management, synthetic data generation, and guardrail management. These functionalities enable you to efficiently evaluate, and safeguard your LLM applications.
51
51
 
52
+ ![RagaAI Catalyst](docs/img/main.png)
53
+
52
54
  ## Table of Contents
53
55
 
54
56
  - [RagaAI Catalyst](#ragaai-catalyst)
@@ -110,6 +112,7 @@ catalyst.project_use_cases()
110
112
  projects = catalyst.list_projects()
111
113
  print(projects)
112
114
  ```
115
+ ![Projects](docs/img/projects_new.png)
113
116
 
114
117
  ### Dataset Management
115
118
  Manage datasets efficiently for your projects:
@@ -135,6 +138,7 @@ dataset_manager.create_from_csv(
135
138
  dataset_manager.get_schema_mapping()
136
139
 
137
140
  ```
141
+ ![Dataset](docs/img/dataset.png)
138
142
 
139
143
  For more detailed information on Dataset Management, including CSV schema handling and advanced usage, please refer to the [Dataset Management documentation](docs/dataset_management.md).
140
144
 
@@ -189,7 +193,7 @@ print("Experiment Status:", status)
189
193
  results = evaluation.get_results()
190
194
  print("Experiment Results:", results)
191
195
  ```
192
-
196
+ ![Evaluation](docs/img/evaluation.png)
193
197
 
194
198
 
195
199
  ### Trace Management
@@ -221,6 +225,7 @@ tracer.stop()
221
225
  # Get upload status
222
226
  tracer.get_upload_status()
223
227
  ```
228
+ ![Trace](docs/img/trace_comp.png)
224
229
 
225
230
 
226
231
  ### Prompt Management
@@ -394,6 +399,7 @@ llm_caller = 'litellm'
394
399
  executor([message],prompt_params,model_params,llm_caller)
395
400
 
396
401
  ```
402
+ ![Guardrails](docs/img/guardrails.png)
397
403
 
398
404
  ### Agentic Tracing
399
405
 
@@ -432,6 +438,7 @@ with tracer:
432
438
  # Agent execution code
433
439
  pass
434
440
  ```
441
+ ![Tracing](docs/img/last_main.png)
435
442
 
436
443
  ### Red-teaming
437
444
 
@@ -1,7 +1,7 @@
1
1
  ragaai_catalyst/__init__.py,sha256=xGqvQoS_Ir_Lup1YUIVc5VlsIplRMnnh_-6qK_eB0u4,843
2
2
  ragaai_catalyst/_version.py,sha256=JKt9KaVNOMVeGs8ojO6LvIZr7ZkMzNN-gCcvryy4x8E,460
3
3
  ragaai_catalyst/dataset.py,sha256=u4QofzdH1_bGsZ-AFc-qFMGq9K-H-YZHqmLSFG8AEDI,28120
4
- ragaai_catalyst/evaluation.py,sha256=yaXPANTy8xxrVZ7Rnt8vbF_FQWSTqZHipMYTiuDX-Pc,22799
4
+ ragaai_catalyst/evaluation.py,sha256=O96CydYVPh3duUmXjY6REIXMOR-tOPixSG-Qhrf636A,22955
5
5
  ragaai_catalyst/experiment.py,sha256=8yQo1phCHlpnJ-4CqCaIbLXg_1ZlAuLGI9kqGBl-OTE,18859
6
6
  ragaai_catalyst/guard_executor.py,sha256=llPbE3DyVtrybojXknzBZj8-dtUrGBQwi9-ZiPJxGRo,3762
7
7
  ragaai_catalyst/guardrails_manager.py,sha256=DILMOAASK57FH9BLq_8yC1AQzRJ8McMFLwCXgYwNAd4,11904
@@ -13,11 +13,12 @@ ragaai_catalyst/redteaming.py,sha256=pvHfwaHZgrq0HYhygEUm6-WotAxA2X9Xg1Kj9NlEzAI
13
13
  ragaai_catalyst/synthetic_data_generation.py,sha256=etqG0AHzC0V1B5fTAOEJxOJ9lhWZyNVmwC9DvTDA-gs,21269
14
14
  ragaai_catalyst/utils.py,sha256=TlhEFwLyRU690HvANbyoRycR3nQ67lxVUQoUOfTPYQ0,3772
15
15
  ragaai_catalyst/tracers/__init__.py,sha256=LfgTes-nHpazssbGKnn8kyLZNr49kIPrlkrqqoTFTfc,301
16
- ragaai_catalyst/tracers/distributed.py,sha256=DIthDaZWBIzDKtDShGSE9iCM0qFtGB48ReZKzMXMxtA,10630
17
- ragaai_catalyst/tracers/langchain_callback.py,sha256=ZXN378gloGh5EVpTJuUScHD964WuIeVeE4_hp60gxG4,30686
16
+ ragaai_catalyst/tracers/distributed.py,sha256=MwlBwIxCAng-OI-7Ove_rkE1mTLeuW4Jw-wWEVJBNlI,9968
17
+ ragaai_catalyst/tracers/langchain_callback.py,sha256=KooENtkX0Hp0S_d_1WI3iH3qNVt-ZcnwOKVlydv4dUk,33518
18
18
  ragaai_catalyst/tracers/llamaindex_callback.py,sha256=ZY0BJrrlz-P9Mg2dX-ZkVKG3gSvzwqBtk7JL_05MiYA,14028
19
- ragaai_catalyst/tracers/tracer.py,sha256=sPl9di2Ff_qm3MQsU2WMjPfvo1UlqbH47rnqi0I1RX4,20935
20
- ragaai_catalyst/tracers/upload_traces.py,sha256=2TWdRTN6FMaX-dqDv8BJWQS0xrCGYKkXEYOi2kK3Z3Y,5487
19
+ ragaai_catalyst/tracers/llamaindex_instrumentation.py,sha256=Ys_jLkvVqo12bKgXDmkp4TxJu9HkBATrFE8cIcTYxWw,14329
20
+ ragaai_catalyst/tracers/tracer.py,sha256=NZh3lgp2sqcUoovgLFkNC-XTnHAOR9UVUrLrGIECPOg,21563
21
+ ragaai_catalyst/tracers/upload_traces.py,sha256=OKsc-Obf8bJvKBprt3dqj8GQQNkoX3kT_t8TBDi9YDQ,5670
21
22
  ragaai_catalyst/tracers/agentic_tracing/README.md,sha256=X4QwLb7-Jg7GQMIXj-SerZIgDETfw-7VgYlczOR8ZeQ,4508
22
23
  ragaai_catalyst/tracers/agentic_tracing/__init__.py,sha256=yf6SKvOPSpH-9LiKaoLKXwqj5sez8F_5wkOb91yp0oE,260
23
24
  ragaai_catalyst/tracers/agentic_tracing/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -29,14 +30,14 @@ ragaai_catalyst/tracers/agentic_tracing/tests/__init__.py,sha256=47DEQpj8HBSa-_T
29
30
  ragaai_catalyst/tracers/agentic_tracing/tests/ai_travel_agent.py,sha256=S4rCcKzU_5SB62BYEbNn_1VbbTdG4396N8rdZ3ZNGcE,5654
30
31
  ragaai_catalyst/tracers/agentic_tracing/tests/unique_decorator_test.py,sha256=Xk1cLzs-2A3dgyBwRRnCWs7Eubki40FVonwd433hPN8,4805
31
32
  ragaai_catalyst/tracers/agentic_tracing/tracers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
32
- ragaai_catalyst/tracers/agentic_tracing/tracers/agent_tracer.py,sha256=kxZPdaSgNY0-ykyvIEF1d6qjXlR7TV81k2Nbc1k0icg,27131
33
- ragaai_catalyst/tracers/agentic_tracing/tracers/base.py,sha256=WpeSzPrCwsMyDQrF7juJjTV5nrP3ewR5IiMcwVqHDtg,46095
34
- ragaai_catalyst/tracers/agentic_tracing/tracers/custom_tracer.py,sha256=mR4jCNjsKUPiidJ1pIthoUI5i9KCGGPe3zG5l80FUBo,14060
33
+ ragaai_catalyst/tracers/agentic_tracing/tracers/agent_tracer.py,sha256=LzbsHvELwBmH8ObFomJRhiQ98b6MEi18irm0DPiplt0,29743
34
+ ragaai_catalyst/tracers/agentic_tracing/tracers/base.py,sha256=0eFrHtEddxYBQnkilGXOAMpen09bFV3jkymywTjDSU4,46139
35
+ ragaai_catalyst/tracers/agentic_tracing/tracers/custom_tracer.py,sha256=OBJJjFSvwRjCGNJyqX3yIfC1W05ZN2QUXasCJ4gmCjQ,13930
35
36
  ragaai_catalyst/tracers/agentic_tracing/tracers/langgraph_tracer.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
- ragaai_catalyst/tracers/agentic_tracing/tracers/llm_tracer.py,sha256=69A33Hyv7j9lCSX9yDTdUJeMOtPE6AD-zO38KXETxGY,48048
37
- ragaai_catalyst/tracers/agentic_tracing/tracers/main_tracer.py,sha256=hbyKvuCeL084vlUk5fBeBnWkzPEjmdHJ_HTZtuw5TxM,18149
37
+ ragaai_catalyst/tracers/agentic_tracing/tracers/llm_tracer.py,sha256=E39Fjeyr9dIp0ZSdPgh9txk380Hd9YnOMLBYE4udAWg,50137
38
+ ragaai_catalyst/tracers/agentic_tracing/tracers/main_tracer.py,sha256=PYYNNeFfsQpw5D4A0jzwNYhAvC1bMT5vtAGaTsgk2xY,16112
38
39
  ragaai_catalyst/tracers/agentic_tracing/tracers/network_tracer.py,sha256=m8CxYkl7iMiFya_lNwN1ykBc3Pmo-2pR_2HmpptwHWQ,10352
39
- ragaai_catalyst/tracers/agentic_tracing/tracers/tool_tracer.py,sha256=G7IEr0neJWg4w-ffaAhs_Wo3BSJn1VJuECPUc9zCEVA,21804
40
+ ragaai_catalyst/tracers/agentic_tracing/tracers/tool_tracer.py,sha256=xxrliKPfdfbIZRZqMnUewsaTD8_Hv0dbuoBivNZGD4U,21674
40
41
  ragaai_catalyst/tracers/agentic_tracing/tracers/user_interaction_tracer.py,sha256=bhSUhNQCuJXKjgJAXhjKEYjnHMpYN90FSZdR84fNIKU,4614
41
42
  ragaai_catalyst/tracers/agentic_tracing/upload/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
43
  ragaai_catalyst/tracers/agentic_tracing/upload/upload_agentic_traces.py,sha256=1MDKXAAPzOEdxFKWWQrRgrmM3kz--DGXSywGXQmR3lQ,6041
@@ -46,7 +47,7 @@ ragaai_catalyst/tracers/agentic_tracing/upload/upload_trace_metric.py,sha256=V9d
46
47
  ragaai_catalyst/tracers/agentic_tracing/utils/__init__.py,sha256=XdB3X_ufe4RVvGorxSqAiB9dYv4UD7Hvvuw3bsDUppY,60
47
48
  ragaai_catalyst/tracers/agentic_tracing/utils/api_utils.py,sha256=JyNCbfpW-w4O9CjtemTqmor2Rh1WGpQwhRaDSRmBxw8,689
48
49
  ragaai_catalyst/tracers/agentic_tracing/utils/create_dataset_schema.py,sha256=lgvJL0cakJrX8WGsnU05YGvotequSj6HgSohyR4OJNE,804
49
- ragaai_catalyst/tracers/agentic_tracing/utils/file_name_tracker.py,sha256=c1RR5tTm8J_oHu4DrLcDtCALhjk75yEXsiP7f7wf8nE,1953
50
+ ragaai_catalyst/tracers/agentic_tracing/utils/file_name_tracker.py,sha256=YG601l1a29ov9VPu9Vl4RXxgL7l16k54_WWnoTNoG58,2064
50
51
  ragaai_catalyst/tracers/agentic_tracing/utils/generic.py,sha256=WwXT01xmp8MSr7KinuDCSK9a1ifpLcT7ajFkvYviG_A,1190
51
52
  ragaai_catalyst/tracers/agentic_tracing/utils/get_user_trace_metrics.py,sha256=vPZ4dn4EHFW0kqd1GyRpsYXbfrRrd0DXCmh-pzsDBNE,1109
52
53
  ragaai_catalyst/tracers/agentic_tracing/utils/llm_utils.py,sha256=gbPqWtJINW8JVlkM41UmF5zGR8oj8Q6g9KQIS3moQYM,20439
@@ -56,7 +57,7 @@ ragaai_catalyst/tracers/agentic_tracing/utils/supported_llm_provider.toml,sha256
56
57
  ragaai_catalyst/tracers/agentic_tracing/utils/system_monitor.py,sha256=H8WNsk4v_5T6OUw4TFOzlDLjQhJwjh1nAMyMAoqMEi4,6946
57
58
  ragaai_catalyst/tracers/agentic_tracing/utils/trace_utils.py,sha256=go7FVnofviATDph-j8sk2juv09CGSRt1Vq4U868Fhd8,2259
58
59
  ragaai_catalyst/tracers/agentic_tracing/utils/unique_decorator.py,sha256=G027toV-Km20JjKrc-Y_PilQ8ABEKrBvvzgLTnqVg7I,5819
59
- ragaai_catalyst/tracers/agentic_tracing/utils/zip_list_of_unique_files.py,sha256=VIwoLSmpiqXL9u2nQ8jIIndAG9-TMtepTl63wdzwx9U,19241
60
+ ragaai_catalyst/tracers/agentic_tracing/utils/zip_list_of_unique_files.py,sha256=IytYvxcutzliVOuNsiYq4Pv9Nrw3EcH7YeCRhxaBDbw,19921
60
61
  ragaai_catalyst/tracers/exporters/__init__.py,sha256=kVA8zp05h3phu4e-iHSlnznp_PzMRczB7LphSsZgUjg,138
61
62
  ragaai_catalyst/tracers/exporters/file_span_exporter.py,sha256=RgGteu-NVGprXKkynvyIO5yOjpbtA41R3W_NzCjnkwE,6445
62
63
  ragaai_catalyst/tracers/exporters/raga_exporter.py,sha256=6xvjWXyh8XPkHKSLLmAZUQSvwuyY17ov8pv2VdfI0qA,17875
@@ -66,10 +67,12 @@ ragaai_catalyst/tracers/instrumentators/llamaindex.py,sha256=SMrRlR4xM7k9HK43hak
66
67
  ragaai_catalyst/tracers/instrumentators/openai.py,sha256=14R4KW9wQCR1xysLfsP_nxS7cqXrTPoD8En4MBAaZUU,379
67
68
  ragaai_catalyst/tracers/utils/__init__.py,sha256=KeMaZtYaTojilpLv65qH08QmpYclfpacDA0U3wg6Ybw,64
68
69
  ragaai_catalyst/tracers/utils/convert_langchain_callbacks_output.py,sha256=ofrNrxf2b1hpjDh_zeaxiYq86azn1MF3kW8-ViYPEg0,1641
70
+ ragaai_catalyst/tracers/utils/convert_llama_instru_callback.py,sha256=8qLo7x4Zsn3dhJfSv9gviB60YXZ2TOsWEouucJmBM0c,1724
71
+ ragaai_catalyst/tracers/utils/extraction_logic_llama_index.py,sha256=ZhPs0YhVtB82-Pq9o1BvCinKE_WPvVxPTEcZjlJbFYM,2371
69
72
  ragaai_catalyst/tracers/utils/langchain_tracer_extraction_logic.py,sha256=XS2_x2qneqEx9oAighLg-LRiueWcESLwIC2r7eJT-Ww,3117
70
73
  ragaai_catalyst/tracers/utils/utils.py,sha256=ViygfJ7vZ7U0CTSA1lbxVloHp4NSlmfDzBRNCJuMhis,2374
71
- ragaai_catalyst-2.1.5b25.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
72
- ragaai_catalyst-2.1.5b25.dist-info/METADATA,sha256=UhuAUbTjjzzw7L0BsykCf905tI0veMysoB_zgG4Wm-E,13874
73
- ragaai_catalyst-2.1.5b25.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
74
- ragaai_catalyst-2.1.5b25.dist-info/top_level.txt,sha256=HpgsdRgEJMk8nqrU6qdCYk3di7MJkDL0B19lkc7dLfM,16
75
- ragaai_catalyst-2.1.5b25.dist-info/RECORD,,
74
+ ragaai_catalyst-2.1.5b26.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
75
+ ragaai_catalyst-2.1.5b26.dist-info/METADATA,sha256=e1Q9FXZLICMpzTfcMihQJZqycGVJvHXWTUrRjfKcZ3c,14123
76
+ ragaai_catalyst-2.1.5b26.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
77
+ ragaai_catalyst-2.1.5b26.dist-info/top_level.txt,sha256=HpgsdRgEJMk8nqrU6qdCYk3di7MJkDL0B19lkc7dLfM,16
78
+ ragaai_catalyst-2.1.5b26.dist-info/RECORD,,