radnn 0.1.4__py3-none-any.whl → 0.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- radnn/__init__.py +4 -1
- radnn/data/__init__.py +2 -2
- radnn/data/constants.py +8 -0
- radnn/data/custom_data_set.py +44 -29
- radnn/data/dataset_base.py +174 -76
- radnn/data/dataset_base_legacy.py +1 -1
- radnn/data/errors.py +11 -6
- radnn/data/sample_preprocessor.py +3 -0
- radnn/data/sample_set.py +50 -31
- radnn/data/sample_set_kind.py +21 -5
- radnn/data/sample_set_simple.py +62 -1
- radnn/data/sequence_dataset.py +4 -4
- radnn/experiment/ml_experiment.py +2 -2
- radnn/experiment/ml_experiment_log.py +25 -19
- radnn/learn/constants.py +24 -0
- radnn/learn/torch/ml_model_freezer.py +1 -1
- radnn/plots/__init__.py +3 -2
- radnn/plots/plot_histogram_of_classes.py +6 -84
- radnn/plots/plot_legacy.py +103 -0
- radnn/plots/plot_roc.py +1 -0
- radnn/system/hosts/windows_host.py +1 -1
- radnn/utils.py +7 -4
- {radnn-0.1.4.dist-info → radnn-0.1.6.dist-info}/METADATA +1 -1
- {radnn-0.1.4.dist-info → radnn-0.1.6.dist-info}/RECORD +27 -24
- {radnn-0.1.4.dist-info → radnn-0.1.6.dist-info}/WHEEL +0 -0
- {radnn-0.1.4.dist-info → radnn-0.1.6.dist-info}/licenses/LICENSE.txt +0 -0
- {radnn-0.1.4.dist-info → radnn-0.1.6.dist-info}/top_level.txt +0 -0
|
@@ -28,101 +28,23 @@ import numpy as np
|
|
|
28
28
|
import matplotlib.pyplot as plt # use the subpackage (a.k.a. namespace) with the alias "plt"
|
|
29
29
|
from matplotlib import colors
|
|
30
30
|
|
|
31
|
-
|
|
32
|
-
# ====================================================================================================
|
|
33
|
-
class CPlot(object): # class CPlot: object
|
|
34
|
-
# --------------------------------------------------------------------------------------
|
|
35
|
-
# Constructor
|
|
36
|
-
def __init__(self, p_sTitle, p_oSamples, p_oLabels
|
|
37
|
-
, p_sLabelDescriptions=["orange tree", "olive tree"]
|
|
38
|
-
, p_sColors=["darkorange", "darkseagreen"]
|
|
39
|
-
# https://matplotlib.org/3.1.0/gallery/color/named_colors.html
|
|
40
|
-
, p_sXLabel="Feature 1"
|
|
41
|
-
, p_sYLabel="Feature 2"
|
|
42
|
-
):
|
|
43
|
-
# ................................................................
|
|
44
|
-
# // Fields \\
|
|
45
|
-
self.Title = p_sTitle
|
|
46
|
-
self.Samples = p_oSamples
|
|
47
|
-
self.Labels = p_oLabels
|
|
48
|
-
self.LabelDescriptions = p_sLabelDescriptions
|
|
49
|
-
self.Colors = p_sColors
|
|
50
|
-
self.XLabel = p_sXLabel
|
|
51
|
-
self.YLabel = p_sYLabel
|
|
52
|
-
# ................................................................
|
|
53
|
-
|
|
54
|
-
# --------------------------------------------------------------------------------------
|
|
55
|
-
def Show(self, p_bIsMinMaxScaled=False, p_nLineSlope=None, p_nLineIntercept=None, p_nLimitsX=[-4, 4],
|
|
56
|
-
p_nLimitsY=[-4, 4]):
|
|
57
|
-
|
|
58
|
-
# Two dimensional dataset for the scatter plot
|
|
59
|
-
nXValues = self.Samples[:, 0]
|
|
60
|
-
nYValues = self.Samples[:, 1]
|
|
61
|
-
nLabels = self.Labels
|
|
62
|
-
|
|
63
|
-
oColorMap = colors.ListedColormap(self.Colors)
|
|
64
|
-
|
|
65
|
-
fig, ax = plt.subplots(figsize=(8, 8))
|
|
66
|
-
plt.scatter(nXValues, nYValues, c=nLabels, cmap=oColorMap)
|
|
67
|
-
|
|
68
|
-
plt.title(self.Title)
|
|
69
|
-
cb = plt.colorbar()
|
|
70
|
-
nLoc = np.arange(0, max(nLabels), max(nLabels) / float(len(self.Colors)))
|
|
71
|
-
cb.set_ticks(nLoc)
|
|
72
|
-
cb.set_ticklabels(self.LabelDescriptions)
|
|
73
|
-
|
|
74
|
-
if (p_nLineSlope is not None):
|
|
75
|
-
x1 = np.min(nXValues)
|
|
76
|
-
y1 = p_nLineSlope * x1 + p_nLineIntercept;
|
|
77
|
-
x2 = np.max(nXValues)
|
|
78
|
-
y2 = p_nLineSlope * x2 + p_nLineIntercept;
|
|
79
|
-
oPlot1 = ax.plot([x1, x2], [y1, y2], 'r--', label="Decision line")
|
|
80
|
-
oLegend = plt.legend(loc="upper left", shadow=True, fontsize='x-large')
|
|
81
|
-
oLegend.get_frame().set_facecolor("lightyellow")
|
|
82
|
-
|
|
83
|
-
if p_bIsMinMaxScaled:
|
|
84
|
-
ax.set_xlim((-0.05, 1.05))
|
|
85
|
-
ax.set_ylim((-0.05, 1.05))
|
|
86
|
-
else:
|
|
87
|
-
ax.set_xlim(p_nLimitsX[0], p_nLimitsX[1])
|
|
88
|
-
ax.set_ylim(p_nLimitsY[0], p_nLimitsY[1])
|
|
89
|
-
|
|
90
|
-
ax.set_xlabel(self.XLabel)
|
|
91
|
-
ax.set_ylabel(self.YLabel)
|
|
92
|
-
|
|
93
|
-
# plt.scatter(oDataset.Samples[:,0], oDataset.Samples[:,1])
|
|
94
|
-
# , t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
|
|
95
|
-
|
|
96
|
-
plt.show()
|
|
97
|
-
# --------------------------------------------------------------------------------------
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
# ====================================================================================================
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
31
|
# =========================================================================================================================
|
|
110
32
|
class PlotHistogramOfClasses(object): # class CPlot: object
|
|
111
33
|
# --------------------------------------------------------------------------------------
|
|
112
|
-
def __init__(self,
|
|
113
|
-
self.
|
|
114
|
-
self.
|
|
115
|
-
self.
|
|
34
|
+
def __init__(self, data, classes, is_probabilities=False):
|
|
35
|
+
self.data = data
|
|
36
|
+
self.classes = classes
|
|
37
|
+
self.is_probabilities = is_probabilities
|
|
116
38
|
|
|
117
39
|
# --------------------------------------------------------------------------------------
|
|
118
40
|
def prepare(self):
|
|
119
41
|
|
|
120
42
|
fig, ax = plt.subplots(figsize=(7, 7))
|
|
121
43
|
|
|
122
|
-
ax.hist(self.
|
|
44
|
+
ax.hist(self.data, density=self.is_probabilities, bins=self.classes, ec="k")
|
|
123
45
|
ax.locator_params(axis='x', integer=True)
|
|
124
46
|
|
|
125
|
-
if self.
|
|
47
|
+
if self.is_probabilities:
|
|
126
48
|
plt.ylabel('Probabilities')
|
|
127
49
|
else:
|
|
128
50
|
plt.ylabel('Counts')
|
|
@@ -0,0 +1,103 @@
|
|
|
1
|
+
import matplotlib.pyplot as plt # use the subpackage (a.k.a. namespace) with the alias "plt"
|
|
2
|
+
import numpy as np
|
|
3
|
+
from matplotlib import colors
|
|
4
|
+
from radnn.data import DataPreprocessingKind
|
|
5
|
+
|
|
6
|
+
# ====================================================================================================
|
|
7
|
+
class PlotDataset(object): # class CPlot: object
|
|
8
|
+
# --------------------------------------------------------------------------------------
|
|
9
|
+
# Constructor
|
|
10
|
+
def __init__(self, samples, labels
|
|
11
|
+
, label_descriptions=["orange tree", "olive tree"]
|
|
12
|
+
, colors=["darkorange", "darkseagreen"]
|
|
13
|
+
, x_label="Feature 1"
|
|
14
|
+
, y_label="Feature 2"
|
|
15
|
+
):
|
|
16
|
+
# ................................................................
|
|
17
|
+
# // Fields \\
|
|
18
|
+
self.title = ""
|
|
19
|
+
self.samples = samples
|
|
20
|
+
self.labels = labels
|
|
21
|
+
self.label_descriptions = label_descriptions
|
|
22
|
+
self.colors = colors # # https://matplotlib.org/3.1.0/gallery/color/named_colors.html
|
|
23
|
+
self.x_label = x_label
|
|
24
|
+
self.y_label = y_label
|
|
25
|
+
# ................................................................
|
|
26
|
+
|
|
27
|
+
# --------------------------------------------------------------------------------------
|
|
28
|
+
def prepare(self, title, line_slope=None, line_intercept=None, limits_x=None, limits_y=None, preprocessed: DataPreprocessingKind | None = None):
|
|
29
|
+
self.title = title
|
|
30
|
+
|
|
31
|
+
# Two dimensional dataset for the scatter plot
|
|
32
|
+
nXValues = self.samples[:, 0]
|
|
33
|
+
nYValues = self.samples[:, 1]
|
|
34
|
+
nLabels = self.labels
|
|
35
|
+
|
|
36
|
+
oColorMap = colors.ListedColormap(self.colors)
|
|
37
|
+
|
|
38
|
+
fig, ax = plt.subplots(figsize=(8, 8))
|
|
39
|
+
plt.scatter(nXValues, nYValues, c=nLabels, cmap=oColorMap)
|
|
40
|
+
|
|
41
|
+
plt.title(self.title)
|
|
42
|
+
cb = plt.colorbar()
|
|
43
|
+
nLoc = np.arange(0, max(nLabels), max(nLabels) / float(len(self.colors)))
|
|
44
|
+
cb.set_ticks(nLoc)
|
|
45
|
+
oLegend = [ f"{i}:{x}" for i,x in enumerate(self.label_descriptions)]
|
|
46
|
+
cb.set_ticklabels(oLegend)
|
|
47
|
+
|
|
48
|
+
if (line_slope is not None):
|
|
49
|
+
x1 = np.min(nXValues)
|
|
50
|
+
y1 = line_slope * x1 + line_intercept;
|
|
51
|
+
x2 = np.max(nXValues)
|
|
52
|
+
y2 = line_slope * x2 + line_intercept;
|
|
53
|
+
oPlot1 = ax.plot([x1, x2], [y1, y2], 'r--', label="Decision line")
|
|
54
|
+
oLegend = plt.legend(loc="upper left", shadow=True, fontsize='x-large')
|
|
55
|
+
oLegend.get_frame().set_facecolor("lightyellow")
|
|
56
|
+
|
|
57
|
+
if preprocessed == DataPreprocessingKind.MIN_MAX_NORMALIZE:
|
|
58
|
+
ax.set_xlim((-0.05, 1.05))
|
|
59
|
+
ax.set_ylim((-0.05, 1.05))
|
|
60
|
+
if preprocessed == DataPreprocessingKind.STANDARDIZE:
|
|
61
|
+
ax.set_xlim((-4.05, 4.05))
|
|
62
|
+
ax.set_ylim((-4.05, 4.05))
|
|
63
|
+
else:
|
|
64
|
+
if limits_x is not None:
|
|
65
|
+
ax.set_xlim(limits_x[0], limits_x[1])
|
|
66
|
+
if limits_y is not None:
|
|
67
|
+
ax.set_ylim(limits_y[0], limits_y[1])
|
|
68
|
+
|
|
69
|
+
ax.set_xlabel(self.x_label)
|
|
70
|
+
ax.set_ylabel(self.y_label)
|
|
71
|
+
|
|
72
|
+
# plt.scatter(oDataset.Samples[:,0], oDataset.Samples[:,1])
|
|
73
|
+
# , t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
|
|
74
|
+
return self
|
|
75
|
+
# --------------------------------------------------------------------------------------
|
|
76
|
+
def save(self, filename):
|
|
77
|
+
plt.savefig(filename, bbox_inches='tight')
|
|
78
|
+
return self
|
|
79
|
+
# --------------------------------------------------------------------------------------
|
|
80
|
+
def show(self):
|
|
81
|
+
plt.show()
|
|
82
|
+
# --------------------------------------------------------------------------------------
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
# ====================================================================================================
|
|
86
|
+
|
|
87
|
+
class CPlot(PlotDataset):
|
|
88
|
+
# --------------------------------------------------------------------------------------
|
|
89
|
+
def __init__(self, p_sTitle, p_nSamples, p_nLabels, p_sLabelDescriptions=["orange tree", "olive tree"]
|
|
90
|
+
, p_sColors=["darkorange", "darkseagreen"]
|
|
91
|
+
, p_sXLabel="Feature 1"
|
|
92
|
+
, p_sYLabel="Feature 2"
|
|
93
|
+
):
|
|
94
|
+
super().__init__(p_nSamples, p_nLabels, p_sLabelDescriptions, p_sColors, p_sXLabel, p_sYLabel)
|
|
95
|
+
self.s_title = p_sTitle
|
|
96
|
+
|
|
97
|
+
# --------------------------------------------------------------------------------------
|
|
98
|
+
def Show(self, p_bIsMinMaxScaled=False, p_nLineSlope=None, p_nLineIntercept=None, p_nLimitsX=[-4, 4], p_nLimitsY=[-4, 4]):
|
|
99
|
+
if p_bIsMinMaxScaled:
|
|
100
|
+
self.prepare(self.s_title, p_nLineSlope, p_nLineIntercept, p_nLimitsX, p_nLimitsY, preprocessed=DataPreprocessingKind.MIN_MAX_NORMALIZE).show()
|
|
101
|
+
else:
|
|
102
|
+
self.prepare(self.s_title, p_nLineSlope, p_nLineIntercept, p_nLimitsX, p_nLimitsY).show()
|
|
103
|
+
# --------------------------------------------------------------------------------------
|
radnn/plots/plot_roc.py
CHANGED
|
@@ -41,6 +41,7 @@ class PlotROC(object):
|
|
|
41
41
|
self.title = title
|
|
42
42
|
# --------------------------------------------------------------------------------------
|
|
43
43
|
def prepare(self, true_threshold=0.5, figure_size=[6.00, 6.00], is_showing_grid=True):
|
|
44
|
+
plt.clf()
|
|
44
45
|
plt.rcParams["figure.figsize"] = figure_size
|
|
45
46
|
plt.rcParams["figure.autolayout"] = True
|
|
46
47
|
|
|
@@ -72,7 +72,7 @@ class WindowsHost(object):
|
|
|
72
72
|
def set_windows_sleep_resolution(cls, msecs=1):
|
|
73
73
|
"""
|
|
74
74
|
Requests a minimum resolution for periodic timers. This increases accuracy
|
|
75
|
-
for the waiting interval of the time.sleep
|
|
75
|
+
for the waiting interval of the time.sleep toyfunction
|
|
76
76
|
"""
|
|
77
77
|
oWinMM = ctypes.WinDLL('oWinMM')
|
|
78
78
|
oWinMM.timeBeginPeriod(msecs)
|
radnn/utils.py
CHANGED
|
@@ -166,14 +166,13 @@ def print_options_float(precision=6):
|
|
|
166
166
|
finally:
|
|
167
167
|
np.set_printoptions(**original)
|
|
168
168
|
# ----------------------------------------------------------------------------------------------------------------------
|
|
169
|
-
def print_tensor(tensor: np.ndarray, title=None, format="%+.3f", axes_descr=[""]):
|
|
169
|
+
def print_tensor(tensor: np.ndarray, title=None, format="%+.3f", axes_descr=[""], is_simple=False):
|
|
170
170
|
# ................................................
|
|
171
171
|
def printElement(p_nElement, p_bIsScalar):
|
|
172
172
|
if p_bIsScalar:
|
|
173
173
|
print(format % p_nElement, end=" ")
|
|
174
174
|
else:
|
|
175
175
|
print(np.array2string(p_nElement, separator=",", formatter={'float': lambda x: format % x}), end=" ")
|
|
176
|
-
|
|
177
176
|
# ................................................
|
|
178
177
|
def strBoxLeft(p_nIndex, p_nCount):
|
|
179
178
|
if (p_nIndex == 0):
|
|
@@ -194,11 +193,15 @@ def print_tensor(tensor: np.ndarray, title=None, format="%+.3f", axes_descr=[""]
|
|
|
194
193
|
|
|
195
194
|
# ................................................
|
|
196
195
|
def print_header(shape_of_tensor):
|
|
197
|
-
|
|
196
|
+
if not is_simple:
|
|
197
|
+
print("-" * 70)
|
|
198
198
|
if title is None:
|
|
199
199
|
print(f"shape:{shape_of_tensor}")
|
|
200
200
|
else:
|
|
201
|
-
|
|
201
|
+
if is_simple:
|
|
202
|
+
print(f"{title} ", end="")
|
|
203
|
+
else:
|
|
204
|
+
print(f"{title} shape:{shape_of_tensor}")
|
|
202
205
|
# ................................................
|
|
203
206
|
shape_of_tensor = tensor.shape
|
|
204
207
|
rank_of_tensor = len(tensor.shape)
|
|
@@ -1,23 +1,24 @@
|
|
|
1
|
-
radnn/__init__.py,sha256=
|
|
1
|
+
radnn/__init__.py,sha256=W52MIagenWQKuG-cIWvcuvIW_U-gxp4fL4UOuyNgF0o,636
|
|
2
2
|
radnn/core.py,sha256=p3CXa192LhpvopTTJO3wPCJzUzKuH4KZSEzzOg1FIP0,11090
|
|
3
3
|
radnn/errors.py,sha256=YiaXHWAGSijOyufTzOVqFvba4CxpMUxQDdQIfZS9YK0,2979
|
|
4
4
|
radnn/ml_system.py,sha256=lTxMgs81TLjKxMGjB10RKD5TKUp9koDPLQSbpQmGINk,7681
|
|
5
|
-
radnn/utils.py,sha256=
|
|
5
|
+
radnn/utils.py,sha256=QcVFtESwBd9M-HNY20zBYL9YayrwuHQephLK_6-AadM,11366
|
|
6
6
|
radnn/benchmark/__init__.py,sha256=GkUvz7p6KbebnXBvi3ITbzDPCGxOtg_e0VpmMt1D3IE,44
|
|
7
7
|
radnn/benchmark/latency.py,sha256=waaRYuW0ySH82Isj9VaIor3AKQWMqyetVxQae4zm8SM,1205
|
|
8
8
|
radnn/benchmark/vram.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
9
|
-
radnn/data/__init__.py,sha256=
|
|
10
|
-
radnn/data/
|
|
9
|
+
radnn/data/__init__.py,sha256=y4l-g0dq74vJbFpPkP7zLKEbuXjv97QcCcUtGQODLZQ,441
|
|
10
|
+
radnn/data/constants.py,sha256=yeJoWCQMc0wEGnzapE3XJM9ciMNEZfv5Qk6gjiC8ldA,357
|
|
11
|
+
radnn/data/custom_data_set.py,sha256=RzpHIm0q0iGu26ylKU1soM9GqigVYcDUjp092pSpN8w,5496
|
|
11
12
|
radnn/data/data_hyperparams.py,sha256=eOSii6eTjtNH0hfWdysWK7Tcsdx8eUgaFneSxTCmQig,2942
|
|
12
|
-
radnn/data/dataset_base.py,sha256=
|
|
13
|
-
radnn/data/dataset_base_legacy.py,sha256=
|
|
13
|
+
radnn/data/dataset_base.py,sha256=T-p8Q7Hnc8-HIAjhb71IEnTk7t4cugUDnLhV4g9wpjA,12208
|
|
14
|
+
radnn/data/dataset_base_legacy.py,sha256=cAAO2x9cRHgNiASTFXLXoDj1Kkz4ozag8JKuGkJJQOs,12151
|
|
14
15
|
radnn/data/dataset_factory.py,sha256=ntfTKz4sIoFcpohytz-9HnHAyvcyfLJmjdaWBdSVZa4,5430
|
|
15
|
-
radnn/data/errors.py,sha256=
|
|
16
|
-
radnn/data/sample_preprocessor.py,sha256=
|
|
17
|
-
radnn/data/sample_set.py,sha256=
|
|
18
|
-
radnn/data/sample_set_kind.py,sha256=
|
|
19
|
-
radnn/data/sample_set_simple.py,sha256=
|
|
20
|
-
radnn/data/sequence_dataset.py,sha256=
|
|
16
|
+
radnn/data/errors.py,sha256=xQN9Ly6yHY0KJVxFrB7Af4Y2R-cZTc3xktvW2iQ1xzQ,2318
|
|
17
|
+
radnn/data/sample_preprocessor.py,sha256=VWPH4pPyawxAUKh2nrLVulXY3Y4fc4qTIIeqCXxgSOo,3260
|
|
18
|
+
radnn/data/sample_set.py,sha256=NDvHdKshqVtBE44ZB_5iYBDyItuC6oP-HLNaU-csrCw,14296
|
|
19
|
+
radnn/data/sample_set_kind.py,sha256=h793DtOsnkBI_gTQq1yx3FB9RiggOV2tJJzySx55JbM,6404
|
|
20
|
+
radnn/data/sample_set_simple.py,sha256=RKmnQSV1i_HjvMtFgh-KjZiQre8MzgbCh4Z6GZi-74I,4537
|
|
21
|
+
radnn/data/sequence_dataset.py,sha256=t7eDcBn74EsKf-feWwLP6UkRAxjvTXChLlmv-CwBXJ4,5959
|
|
21
22
|
radnn/data/structs/__init__.py,sha256=7XVuoBctqZWtDa_QBwhmUtTWbtkwdPIEyNfjKXSya9I,61
|
|
22
23
|
radnn/data/structs/tree.py,sha256=ZVcP1hkxrLXNfmGHTb4Fk9kPmfmZebHfDfg9sYbBQAo,9774
|
|
23
24
|
radnn/data_beta/__init__.py,sha256=IExy6eV9QSr3b2LaI3cND7P4W-kPHivHMleJsKETh00,405
|
|
@@ -39,16 +40,17 @@ radnn/evaluation/__init__.py,sha256=7dXDyJfOpSAr7G8jfDofsW4YEHNElCTTyMXuLCtpoOI,
|
|
|
39
40
|
radnn/evaluation/evaluate_classification.py,sha256=riiVmCjGYfxTldrF2aOKH2xKmm6jAGfmXRDygbfUzYE,7378
|
|
40
41
|
radnn/experiment/__init__.py,sha256=B-rw0Jjt6w51sS_-b88667gvOrolb0LVQU4L3kX8AFM,374
|
|
41
42
|
radnn/experiment/identification.py,sha256=JxrVJ9hUUu7mOKmwIq_bddgckvsm7sP3hGWMD7udu3Q,405
|
|
42
|
-
radnn/experiment/ml_experiment.py,sha256=
|
|
43
|
+
radnn/experiment/ml_experiment.py,sha256=m2FKRFbbMEleQSb1UzclCtyTyBqYvpy4rqpp6XPAnfc,19565
|
|
43
44
|
radnn/experiment/ml_experiment_config.py,sha256=KweFMqdbWhUDM95raB8WhPcsmBbwRktaylbDsVPgJIg,11205
|
|
44
45
|
radnn/experiment/ml_experiment_env.py,sha256=zoB5NxvFn5CyTq_FRsxB01HrnfnHLcYJUOTgPjL4_ac,11447
|
|
45
|
-
radnn/experiment/ml_experiment_log.py,sha256=
|
|
46
|
+
radnn/experiment/ml_experiment_log.py,sha256=K2aZHrO90D50jUkx-qJHAmRVJkxhdvIh5R62t8qSZCQ,2345
|
|
46
47
|
radnn/experiment/ml_experiment_store.py,sha256=Ph-4DQ9zEjhxZlQ13t-qnmCyxsKwsO2Df_Kj0vbMS_Q,396
|
|
47
48
|
radnn/images/__init__.py,sha256=Mk7zKHQRDmCX-A4b1xw-3yxIwEApY-wlZTKiQr3eCqE,100
|
|
48
49
|
radnn/images/colors.py,sha256=l6caSV2a_TURl1qHYKdehQDk0MCVMz-614OuVx-wnsg,1248
|
|
49
50
|
radnn/images/image_processor.py,sha256=ZSDclPiQV7r0v3yB6fh-29mvQi8r1Th1QY-6-O_LN8U,20077
|
|
50
51
|
radnn/images/transforms.py,sha256=-PH9b4Uo97OzFuYGMaQJ1FDyg73Kbx0K8jphnn_t47I,1125
|
|
51
52
|
radnn/learn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
53
|
+
radnn/learn/constants.py,sha256=YJt4pSkjC4vBUaq1XsW4zlYupVn0RjE5oiS64HjXSyc,563
|
|
52
54
|
radnn/learn/keras/__init__.py,sha256=gMSICV_mtVTDscYqWGh0jixED93HP0zf_lQrQp3Gnq4,234
|
|
53
55
|
radnn/learn/keras/keras_best_state_saver.py,sha256=RzAPRSMpDnkbrzJp_TApbJ_k0qN7_cW9BkU9NgqYBWs,983
|
|
54
56
|
radnn/learn/keras/keras_learning_algorithm.py,sha256=pOhnYXlcMqYnhqAU7JqZYnuYfeNPtkE5NFszGQs6lCc,1343
|
|
@@ -57,7 +59,7 @@ radnn/learn/keras/keras_optimization_combo.py,sha256=gvkAR40xxhIKsQMXs_qLStINPsk
|
|
|
57
59
|
radnn/learn/torch/__init__.py,sha256=92a_zcKC056zuxDc_nxFUr86xNId1eU_Y3bITljOjhc,177
|
|
58
60
|
radnn/learn/torch/gradient_descent_method.py,sha256=bLAwofz_XjgIv-Gl8BhmHRB_5d4EPyeamH3PnDH5dgI,9587
|
|
59
61
|
radnn/learn/torch/lr_schedulers.py,sha256=jfmZigI51IOgBU47t8-Dz6EjuNUbdjNxls6UMpzka_0,7088
|
|
60
|
-
radnn/learn/torch/ml_model_freezer.py,sha256=
|
|
62
|
+
radnn/learn/torch/ml_model_freezer.py,sha256=D18viSHuoBi6ieA1ONWeSCehg2-eY7gCb9ElNXS8UfE,9882
|
|
61
63
|
radnn/learn/torch/ml_trainer.py,sha256=0RKzsSYbbh8goh5eA3wSKnBtMx5uVOT16uxqPlr7qPI,19677
|
|
62
64
|
radnn/learn/torch/losses/__init__.py,sha256=zyogstFmiz302eOij4S8yUgurB8zl845LGwPiraWZGQ,26
|
|
63
65
|
radnn/learn/torch/losses/rmse.py,sha256=9U1WeSzKhwtJApq5sLeVlH39ZcQU3ldAlA45Q6_-u4s,280
|
|
@@ -70,14 +72,15 @@ radnn/models/cnn/cnn_stem_setup.py,sha256=8NBypzjTRxcn2QsLO1IuKpjc8h4mUYDz-HfKi4
|
|
|
70
72
|
radnn/models/torch/__init__.py,sha256=ItpIWBU34UheJk7NFIMeBJeimuYH9tM0NU1eiRODzo4,155
|
|
71
73
|
radnn/models/torch/model_utils.py,sha256=yjKqF-JWXgSKyzvQMG924oN-j808tiCm57ceG7gwDv4,5539
|
|
72
74
|
radnn/models/torch/torch_model_build_adapter.py,sha256=DoHPX0Ki_RkTY1bqJaeh0ayaLVDAtjKPTkki4OE41GA,1589
|
|
73
|
-
radnn/plots/__init__.py,sha256=
|
|
75
|
+
radnn/plots/__init__.py,sha256=OoRZa1oGCVpOUj5ij00MAE9mC80JHkf6Ktx6cYUGyrM,497
|
|
74
76
|
radnn/plots/plot_auto_multi_image.py,sha256=MH7Qo7Fv3qFj2nM58NSrkLMgbvfB-ZRukE4uthswjvM,5038
|
|
75
77
|
radnn/plots/plot_confusion_matrix.py,sha256=9huwxDnJ4-wteHv44je_ls-vkaShEiJYcqXRAivTIVg,5920
|
|
76
78
|
radnn/plots/plot_function.py,sha256=69o0L9yygOnfVjlZDpglEnNUD0cqWaqEFWvB8ahBtiU,2958
|
|
77
|
-
radnn/plots/plot_histogram_of_classes.py,sha256=
|
|
79
|
+
radnn/plots/plot_histogram_of_classes.py,sha256=NMtNmBto89sEho_BDtQlQvOtJoRP9h0Vpe83uZBUdhs,2999
|
|
78
80
|
radnn/plots/plot_learning_curve.py,sha256=MdIo92fgaQ2LM4em-rTfNeC39qop-qYBjZpmqd49dLA,4076
|
|
81
|
+
radnn/plots/plot_legacy.py,sha256=lidsisKrcl7DQaVZwU5UHrwRjyPSU0FF3PrT-cz10jc,4649
|
|
79
82
|
radnn/plots/plot_multi_scatter.py,sha256=B5JzMPKwZAWSFMrPuSULAvlUCo49QRBMU9oe0_me2FI,5042
|
|
80
|
-
radnn/plots/plot_roc.py,sha256=
|
|
83
|
+
radnn/plots/plot_roc.py,sha256=FZidubveMydqfGs7vH_2ZecfZL85CcgdagNadHuNzBw,3750
|
|
81
84
|
radnn/plots/plot_visualize_dataset2d.py,sha256=edF22VoE67djYhYcc6ciplk8BErl-6VmZV9DTYIfb8o,4383
|
|
82
85
|
radnn/plots/plot_voronoi_2d.py,sha256=mxGAVfnDVCBn3-soYlD-LS32meeLpmfibIUZB-Tier0,4649
|
|
83
86
|
radnn/stats/__init__.py,sha256=o0uaqIPrlvCFiZEDRowZaVrSYg3m2etkHpBttNySDeU,47
|
|
@@ -99,7 +102,7 @@ radnn/system/files/zipfile.py,sha256=ZcK8u5USjm_VE6d33ybu011sfZGH9upqOU46Y-oIdoo
|
|
|
99
102
|
radnn/system/hosts/__init__.py,sha256=k2gkMJhe96Nf-V2ex6jZqmCRX9vA_K6gFB8J8Ii9ahc,261
|
|
100
103
|
radnn/system/hosts/colab_host.py,sha256=i0s43KjdJ-gjLGyQAItubz2gZvOj-DbFnH1EGYguoVk,4000
|
|
101
104
|
radnn/system/hosts/linux_host.py,sha256=AuOTpQ3OB1SXvsS1F-ksLVL44HXeRz5UEM2jbQ_1nbg,1623
|
|
102
|
-
radnn/system/hosts/windows_host.py,sha256=
|
|
105
|
+
radnn/system/hosts/windows_host.py,sha256=C3QSAkH5Hhk0y0Joy-WMa7EK6WQ7mUfAItzdTdj2ZxM,4256
|
|
103
106
|
radnn/system/threads/__init__.py,sha256=PJrNngI79hne-fAhdn1mGIHNWbtuOMoHoNR4RXB5P2Y,252
|
|
104
107
|
radnn/system/threads/semaphore_lock.py,sha256=UGf5f2WBo6sknuhPL-1Vqsg-25HroqfKPrGsoIeNPEo,3073
|
|
105
108
|
radnn/system/threads/thread_context.py,sha256=wbRmeIoJSZaLH6Z_Gra-X2uqYLmMFL7ZLpHJzOzlIgE,7761
|
|
@@ -108,8 +111,8 @@ radnn/system/threads/thread_safe_string_collection.py,sha256=vdRMvwJ8CcLmsJ1uild
|
|
|
108
111
|
radnn/system/threads/thread_worker.py,sha256=5KANBBHwnyaMvjyelBT1eyZCzRtH7MNZiHUhN1Xl1BY,3466
|
|
109
112
|
radnn/test/__init__.py,sha256=XL9SgTJ6bGm3b0tcU3CroenP9rBm5XpDJozFGUv0UkQ,35
|
|
110
113
|
radnn/test/tensor_hash.py,sha256=Jh4hSaSOLzSWF1_UI0ZLWL6zdi2SbswM1GNEuuFIYso,4203
|
|
111
|
-
radnn-0.1.
|
|
112
|
-
radnn-0.1.
|
|
113
|
-
radnn-0.1.
|
|
114
|
-
radnn-0.1.
|
|
115
|
-
radnn-0.1.
|
|
114
|
+
radnn-0.1.6.dist-info/licenses/LICENSE.txt,sha256=NMbnQdAQ2kWWQp2_8Sv2HG1p3jNvrPjYFSixnxPA3uE,1106
|
|
115
|
+
radnn-0.1.6.dist-info/METADATA,sha256=mjVP6K4_UC2YohuiiwU0V7s64j0GqhSq37NE9ba_jNQ,1253
|
|
116
|
+
radnn-0.1.6.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
117
|
+
radnn-0.1.6.dist-info/top_level.txt,sha256=FKlLIm6gRAeZlRzs-HCBJAB1q9ELJ7MgaL-qqFuPo6M,6
|
|
118
|
+
radnn-0.1.6.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|