radnn 0.1.5__py3-none-any.whl → 0.1.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- radnn/__init__.py +3 -1
- radnn/data/custom_data_set.py +1 -1
- radnn/data/dataset_base.py +77 -16
- radnn/data/dataset_base_legacy.py +1 -1
- radnn/data/errors.py +1 -1
- radnn/data/sample_preprocessor.py +3 -0
- radnn/data/sample_set_simple.py +4 -1
- radnn/experiment/ml_experiment.py +2 -2
- radnn/experiment/ml_experiment_log.py +25 -19
- radnn/system/hosts/windows_host.py +1 -1
- {radnn-0.1.5.dist-info → radnn-0.1.7.dist-info}/METADATA +1 -1
- {radnn-0.1.5.dist-info → radnn-0.1.7.dist-info}/RECORD +15 -15
- {radnn-0.1.5.dist-info → radnn-0.1.7.dist-info}/WHEEL +0 -0
- {radnn-0.1.5.dist-info → radnn-0.1.7.dist-info}/licenses/LICENSE.txt +0 -0
- {radnn-0.1.5.dist-info → radnn-0.1.7.dist-info}/top_level.txt +0 -0
radnn/__init__.py
CHANGED
|
@@ -9,7 +9,9 @@
|
|
|
9
9
|
# Version 0.1.1 [2025-01-08]
|
|
10
10
|
# Version 0.1.4 [2025-01-26]
|
|
11
11
|
# Version 0.1.5 [2025-02-02]
|
|
12
|
-
|
|
12
|
+
# Version 0.1.6 [2025-02-03]
|
|
13
|
+
# Version 0.1.7 [2025-02-04]
|
|
14
|
+
__version__ = "0.1.7"
|
|
13
15
|
|
|
14
16
|
from .system import FileStore, FileSystem
|
|
15
17
|
from .ml_system import MLSystem
|
radnn/data/custom_data_set.py
CHANGED
|
@@ -23,7 +23,7 @@
|
|
|
23
23
|
|
|
24
24
|
# ......................................................................................
|
|
25
25
|
|
|
26
|
-
from sklearn.model_selection import train_test_split # import a standalone procedure
|
|
26
|
+
from sklearn.model_selection import train_test_split # import a standalone procedure toyfunction from the pacakge
|
|
27
27
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
|
28
28
|
from radnn import mlsys
|
|
29
29
|
from radnn.data.sample_set_simple import SampleSet
|
radnn/data/dataset_base.py
CHANGED
|
@@ -26,12 +26,15 @@ import os
|
|
|
26
26
|
import numpy as np
|
|
27
27
|
import pandas as pd
|
|
28
28
|
from abc import ABC, abstractmethod
|
|
29
|
-
from .
|
|
29
|
+
from .sample_set_simple import SampleSet
|
|
30
30
|
from .sample_set_kind import SampleSetKind
|
|
31
31
|
from .sample_preprocessor import SamplePreprocessor, VoidPreprocessor
|
|
32
32
|
from .errors import *
|
|
33
33
|
from radnn import FileStore
|
|
34
34
|
from radnn import mlsys
|
|
35
|
+
from .constants import DataPreprocessingKind
|
|
36
|
+
from sklearn.model_selection import train_test_split
|
|
37
|
+
from sklearn.preprocessing import MinMaxScaler, StandardScaler
|
|
35
38
|
|
|
36
39
|
# ======================================================================================================================
|
|
37
40
|
class DataSetCallbacks(object):
|
|
@@ -73,7 +76,7 @@ class DataSetBase(ABC):
|
|
|
73
76
|
self.feature_count = None
|
|
74
77
|
self.class_count = None
|
|
75
78
|
self.sample_count = None
|
|
76
|
-
|
|
79
|
+
|
|
77
80
|
self.callbacks: DataSetCallbacks = callbacks
|
|
78
81
|
|
|
79
82
|
self.hprm: dict | None = None
|
|
@@ -81,8 +84,39 @@ class DataSetBase(ABC):
|
|
|
81
84
|
self.vs: SampleSet | None = None
|
|
82
85
|
self.us: SampleSet | None = None
|
|
83
86
|
self.preprocessor: SamplePreprocessor = VoidPreprocessor(self)
|
|
87
|
+
|
|
88
|
+
self.is_split = False
|
|
84
89
|
# ................................................................
|
|
85
90
|
|
|
91
|
+
# --------------------------------------------------------------------------------------
|
|
92
|
+
def split(self, validation_samples_pc=0.10,
|
|
93
|
+
preprocessing: DataPreprocessingKind | None = DataPreprocessingKind.STANDARDIZE,
|
|
94
|
+
random_seed: int=2021):
|
|
95
|
+
|
|
96
|
+
nTS_Samples, nVS_Samples, nTS_Labels, nVS_Labels = train_test_split(self.all_samples, self.all_labels,
|
|
97
|
+
test_size=validation_samples_pc,
|
|
98
|
+
random_state=random_seed)
|
|
99
|
+
if preprocessing == DataPreprocessingKind.MIN_MAX_NORMALIZE:
|
|
100
|
+
self.preprocessor = MinMaxScaler().fit(nTS_Samples)
|
|
101
|
+
elif preprocessing == DataPreprocessingKind.STANDARDIZE:
|
|
102
|
+
self.preprocessor = StandardScaler().fit(nTS_Samples)
|
|
103
|
+
else:
|
|
104
|
+
self.preprocessor = None
|
|
105
|
+
|
|
106
|
+
if self.preprocessor is not None:
|
|
107
|
+
nTS_Samples = self.preprocessor.transform(nTS_Samples)
|
|
108
|
+
nVS_Samples = self.preprocessor.transform(nVS_Samples)
|
|
109
|
+
|
|
110
|
+
# (Re)creating the subsets of the dataset after the splits have been created
|
|
111
|
+
self.ts = SampleSet(self, nTS_Samples, nTS_Labels, kind=SampleSetKind.TRAINING_SET)
|
|
112
|
+
if preprocessing == DataPreprocessingKind.STANDARDIZE:
|
|
113
|
+
self.ts.mean = self.preprocessor.mean_
|
|
114
|
+
self.ts.std = self.preprocessor.scale_
|
|
115
|
+
|
|
116
|
+
self.vs = SampleSet(self, nVS_Samples, nVS_Labels, kind=SampleSetKind.VALIDATION_SET)
|
|
117
|
+
|
|
118
|
+
self.is_split = True
|
|
119
|
+
return self
|
|
86
120
|
# --------------------------------------------------------------------------------------------------------------------
|
|
87
121
|
@property
|
|
88
122
|
def dataset_code(self):
|
|
@@ -115,11 +149,32 @@ class DataSetBase(ABC):
|
|
|
115
149
|
def load_data(self):
|
|
116
150
|
pass # Must implement
|
|
117
151
|
# --------------------------------------------------------------------------------------------------------------------
|
|
118
|
-
def load_cache(self):
|
|
119
|
-
|
|
152
|
+
def load_cache(self, is_vector_samples=True, is_last_axis_features=True):
|
|
153
|
+
nSuffix = ""
|
|
154
|
+
if is_vector_samples:
|
|
155
|
+
nSuffix = "-vec"
|
|
156
|
+
elif not is_last_axis_features:
|
|
157
|
+
nSuffix = "-torch"
|
|
158
|
+
|
|
159
|
+
nTSSamples = self.fs.obj.load(f"{self.dataset_code}-TS-Samples{nSuffix}.pkl")
|
|
160
|
+
nVSSamples = self.fs.obj.load(f"{self.dataset_code}-VS-Samples{nSuffix}.pkl")
|
|
161
|
+
|
|
162
|
+
nTSLabels = self.fs.obj.load(f"{self.dataset_code}-TS-Labels{nSuffix}.pkl")
|
|
163
|
+
nVSLabels = self.fs.obj.load(f"{self.dataset_code}-VS-Labels{nSuffix}.pkl")
|
|
164
|
+
|
|
165
|
+
return nTSSamples, nVSSamples, nTSLabels, nVSLabels
|
|
120
166
|
# --------------------------------------------------------------------------------------------------------------------
|
|
121
|
-
def save_cache(self):
|
|
122
|
-
|
|
167
|
+
def save_cache(self, ts_samples, vs_samples, ts_labels, vs_labels, is_vector_samples=True, is_last_axis_features=True):
|
|
168
|
+
nSuffix = ""
|
|
169
|
+
if is_vector_samples:
|
|
170
|
+
nSuffix = "-vec"
|
|
171
|
+
elif not is_last_axis_features:
|
|
172
|
+
nSuffix = "-torch"
|
|
173
|
+
self.fs.obj.save(ts_samples, f"{self.dataset_code}-TS-Samples{nSuffix}.pkl")
|
|
174
|
+
self.fs.obj.save(vs_samples, f"{self.dataset_code}-VS-Samples{nSuffix}.pkl")
|
|
175
|
+
|
|
176
|
+
self.fs.obj.save(ts_labels, f"{self.dataset_code}-TS-Labels{nSuffix}.pkl")
|
|
177
|
+
self.fs.obj.save(vs_labels, f"{self.dataset_code}-VS-Labels{nSuffix}.pkl")
|
|
123
178
|
# --------------------------------------------------------------------------------------------------------------------
|
|
124
179
|
def prepare(self, hyperparams: dict | None = None):
|
|
125
180
|
self.hprm = hyperparams
|
|
@@ -134,23 +189,29 @@ class DataSetBase(ABC):
|
|
|
134
189
|
self.callbacks.lazy_download(self.fs)
|
|
135
190
|
|
|
136
191
|
if (self.random_seed is not None):
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
192
|
+
bIsInitRandomSeed = False
|
|
193
|
+
if self.callbacks is not None:
|
|
194
|
+
if self.callbacks._random_seed is not None:
|
|
195
|
+
self.callbacks.random_seed(self.random_seed)
|
|
196
|
+
bIsInitRandomSeed = True
|
|
197
|
+
if not bIsInitRandomSeed:
|
|
198
|
+
mlsys.random_seed_all(self.random_seed)
|
|
199
|
+
|
|
141
200
|
self.ts = None
|
|
142
201
|
self.vs = None
|
|
143
202
|
self.us = None
|
|
144
|
-
|
|
203
|
+
|
|
204
|
+
# VIRTUAL CALL: Imports the dataset from the source local/remote filestore to the local cache.
|
|
145
205
|
self.load_data()
|
|
146
206
|
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
if self.vs is not None:
|
|
207
|
+
if self.is_split:
|
|
208
|
+
assert self.ts is not None, ERR_DS_SUBSET_MUST_HAVE_TS
|
|
150
209
|
assert self.ts.kind == SampleSetKind.TRAINING_SET, ERR_DS_SUBSET_INVALID_SETUP
|
|
210
|
+
if self.vs is not None:
|
|
211
|
+
assert self.vs.kind == SampleSetKind.VALIDATION_SET, ERR_DS_SUBSET_INVALID_SETUP
|
|
212
|
+
|
|
151
213
|
if self.us is not None:
|
|
152
|
-
assert self.
|
|
153
|
-
|
|
214
|
+
assert self.us.kind == SampleSetKind.UNKNOWN_TEST_SET, ERR_DS_SUBSET_INVALID_SETUP
|
|
154
215
|
|
|
155
216
|
return self
|
|
156
217
|
# --------------------------------------------------------------------------------------------------------------------
|
|
@@ -25,7 +25,7 @@
|
|
|
25
25
|
|
|
26
26
|
|
|
27
27
|
import numpy as np
|
|
28
|
-
from sklearn.model_selection import train_test_split # import a standalone procedure
|
|
28
|
+
from sklearn.model_selection import train_test_split # import a standalone procedure toyfunction from the pacakge
|
|
29
29
|
|
|
30
30
|
|
|
31
31
|
# =========================================================================================================================
|
radnn/data/errors.py
CHANGED
|
@@ -28,7 +28,7 @@ ERR_MLSYS_FILESYS_NOT_INITIALIZED = "The filesystem for the Machine Learning hos
|
|
|
28
28
|
|
|
29
29
|
ERR_NO_CALLBACKS = "You should assign callbacks to the dataset perform proper random seed initialization for your framework."
|
|
30
30
|
ERR_DS_NO_RANDOM_SEED_INITIALIZER_CALLBACK = "Callback method for random seed initialization has not been defined."
|
|
31
|
-
ERR_DS_CALLBACKS_NO_LAZY_DOWNLOADER = "Callback method for downloading the
|
|
31
|
+
ERR_DS_CALLBACKS_NO_LAZY_DOWNLOADER = "Callback method for downloading the dataset has not been defined."
|
|
32
32
|
|
|
33
33
|
ERR_DS_SUBSET_MUST_HAVE_TS = "A dataset must have at least a training subset."
|
|
34
34
|
ERR_DS_SUBSET_INVALID_SETUP = "Invalid sample subset setup. Please use one of the valid kinds: 'training/train/ts', 'validation/val/vs', 'testing/test/us'."
|
|
@@ -47,6 +47,9 @@ class SamplePreprocessor(ABC):
|
|
|
47
47
|
pass
|
|
48
48
|
# --------------------------------------------------------------------------------------------------------------------
|
|
49
49
|
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
|
|
50
53
|
# ======================================================================================================================
|
|
51
54
|
class VoidPreprocessor(SamplePreprocessor):
|
|
52
55
|
# --------------------------------------------------------------------------------------------------------------------
|
radnn/data/sample_set_simple.py
CHANGED
|
@@ -11,7 +11,10 @@ class SampleSet(object):
|
|
|
11
11
|
if self.ids is None:
|
|
12
12
|
self.ids = np.arange(len(self.samples)) + 1
|
|
13
13
|
self.kind: SampleSetKind = kind
|
|
14
|
-
|
|
14
|
+
|
|
15
|
+
self.mean = None
|
|
16
|
+
self.std = None
|
|
17
|
+
|
|
15
18
|
self.loader = None
|
|
16
19
|
self._sample_count = None
|
|
17
20
|
self._minibatch_count = None
|
|
@@ -49,7 +49,7 @@ from .ml_experiment_store import MLExperimentStore
|
|
|
49
49
|
|
|
50
50
|
|
|
51
51
|
# --------------------------------------------------------------------------------------------------------------------
|
|
52
|
-
# Define a custom sorting
|
|
52
|
+
# Define a custom sorting toyfunction
|
|
53
53
|
def _sort_by_last_path_element(folder):
|
|
54
54
|
# Split the path into its components
|
|
55
55
|
components = folder.split(os.pathsep)
|
|
@@ -226,7 +226,7 @@ class MLExperiment:
|
|
|
226
226
|
self.model_fs.log_fs.json.save(dTiming, f"timing_info_{self._end_train_time.strftime('%Y-%m-%dT%H%M%S')}.json",
|
|
227
227
|
is_sorted_keys=False)
|
|
228
228
|
|
|
229
|
-
# //TODO: Keep cost
|
|
229
|
+
# //TODO: Keep cost toyfunction names and other learning parameters for evaluation
|
|
230
230
|
# --------------------------------------------------------------------------------------------------------------------
|
|
231
231
|
def load(self, use_last_checkpoint=False, model_root_folder=None):
|
|
232
232
|
self._currentModelFolder = self.model_fs.base_folder
|
|
@@ -1,49 +1,55 @@
|
|
|
1
1
|
import numpy as np
|
|
2
2
|
from radnn.system.filesystem import FileStore
|
|
3
|
+
|
|
4
|
+
|
|
3
5
|
class MLExperimentLog:
|
|
4
6
|
# --------------------------------------------------------------------------------------------------------------------
|
|
5
|
-
def __init__(self, filename: str, experiment_info: dict | None = None):
|
|
7
|
+
def __init__(self, filename: str, experiment_info: dict | None = None, is_autoinit: bool = False):
|
|
6
8
|
self.filename = filename
|
|
7
9
|
if experiment_info is None:
|
|
8
10
|
experiment_info = {}
|
|
9
11
|
self.experiment_info = experiment_info
|
|
10
|
-
self.
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
12
|
+
self.is_autoinit = is_autoinit
|
|
13
|
+
if self.is_autoinit:
|
|
14
|
+
self.logs = {"experiment": experiment_info, "epoch": [], "epoch_time": []}
|
|
15
|
+
else:
|
|
16
|
+
self.logs = {"experiment": experiment_info, "epoch": [], "epoch_time": [],
|
|
17
|
+
"train_step_loss": [],
|
|
18
|
+
"train_step_accuracy": [],
|
|
19
|
+
"train_loss": [],
|
|
20
|
+
"train_accuracy": [],
|
|
21
|
+
"val_loss": [],
|
|
22
|
+
"val_accuracy": [],
|
|
23
|
+
"learning_rate": []}
|
|
24
|
+
|
|
21
25
|
# --------------------------------------------------------------------------------------------------------------------
|
|
22
|
-
def assign_series(self,
|
|
23
|
-
if is_autoinit:
|
|
26
|
+
def assign_series(self, **kwargs):
|
|
27
|
+
if self.is_autoinit:
|
|
24
28
|
for key, value in kwargs.items():
|
|
25
29
|
if key not in self.logs:
|
|
26
30
|
self.logs[key] = []
|
|
27
|
-
|
|
31
|
+
|
|
28
32
|
for key, value in kwargs.items():
|
|
29
33
|
self.logs[key] = value
|
|
34
|
+
|
|
30
35
|
# --------------------------------------------------------------------------------------------------------------------
|
|
31
|
-
def append(self,
|
|
32
|
-
if is_autoinit:
|
|
36
|
+
def append(self, **kwargs):
|
|
37
|
+
if self.is_autoinit:
|
|
33
38
|
for key, value in kwargs.items():
|
|
34
39
|
if key not in self.logs:
|
|
35
40
|
self.logs[key] = []
|
|
36
|
-
|
|
41
|
+
|
|
37
42
|
for key, value in kwargs.items():
|
|
38
43
|
self.logs[key].append(value)
|
|
39
44
|
return self
|
|
45
|
+
|
|
40
46
|
# --------------------------------------------------------------------------------------------------------------------
|
|
41
47
|
def load(self, experiment_fs: FileStore):
|
|
42
48
|
self.logs = experiment_fs.json.load(self.filename)
|
|
43
49
|
return self
|
|
50
|
+
|
|
44
51
|
# --------------------------------------------------------------------------------------------------------------------
|
|
45
52
|
def save(self, experiment_fs: FileStore):
|
|
46
53
|
experiment_fs.json.save(self.logs, self.filename)
|
|
47
54
|
return self
|
|
48
55
|
# --------------------------------------------------------------------------------------------------------------------
|
|
49
|
-
|
|
@@ -72,7 +72,7 @@ class WindowsHost(object):
|
|
|
72
72
|
def set_windows_sleep_resolution(cls, msecs=1):
|
|
73
73
|
"""
|
|
74
74
|
Requests a minimum resolution for periodic timers. This increases accuracy
|
|
75
|
-
for the waiting interval of the time.sleep
|
|
75
|
+
for the waiting interval of the time.sleep toyfunction
|
|
76
76
|
"""
|
|
77
77
|
oWinMM = ctypes.WinDLL('oWinMM')
|
|
78
78
|
oWinMM.timeBeginPeriod(msecs)
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
radnn/__init__.py,sha256=
|
|
1
|
+
radnn/__init__.py,sha256=_xOujzWa_LHOE_imQO45vC0q8VCdcGoTfoyzb9-IH7A,669
|
|
2
2
|
radnn/core.py,sha256=p3CXa192LhpvopTTJO3wPCJzUzKuH4KZSEzzOg1FIP0,11090
|
|
3
3
|
radnn/errors.py,sha256=YiaXHWAGSijOyufTzOVqFvba4CxpMUxQDdQIfZS9YK0,2979
|
|
4
4
|
radnn/ml_system.py,sha256=lTxMgs81TLjKxMGjB10RKD5TKUp9koDPLQSbpQmGINk,7681
|
|
@@ -8,16 +8,16 @@ radnn/benchmark/latency.py,sha256=waaRYuW0ySH82Isj9VaIor3AKQWMqyetVxQae4zm8SM,12
|
|
|
8
8
|
radnn/benchmark/vram.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
9
9
|
radnn/data/__init__.py,sha256=y4l-g0dq74vJbFpPkP7zLKEbuXjv97QcCcUtGQODLZQ,441
|
|
10
10
|
radnn/data/constants.py,sha256=yeJoWCQMc0wEGnzapE3XJM9ciMNEZfv5Qk6gjiC8ldA,357
|
|
11
|
-
radnn/data/custom_data_set.py,sha256=
|
|
11
|
+
radnn/data/custom_data_set.py,sha256=RzpHIm0q0iGu26ylKU1soM9GqigVYcDUjp092pSpN8w,5496
|
|
12
12
|
radnn/data/data_hyperparams.py,sha256=eOSii6eTjtNH0hfWdysWK7Tcsdx8eUgaFneSxTCmQig,2942
|
|
13
|
-
radnn/data/dataset_base.py,sha256=
|
|
14
|
-
radnn/data/dataset_base_legacy.py,sha256=
|
|
13
|
+
radnn/data/dataset_base.py,sha256=T-p8Q7Hnc8-HIAjhb71IEnTk7t4cugUDnLhV4g9wpjA,12208
|
|
14
|
+
radnn/data/dataset_base_legacy.py,sha256=cAAO2x9cRHgNiASTFXLXoDj1Kkz4ozag8JKuGkJJQOs,12151
|
|
15
15
|
radnn/data/dataset_factory.py,sha256=ntfTKz4sIoFcpohytz-9HnHAyvcyfLJmjdaWBdSVZa4,5430
|
|
16
|
-
radnn/data/errors.py,sha256=
|
|
17
|
-
radnn/data/sample_preprocessor.py,sha256=
|
|
16
|
+
radnn/data/errors.py,sha256=xQN9Ly6yHY0KJVxFrB7Af4Y2R-cZTc3xktvW2iQ1xzQ,2318
|
|
17
|
+
radnn/data/sample_preprocessor.py,sha256=VWPH4pPyawxAUKh2nrLVulXY3Y4fc4qTIIeqCXxgSOo,3260
|
|
18
18
|
radnn/data/sample_set.py,sha256=NDvHdKshqVtBE44ZB_5iYBDyItuC6oP-HLNaU-csrCw,14296
|
|
19
19
|
radnn/data/sample_set_kind.py,sha256=h793DtOsnkBI_gTQq1yx3FB9RiggOV2tJJzySx55JbM,6404
|
|
20
|
-
radnn/data/sample_set_simple.py,sha256=
|
|
20
|
+
radnn/data/sample_set_simple.py,sha256=RKmnQSV1i_HjvMtFgh-KjZiQre8MzgbCh4Z6GZi-74I,4537
|
|
21
21
|
radnn/data/sequence_dataset.py,sha256=t7eDcBn74EsKf-feWwLP6UkRAxjvTXChLlmv-CwBXJ4,5959
|
|
22
22
|
radnn/data/structs/__init__.py,sha256=7XVuoBctqZWtDa_QBwhmUtTWbtkwdPIEyNfjKXSya9I,61
|
|
23
23
|
radnn/data/structs/tree.py,sha256=ZVcP1hkxrLXNfmGHTb4Fk9kPmfmZebHfDfg9sYbBQAo,9774
|
|
@@ -40,10 +40,10 @@ radnn/evaluation/__init__.py,sha256=7dXDyJfOpSAr7G8jfDofsW4YEHNElCTTyMXuLCtpoOI,
|
|
|
40
40
|
radnn/evaluation/evaluate_classification.py,sha256=riiVmCjGYfxTldrF2aOKH2xKmm6jAGfmXRDygbfUzYE,7378
|
|
41
41
|
radnn/experiment/__init__.py,sha256=B-rw0Jjt6w51sS_-b88667gvOrolb0LVQU4L3kX8AFM,374
|
|
42
42
|
radnn/experiment/identification.py,sha256=JxrVJ9hUUu7mOKmwIq_bddgckvsm7sP3hGWMD7udu3Q,405
|
|
43
|
-
radnn/experiment/ml_experiment.py,sha256=
|
|
43
|
+
radnn/experiment/ml_experiment.py,sha256=m2FKRFbbMEleQSb1UzclCtyTyBqYvpy4rqpp6XPAnfc,19565
|
|
44
44
|
radnn/experiment/ml_experiment_config.py,sha256=KweFMqdbWhUDM95raB8WhPcsmBbwRktaylbDsVPgJIg,11205
|
|
45
45
|
radnn/experiment/ml_experiment_env.py,sha256=zoB5NxvFn5CyTq_FRsxB01HrnfnHLcYJUOTgPjL4_ac,11447
|
|
46
|
-
radnn/experiment/ml_experiment_log.py,sha256=
|
|
46
|
+
radnn/experiment/ml_experiment_log.py,sha256=K2aZHrO90D50jUkx-qJHAmRVJkxhdvIh5R62t8qSZCQ,2345
|
|
47
47
|
radnn/experiment/ml_experiment_store.py,sha256=Ph-4DQ9zEjhxZlQ13t-qnmCyxsKwsO2Df_Kj0vbMS_Q,396
|
|
48
48
|
radnn/images/__init__.py,sha256=Mk7zKHQRDmCX-A4b1xw-3yxIwEApY-wlZTKiQr3eCqE,100
|
|
49
49
|
radnn/images/colors.py,sha256=l6caSV2a_TURl1qHYKdehQDk0MCVMz-614OuVx-wnsg,1248
|
|
@@ -102,7 +102,7 @@ radnn/system/files/zipfile.py,sha256=ZcK8u5USjm_VE6d33ybu011sfZGH9upqOU46Y-oIdoo
|
|
|
102
102
|
radnn/system/hosts/__init__.py,sha256=k2gkMJhe96Nf-V2ex6jZqmCRX9vA_K6gFB8J8Ii9ahc,261
|
|
103
103
|
radnn/system/hosts/colab_host.py,sha256=i0s43KjdJ-gjLGyQAItubz2gZvOj-DbFnH1EGYguoVk,4000
|
|
104
104
|
radnn/system/hosts/linux_host.py,sha256=AuOTpQ3OB1SXvsS1F-ksLVL44HXeRz5UEM2jbQ_1nbg,1623
|
|
105
|
-
radnn/system/hosts/windows_host.py,sha256=
|
|
105
|
+
radnn/system/hosts/windows_host.py,sha256=C3QSAkH5Hhk0y0Joy-WMa7EK6WQ7mUfAItzdTdj2ZxM,4256
|
|
106
106
|
radnn/system/threads/__init__.py,sha256=PJrNngI79hne-fAhdn1mGIHNWbtuOMoHoNR4RXB5P2Y,252
|
|
107
107
|
radnn/system/threads/semaphore_lock.py,sha256=UGf5f2WBo6sknuhPL-1Vqsg-25HroqfKPrGsoIeNPEo,3073
|
|
108
108
|
radnn/system/threads/thread_context.py,sha256=wbRmeIoJSZaLH6Z_Gra-X2uqYLmMFL7ZLpHJzOzlIgE,7761
|
|
@@ -111,8 +111,8 @@ radnn/system/threads/thread_safe_string_collection.py,sha256=vdRMvwJ8CcLmsJ1uild
|
|
|
111
111
|
radnn/system/threads/thread_worker.py,sha256=5KANBBHwnyaMvjyelBT1eyZCzRtH7MNZiHUhN1Xl1BY,3466
|
|
112
112
|
radnn/test/__init__.py,sha256=XL9SgTJ6bGm3b0tcU3CroenP9rBm5XpDJozFGUv0UkQ,35
|
|
113
113
|
radnn/test/tensor_hash.py,sha256=Jh4hSaSOLzSWF1_UI0ZLWL6zdi2SbswM1GNEuuFIYso,4203
|
|
114
|
-
radnn-0.1.
|
|
115
|
-
radnn-0.1.
|
|
116
|
-
radnn-0.1.
|
|
117
|
-
radnn-0.1.
|
|
118
|
-
radnn-0.1.
|
|
114
|
+
radnn-0.1.7.dist-info/licenses/LICENSE.txt,sha256=NMbnQdAQ2kWWQp2_8Sv2HG1p3jNvrPjYFSixnxPA3uE,1106
|
|
115
|
+
radnn-0.1.7.dist-info/METADATA,sha256=zeZawVCoLlPrRQqi-oR4cqM3DTXZjFAu-9MbA9d0HEg,1253
|
|
116
|
+
radnn-0.1.7.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
117
|
+
radnn-0.1.7.dist-info/top_level.txt,sha256=FKlLIm6gRAeZlRzs-HCBJAB1q9ELJ7MgaL-qqFuPo6M,6
|
|
118
|
+
radnn-0.1.7.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|