radnn 0.1.4__py3-none-any.whl → 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -28,101 +28,23 @@ import numpy as np
28
28
  import matplotlib.pyplot as plt # use the subpackage (a.k.a. namespace) with the alias "plt"
29
29
  from matplotlib import colors
30
30
 
31
-
32
- # ====================================================================================================
33
- class CPlot(object): # class CPlot: object
34
- # --------------------------------------------------------------------------------------
35
- # Constructor
36
- def __init__(self, p_sTitle, p_oSamples, p_oLabels
37
- , p_sLabelDescriptions=["orange tree", "olive tree"]
38
- , p_sColors=["darkorange", "darkseagreen"]
39
- # https://matplotlib.org/3.1.0/gallery/color/named_colors.html
40
- , p_sXLabel="Feature 1"
41
- , p_sYLabel="Feature 2"
42
- ):
43
- # ................................................................
44
- # // Fields \\
45
- self.Title = p_sTitle
46
- self.Samples = p_oSamples
47
- self.Labels = p_oLabels
48
- self.LabelDescriptions = p_sLabelDescriptions
49
- self.Colors = p_sColors
50
- self.XLabel = p_sXLabel
51
- self.YLabel = p_sYLabel
52
- # ................................................................
53
-
54
- # --------------------------------------------------------------------------------------
55
- def Show(self, p_bIsMinMaxScaled=False, p_nLineSlope=None, p_nLineIntercept=None, p_nLimitsX=[-4, 4],
56
- p_nLimitsY=[-4, 4]):
57
-
58
- # Two dimensional dataset for the scatter plot
59
- nXValues = self.Samples[:, 0]
60
- nYValues = self.Samples[:, 1]
61
- nLabels = self.Labels
62
-
63
- oColorMap = colors.ListedColormap(self.Colors)
64
-
65
- fig, ax = plt.subplots(figsize=(8, 8))
66
- plt.scatter(nXValues, nYValues, c=nLabels, cmap=oColorMap)
67
-
68
- plt.title(self.Title)
69
- cb = plt.colorbar()
70
- nLoc = np.arange(0, max(nLabels), max(nLabels) / float(len(self.Colors)))
71
- cb.set_ticks(nLoc)
72
- cb.set_ticklabels(self.LabelDescriptions)
73
-
74
- if (p_nLineSlope is not None):
75
- x1 = np.min(nXValues)
76
- y1 = p_nLineSlope * x1 + p_nLineIntercept;
77
- x2 = np.max(nXValues)
78
- y2 = p_nLineSlope * x2 + p_nLineIntercept;
79
- oPlot1 = ax.plot([x1, x2], [y1, y2], 'r--', label="Decision line")
80
- oLegend = plt.legend(loc="upper left", shadow=True, fontsize='x-large')
81
- oLegend.get_frame().set_facecolor("lightyellow")
82
-
83
- if p_bIsMinMaxScaled:
84
- ax.set_xlim((-0.05, 1.05))
85
- ax.set_ylim((-0.05, 1.05))
86
- else:
87
- ax.set_xlim(p_nLimitsX[0], p_nLimitsX[1])
88
- ax.set_ylim(p_nLimitsY[0], p_nLimitsY[1])
89
-
90
- ax.set_xlabel(self.XLabel)
91
- ax.set_ylabel(self.YLabel)
92
-
93
- # plt.scatter(oDataset.Samples[:,0], oDataset.Samples[:,1])
94
- # , t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
95
-
96
- plt.show()
97
- # --------------------------------------------------------------------------------------
98
-
99
-
100
- # ====================================================================================================
101
-
102
-
103
-
104
-
105
-
106
-
107
-
108
-
109
31
  # =========================================================================================================================
110
32
  class PlotHistogramOfClasses(object): # class CPlot: object
111
33
  # --------------------------------------------------------------------------------------
112
- def __init__(self, p_nData, p_nClasses, p_bIsProbabilities=False):
113
- self.Data = p_nData
114
- self.Classes = p_nClasses
115
- self.IsProbabilities = p_bIsProbabilities
34
+ def __init__(self, data, classes, is_probabilities=False):
35
+ self.data = data
36
+ self.classes = classes
37
+ self.is_probabilities = is_probabilities
116
38
 
117
39
  # --------------------------------------------------------------------------------------
118
40
  def prepare(self):
119
41
 
120
42
  fig, ax = plt.subplots(figsize=(7, 7))
121
43
 
122
- ax.hist(self.Data, density=self.IsProbabilities, bins=self.Classes, ec="k")
44
+ ax.hist(self.data, density=self.is_probabilities, bins=self.classes, ec="k")
123
45
  ax.locator_params(axis='x', integer=True)
124
46
 
125
- if self.IsProbabilities:
47
+ if self.is_probabilities:
126
48
  plt.ylabel('Probabilities')
127
49
  else:
128
50
  plt.ylabel('Counts')
@@ -0,0 +1,103 @@
1
+ import matplotlib.pyplot as plt # use the subpackage (a.k.a. namespace) with the alias "plt"
2
+ import numpy as np
3
+ from matplotlib import colors
4
+ from radnn.data import DataPreprocessingKind
5
+
6
+ # ====================================================================================================
7
+ class PlotDataset(object): # class CPlot: object
8
+ # --------------------------------------------------------------------------------------
9
+ # Constructor
10
+ def __init__(self, samples, labels
11
+ , label_descriptions=["orange tree", "olive tree"]
12
+ , colors=["darkorange", "darkseagreen"]
13
+ , x_label="Feature 1"
14
+ , y_label="Feature 2"
15
+ ):
16
+ # ................................................................
17
+ # // Fields \\
18
+ self.title = ""
19
+ self.samples = samples
20
+ self.labels = labels
21
+ self.label_descriptions = label_descriptions
22
+ self.colors = colors # # https://matplotlib.org/3.1.0/gallery/color/named_colors.html
23
+ self.x_label = x_label
24
+ self.y_label = y_label
25
+ # ................................................................
26
+
27
+ # --------------------------------------------------------------------------------------
28
+ def prepare(self, title, line_slope=None, line_intercept=None, limits_x=None, limits_y=None, preprocessed: DataPreprocessingKind | None = None):
29
+ self.title = title
30
+
31
+ # Two dimensional dataset for the scatter plot
32
+ nXValues = self.samples[:, 0]
33
+ nYValues = self.samples[:, 1]
34
+ nLabels = self.labels
35
+
36
+ oColorMap = colors.ListedColormap(self.colors)
37
+
38
+ fig, ax = plt.subplots(figsize=(8, 8))
39
+ plt.scatter(nXValues, nYValues, c=nLabels, cmap=oColorMap)
40
+
41
+ plt.title(self.title)
42
+ cb = plt.colorbar()
43
+ nLoc = np.arange(0, max(nLabels), max(nLabels) / float(len(self.colors)))
44
+ cb.set_ticks(nLoc)
45
+ oLegend = [ f"{i}:{x}" for i,x in enumerate(self.label_descriptions)]
46
+ cb.set_ticklabels(oLegend)
47
+
48
+ if (line_slope is not None):
49
+ x1 = np.min(nXValues)
50
+ y1 = line_slope * x1 + line_intercept;
51
+ x2 = np.max(nXValues)
52
+ y2 = line_slope * x2 + line_intercept;
53
+ oPlot1 = ax.plot([x1, x2], [y1, y2], 'r--', label="Decision line")
54
+ oLegend = plt.legend(loc="upper left", shadow=True, fontsize='x-large')
55
+ oLegend.get_frame().set_facecolor("lightyellow")
56
+
57
+ if preprocessed == DataPreprocessingKind.MIN_MAX_NORMALIZE:
58
+ ax.set_xlim((-0.05, 1.05))
59
+ ax.set_ylim((-0.05, 1.05))
60
+ if preprocessed == DataPreprocessingKind.STANDARDIZE:
61
+ ax.set_xlim((-4.05, 4.05))
62
+ ax.set_ylim((-4.05, 4.05))
63
+ else:
64
+ if limits_x is not None:
65
+ ax.set_xlim(limits_x[0], limits_x[1])
66
+ if limits_y is not None:
67
+ ax.set_ylim(limits_y[0], limits_y[1])
68
+
69
+ ax.set_xlabel(self.x_label)
70
+ ax.set_ylabel(self.y_label)
71
+
72
+ # plt.scatter(oDataset.Samples[:,0], oDataset.Samples[:,1])
73
+ # , t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
74
+ return self
75
+ # --------------------------------------------------------------------------------------
76
+ def save(self, filename):
77
+ plt.savefig(filename, bbox_inches='tight')
78
+ return self
79
+ # --------------------------------------------------------------------------------------
80
+ def show(self):
81
+ plt.show()
82
+ # --------------------------------------------------------------------------------------
83
+
84
+
85
+ # ====================================================================================================
86
+
87
+ class CPlot(PlotDataset):
88
+ # --------------------------------------------------------------------------------------
89
+ def __init__(self, p_sTitle, p_nSamples, p_nLabels, p_sLabelDescriptions=["orange tree", "olive tree"]
90
+ , p_sColors=["darkorange", "darkseagreen"]
91
+ , p_sXLabel="Feature 1"
92
+ , p_sYLabel="Feature 2"
93
+ ):
94
+ super().__init__(p_nSamples, p_nLabels, p_sLabelDescriptions, p_sColors, p_sXLabel, p_sYLabel)
95
+ self.s_title = p_sTitle
96
+
97
+ # --------------------------------------------------------------------------------------
98
+ def Show(self, p_bIsMinMaxScaled=False, p_nLineSlope=None, p_nLineIntercept=None, p_nLimitsX=[-4, 4], p_nLimitsY=[-4, 4]):
99
+ if p_bIsMinMaxScaled:
100
+ self.prepare(self.s_title, p_nLineSlope, p_nLineIntercept, p_nLimitsX, p_nLimitsY, preprocessed=DataPreprocessingKind.MIN_MAX_NORMALIZE).show()
101
+ else:
102
+ self.prepare(self.s_title, p_nLineSlope, p_nLineIntercept, p_nLimitsX, p_nLimitsY).show()
103
+ # --------------------------------------------------------------------------------------
radnn/plots/plot_roc.py CHANGED
@@ -41,6 +41,7 @@ class PlotROC(object):
41
41
  self.title = title
42
42
  # --------------------------------------------------------------------------------------
43
43
  def prepare(self, true_threshold=0.5, figure_size=[6.00, 6.00], is_showing_grid=True):
44
+ plt.clf()
44
45
  plt.rcParams["figure.figsize"] = figure_size
45
46
  plt.rcParams["figure.autolayout"] = True
46
47
 
@@ -72,7 +72,7 @@ class WindowsHost(object):
72
72
  def set_windows_sleep_resolution(cls, msecs=1):
73
73
  """
74
74
  Requests a minimum resolution for periodic timers. This increases accuracy
75
- for the waiting interval of the time.sleep function
75
+ for the waiting interval of the time.sleep toyfunction
76
76
  """
77
77
  oWinMM = ctypes.WinDLL('oWinMM')
78
78
  oWinMM.timeBeginPeriod(msecs)
radnn/utils.py CHANGED
@@ -166,14 +166,13 @@ def print_options_float(precision=6):
166
166
  finally:
167
167
  np.set_printoptions(**original)
168
168
  # ----------------------------------------------------------------------------------------------------------------------
169
- def print_tensor(tensor: np.ndarray, title=None, format="%+.3f", axes_descr=[""]):
169
+ def print_tensor(tensor: np.ndarray, title=None, format="%+.3f", axes_descr=[""], is_simple=False):
170
170
  # ................................................
171
171
  def printElement(p_nElement, p_bIsScalar):
172
172
  if p_bIsScalar:
173
173
  print(format % p_nElement, end=" ")
174
174
  else:
175
175
  print(np.array2string(p_nElement, separator=",", formatter={'float': lambda x: format % x}), end=" ")
176
-
177
176
  # ................................................
178
177
  def strBoxLeft(p_nIndex, p_nCount):
179
178
  if (p_nIndex == 0):
@@ -194,11 +193,15 @@ def print_tensor(tensor: np.ndarray, title=None, format="%+.3f", axes_descr=[""]
194
193
 
195
194
  # ................................................
196
195
  def print_header(shape_of_tensor):
197
- print("-" * 70)
196
+ if not is_simple:
197
+ print("-" * 70)
198
198
  if title is None:
199
199
  print(f"shape:{shape_of_tensor}")
200
200
  else:
201
- print(f"{title} shape:{shape_of_tensor}")
201
+ if is_simple:
202
+ print(f"{title} ", end="")
203
+ else:
204
+ print(f"{title} shape:{shape_of_tensor}")
202
205
  # ................................................
203
206
  shape_of_tensor = tensor.shape
204
207
  rank_of_tensor = len(tensor.shape)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: radnn
3
- Version: 0.1.4
3
+ Version: 0.1.6
4
4
  Summary: Rapid Deep Neural Networks
5
5
  Author-email: "Pantelis I. Kaplanoglou" <pikaplanoglou@ihu.gr>
6
6
  License-Expression: MIT
@@ -1,23 +1,24 @@
1
- radnn/__init__.py,sha256=gybOduPiZV1_5qix7XJnpEIT_4UnGIN_eGSJgtfAgBU,533
1
+ radnn/__init__.py,sha256=W52MIagenWQKuG-cIWvcuvIW_U-gxp4fL4UOuyNgF0o,636
2
2
  radnn/core.py,sha256=p3CXa192LhpvopTTJO3wPCJzUzKuH4KZSEzzOg1FIP0,11090
3
3
  radnn/errors.py,sha256=YiaXHWAGSijOyufTzOVqFvba4CxpMUxQDdQIfZS9YK0,2979
4
4
  radnn/ml_system.py,sha256=lTxMgs81TLjKxMGjB10RKD5TKUp9koDPLQSbpQmGINk,7681
5
- radnn/utils.py,sha256=HEpGEEbV7WF8kHDrv86nYfiCAMI2HrlG7uyMw9P-kpM,11254
5
+ radnn/utils.py,sha256=QcVFtESwBd9M-HNY20zBYL9YayrwuHQephLK_6-AadM,11366
6
6
  radnn/benchmark/__init__.py,sha256=GkUvz7p6KbebnXBvi3ITbzDPCGxOtg_e0VpmMt1D3IE,44
7
7
  radnn/benchmark/latency.py,sha256=waaRYuW0ySH82Isj9VaIor3AKQWMqyetVxQae4zm8SM,1205
8
8
  radnn/benchmark/vram.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
- radnn/data/__init__.py,sha256=K6RzprD9JZB5ZcgSddaZIlHRSY1BM2l-H4SHu8CSxyo,395
10
- radnn/data/custom_data_set.py,sha256=nRuEZdWMZr0AuVKjyV_nuRwQV_OELqapgOodMRxAFoE,4919
9
+ radnn/data/__init__.py,sha256=y4l-g0dq74vJbFpPkP7zLKEbuXjv97QcCcUtGQODLZQ,441
10
+ radnn/data/constants.py,sha256=yeJoWCQMc0wEGnzapE3XJM9ciMNEZfv5Qk6gjiC8ldA,357
11
+ radnn/data/custom_data_set.py,sha256=RzpHIm0q0iGu26ylKU1soM9GqigVYcDUjp092pSpN8w,5496
11
12
  radnn/data/data_hyperparams.py,sha256=eOSii6eTjtNH0hfWdysWK7Tcsdx8eUgaFneSxTCmQig,2942
12
- radnn/data/dataset_base.py,sha256=S7BmNEwS3cNihW2vDl3L6VOJXKGJUtv59yi_OqwF8cw,7932
13
- radnn/data/dataset_base_legacy.py,sha256=qbYQ3oEVdbje1p50eGgIt4kxhi6PnBOIs5tEGl8dLik,12148
13
+ radnn/data/dataset_base.py,sha256=T-p8Q7Hnc8-HIAjhb71IEnTk7t4cugUDnLhV4g9wpjA,12208
14
+ radnn/data/dataset_base_legacy.py,sha256=cAAO2x9cRHgNiASTFXLXoDj1Kkz4ozag8JKuGkJJQOs,12151
14
15
  radnn/data/dataset_factory.py,sha256=ntfTKz4sIoFcpohytz-9HnHAyvcyfLJmjdaWBdSVZa4,5430
15
- radnn/data/errors.py,sha256=Aj0S0nSrAJG5VgnQVhxcFO7iHecPeJ2JNmH0AycIH3U,2086
16
- radnn/data/sample_preprocessor.py,sha256=Pcbow4ZQX88s-nViaQ5Csp72DSy29aaAweVKXNqk5XQ,3254
17
- radnn/data/sample_set.py,sha256=6Fi-P_3dWgfJfxn7u9J8QCbtFwrrjYoNge7d8eePQ7c,14296
18
- radnn/data/sample_set_kind.py,sha256=RLgD9ZuW3x3NXaYjyP0j4fl-n7j6uV08JTGsOalYGyQ,6219
19
- radnn/data/sample_set_simple.py,sha256=FdMCb8nyY7vTQ_GveySZpQw7f5_INr6zJ_aIiSUrYSE,1516
20
- radnn/data/sequence_dataset.py,sha256=LKmOYz2CpDgL5qH8S32IxlaY8qC-PR3Hlr_mWzMDooo,5971
16
+ radnn/data/errors.py,sha256=xQN9Ly6yHY0KJVxFrB7Af4Y2R-cZTc3xktvW2iQ1xzQ,2318
17
+ radnn/data/sample_preprocessor.py,sha256=VWPH4pPyawxAUKh2nrLVulXY3Y4fc4qTIIeqCXxgSOo,3260
18
+ radnn/data/sample_set.py,sha256=NDvHdKshqVtBE44ZB_5iYBDyItuC6oP-HLNaU-csrCw,14296
19
+ radnn/data/sample_set_kind.py,sha256=h793DtOsnkBI_gTQq1yx3FB9RiggOV2tJJzySx55JbM,6404
20
+ radnn/data/sample_set_simple.py,sha256=RKmnQSV1i_HjvMtFgh-KjZiQre8MzgbCh4Z6GZi-74I,4537
21
+ radnn/data/sequence_dataset.py,sha256=t7eDcBn74EsKf-feWwLP6UkRAxjvTXChLlmv-CwBXJ4,5959
21
22
  radnn/data/structs/__init__.py,sha256=7XVuoBctqZWtDa_QBwhmUtTWbtkwdPIEyNfjKXSya9I,61
22
23
  radnn/data/structs/tree.py,sha256=ZVcP1hkxrLXNfmGHTb4Fk9kPmfmZebHfDfg9sYbBQAo,9774
23
24
  radnn/data_beta/__init__.py,sha256=IExy6eV9QSr3b2LaI3cND7P4W-kPHivHMleJsKETh00,405
@@ -39,16 +40,17 @@ radnn/evaluation/__init__.py,sha256=7dXDyJfOpSAr7G8jfDofsW4YEHNElCTTyMXuLCtpoOI,
39
40
  radnn/evaluation/evaluate_classification.py,sha256=riiVmCjGYfxTldrF2aOKH2xKmm6jAGfmXRDygbfUzYE,7378
40
41
  radnn/experiment/__init__.py,sha256=B-rw0Jjt6w51sS_-b88667gvOrolb0LVQU4L3kX8AFM,374
41
42
  radnn/experiment/identification.py,sha256=JxrVJ9hUUu7mOKmwIq_bddgckvsm7sP3hGWMD7udu3Q,405
42
- radnn/experiment/ml_experiment.py,sha256=oJF_XmbqWt0S1XbM19CjjQLDEjVnB9xm4ccXMz-wmY0,19559
43
+ radnn/experiment/ml_experiment.py,sha256=m2FKRFbbMEleQSb1UzclCtyTyBqYvpy4rqpp6XPAnfc,19565
43
44
  radnn/experiment/ml_experiment_config.py,sha256=KweFMqdbWhUDM95raB8WhPcsmBbwRktaylbDsVPgJIg,11205
44
45
  radnn/experiment/ml_experiment_env.py,sha256=zoB5NxvFn5CyTq_FRsxB01HrnfnHLcYJUOTgPjL4_ac,11447
45
- radnn/experiment/ml_experiment_log.py,sha256=JuETe9M-3JTDQyxCpOit3uPC2qiXm5r0OOAx-YdJpUQ,2217
46
+ radnn/experiment/ml_experiment_log.py,sha256=K2aZHrO90D50jUkx-qJHAmRVJkxhdvIh5R62t8qSZCQ,2345
46
47
  radnn/experiment/ml_experiment_store.py,sha256=Ph-4DQ9zEjhxZlQ13t-qnmCyxsKwsO2Df_Kj0vbMS_Q,396
47
48
  radnn/images/__init__.py,sha256=Mk7zKHQRDmCX-A4b1xw-3yxIwEApY-wlZTKiQr3eCqE,100
48
49
  radnn/images/colors.py,sha256=l6caSV2a_TURl1qHYKdehQDk0MCVMz-614OuVx-wnsg,1248
49
50
  radnn/images/image_processor.py,sha256=ZSDclPiQV7r0v3yB6fh-29mvQi8r1Th1QY-6-O_LN8U,20077
50
51
  radnn/images/transforms.py,sha256=-PH9b4Uo97OzFuYGMaQJ1FDyg73Kbx0K8jphnn_t47I,1125
51
52
  radnn/learn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
+ radnn/learn/constants.py,sha256=YJt4pSkjC4vBUaq1XsW4zlYupVn0RjE5oiS64HjXSyc,563
52
54
  radnn/learn/keras/__init__.py,sha256=gMSICV_mtVTDscYqWGh0jixED93HP0zf_lQrQp3Gnq4,234
53
55
  radnn/learn/keras/keras_best_state_saver.py,sha256=RzAPRSMpDnkbrzJp_TApbJ_k0qN7_cW9BkU9NgqYBWs,983
54
56
  radnn/learn/keras/keras_learning_algorithm.py,sha256=pOhnYXlcMqYnhqAU7JqZYnuYfeNPtkE5NFszGQs6lCc,1343
@@ -57,7 +59,7 @@ radnn/learn/keras/keras_optimization_combo.py,sha256=gvkAR40xxhIKsQMXs_qLStINPsk
57
59
  radnn/learn/torch/__init__.py,sha256=92a_zcKC056zuxDc_nxFUr86xNId1eU_Y3bITljOjhc,177
58
60
  radnn/learn/torch/gradient_descent_method.py,sha256=bLAwofz_XjgIv-Gl8BhmHRB_5d4EPyeamH3PnDH5dgI,9587
59
61
  radnn/learn/torch/lr_schedulers.py,sha256=jfmZigI51IOgBU47t8-Dz6EjuNUbdjNxls6UMpzka_0,7088
60
- radnn/learn/torch/ml_model_freezer.py,sha256=Y-uF0ckRvftFQqQaPDq1-e0wgSnpvq8BznzVdZWDeQk,9880
62
+ radnn/learn/torch/ml_model_freezer.py,sha256=D18viSHuoBi6ieA1ONWeSCehg2-eY7gCb9ElNXS8UfE,9882
61
63
  radnn/learn/torch/ml_trainer.py,sha256=0RKzsSYbbh8goh5eA3wSKnBtMx5uVOT16uxqPlr7qPI,19677
62
64
  radnn/learn/torch/losses/__init__.py,sha256=zyogstFmiz302eOij4S8yUgurB8zl845LGwPiraWZGQ,26
63
65
  radnn/learn/torch/losses/rmse.py,sha256=9U1WeSzKhwtJApq5sLeVlH39ZcQU3ldAlA45Q6_-u4s,280
@@ -70,14 +72,15 @@ radnn/models/cnn/cnn_stem_setup.py,sha256=8NBypzjTRxcn2QsLO1IuKpjc8h4mUYDz-HfKi4
70
72
  radnn/models/torch/__init__.py,sha256=ItpIWBU34UheJk7NFIMeBJeimuYH9tM0NU1eiRODzo4,155
71
73
  radnn/models/torch/model_utils.py,sha256=yjKqF-JWXgSKyzvQMG924oN-j808tiCm57ceG7gwDv4,5539
72
74
  radnn/models/torch/torch_model_build_adapter.py,sha256=DoHPX0Ki_RkTY1bqJaeh0ayaLVDAtjKPTkki4OE41GA,1589
73
- radnn/plots/__init__.py,sha256=hhDpFemdOuEWlvxDFhWt6Cqxzd_Hj48kHUAgekTQh3c,459
75
+ radnn/plots/__init__.py,sha256=OoRZa1oGCVpOUj5ij00MAE9mC80JHkf6Ktx6cYUGyrM,497
74
76
  radnn/plots/plot_auto_multi_image.py,sha256=MH7Qo7Fv3qFj2nM58NSrkLMgbvfB-ZRukE4uthswjvM,5038
75
77
  radnn/plots/plot_confusion_matrix.py,sha256=9huwxDnJ4-wteHv44je_ls-vkaShEiJYcqXRAivTIVg,5920
76
78
  radnn/plots/plot_function.py,sha256=69o0L9yygOnfVjlZDpglEnNUD0cqWaqEFWvB8ahBtiU,2958
77
- radnn/plots/plot_histogram_of_classes.py,sha256=wnsD3FMJ8yJgfULTYPfXxtpNACXeo3tc8NBoq3RhD8A,5837
79
+ radnn/plots/plot_histogram_of_classes.py,sha256=NMtNmBto89sEho_BDtQlQvOtJoRP9h0Vpe83uZBUdhs,2999
78
80
  radnn/plots/plot_learning_curve.py,sha256=MdIo92fgaQ2LM4em-rTfNeC39qop-qYBjZpmqd49dLA,4076
81
+ radnn/plots/plot_legacy.py,sha256=lidsisKrcl7DQaVZwU5UHrwRjyPSU0FF3PrT-cz10jc,4649
79
82
  radnn/plots/plot_multi_scatter.py,sha256=B5JzMPKwZAWSFMrPuSULAvlUCo49QRBMU9oe0_me2FI,5042
80
- radnn/plots/plot_roc.py,sha256=LisQZ4XFCoHHT9kOJtgKMu-6F1zdT4SKJ_lmROZEz94,3735
83
+ radnn/plots/plot_roc.py,sha256=FZidubveMydqfGs7vH_2ZecfZL85CcgdagNadHuNzBw,3750
81
84
  radnn/plots/plot_visualize_dataset2d.py,sha256=edF22VoE67djYhYcc6ciplk8BErl-6VmZV9DTYIfb8o,4383
82
85
  radnn/plots/plot_voronoi_2d.py,sha256=mxGAVfnDVCBn3-soYlD-LS32meeLpmfibIUZB-Tier0,4649
83
86
  radnn/stats/__init__.py,sha256=o0uaqIPrlvCFiZEDRowZaVrSYg3m2etkHpBttNySDeU,47
@@ -99,7 +102,7 @@ radnn/system/files/zipfile.py,sha256=ZcK8u5USjm_VE6d33ybu011sfZGH9upqOU46Y-oIdoo
99
102
  radnn/system/hosts/__init__.py,sha256=k2gkMJhe96Nf-V2ex6jZqmCRX9vA_K6gFB8J8Ii9ahc,261
100
103
  radnn/system/hosts/colab_host.py,sha256=i0s43KjdJ-gjLGyQAItubz2gZvOj-DbFnH1EGYguoVk,4000
101
104
  radnn/system/hosts/linux_host.py,sha256=AuOTpQ3OB1SXvsS1F-ksLVL44HXeRz5UEM2jbQ_1nbg,1623
102
- radnn/system/hosts/windows_host.py,sha256=smSnK2hNeBSLJFRw9Wh8Uni0RVVuFCxMzwFv_WzkCuY,4253
105
+ radnn/system/hosts/windows_host.py,sha256=C3QSAkH5Hhk0y0Joy-WMa7EK6WQ7mUfAItzdTdj2ZxM,4256
103
106
  radnn/system/threads/__init__.py,sha256=PJrNngI79hne-fAhdn1mGIHNWbtuOMoHoNR4RXB5P2Y,252
104
107
  radnn/system/threads/semaphore_lock.py,sha256=UGf5f2WBo6sknuhPL-1Vqsg-25HroqfKPrGsoIeNPEo,3073
105
108
  radnn/system/threads/thread_context.py,sha256=wbRmeIoJSZaLH6Z_Gra-X2uqYLmMFL7ZLpHJzOzlIgE,7761
@@ -108,8 +111,8 @@ radnn/system/threads/thread_safe_string_collection.py,sha256=vdRMvwJ8CcLmsJ1uild
108
111
  radnn/system/threads/thread_worker.py,sha256=5KANBBHwnyaMvjyelBT1eyZCzRtH7MNZiHUhN1Xl1BY,3466
109
112
  radnn/test/__init__.py,sha256=XL9SgTJ6bGm3b0tcU3CroenP9rBm5XpDJozFGUv0UkQ,35
110
113
  radnn/test/tensor_hash.py,sha256=Jh4hSaSOLzSWF1_UI0ZLWL6zdi2SbswM1GNEuuFIYso,4203
111
- radnn-0.1.4.dist-info/licenses/LICENSE.txt,sha256=NMbnQdAQ2kWWQp2_8Sv2HG1p3jNvrPjYFSixnxPA3uE,1106
112
- radnn-0.1.4.dist-info/METADATA,sha256=-IdRrO_MDXRMYxbhaF8HwZcR1R9L03OHpDhs2HvbMJw,1253
113
- radnn-0.1.4.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
114
- radnn-0.1.4.dist-info/top_level.txt,sha256=FKlLIm6gRAeZlRzs-HCBJAB1q9ELJ7MgaL-qqFuPo6M,6
115
- radnn-0.1.4.dist-info/RECORD,,
114
+ radnn-0.1.6.dist-info/licenses/LICENSE.txt,sha256=NMbnQdAQ2kWWQp2_8Sv2HG1p3jNvrPjYFSixnxPA3uE,1106
115
+ radnn-0.1.6.dist-info/METADATA,sha256=mjVP6K4_UC2YohuiiwU0V7s64j0GqhSq37NE9ba_jNQ,1253
116
+ radnn-0.1.6.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
117
+ radnn-0.1.6.dist-info/top_level.txt,sha256=FKlLIm6gRAeZlRzs-HCBJAB1q9ELJ7MgaL-qqFuPo6M,6
118
+ radnn-0.1.6.dist-info/RECORD,,
File without changes