radnn 0.1.0__py3-none-any.whl → 0.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
radnn/__init__.py CHANGED
@@ -5,9 +5,9 @@
5
5
  # Version 0.0.7.3 [2025-02-21]
6
6
  # Version 0.0.8 [2025-02-25]
7
7
  # Version 0.0.9 [2025-04-15]
8
- # Version 0.1.0 [2026-01-06]
9
- # Version 0.1.1 [2025-01-xx]
10
- __version__ = "0.1.0"
8
+ # Version 0.1.0 [2026-01-07]
9
+ # Version 0.1.1 [2025-01-08]
10
+ __version__ = "0.1.1"
11
11
 
12
12
  from .system import FileStore, FileSystem
13
13
  from .ml_system import MLSystem
@@ -132,7 +132,7 @@ class MLModelTrainer():
132
132
  else:
133
133
  raise Exception(TRAINER_LR_SCHEDULER_INVALID_SETUP)
134
134
 
135
- elif sSchedulingType.upper() == "CosineAnnealing":
135
+ elif sSchedulingType.upper() == "CosineAnnealing".upper():
136
136
  self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer,
137
137
  T_max=nFinalChangeEpoch,
138
138
  eta_min=nFinalLR)
@@ -156,8 +156,10 @@ class MLModelTrainer():
156
156
  self.build_optimizer()
157
157
  self.build_lr_scheduler()
158
158
  # --------------------------------------------------------------------------------------------------------------------
159
- def fit(self, device):
159
+ def fit(self, device, **kwargs):
160
160
  self.model.to(device)
161
+ bIsPreview = kwargs.get("is_preview", False)
162
+
161
163
  hprm = self.hprm
162
164
  dInfo = {
163
165
  "experiment_name": hprm["Experiment.Name"],
@@ -203,7 +205,7 @@ class MLModelTrainer():
203
205
 
204
206
  self.optimizer.zero_grad()
205
207
  outputs = self.model(inputs)
206
- loss = self.criterion(outputs, labels)
208
+ loss = self.criterion(outputs, labels).double()
207
209
  loss.backward()
208
210
  self.optimizer.step()
209
211
 
@@ -226,8 +228,8 @@ class MLModelTrainer():
226
228
  if not bInitialInfoSave:
227
229
  bInitialInfoSave = True
228
230
 
229
- #if nDebugSteps == 4:
230
- #break
231
+ if bIsPreview:
232
+ break
231
233
 
232
234
  nElapsedSecs = time.perf_counter() - nStart
233
235
  nStart = time.perf_counter()
@@ -292,7 +294,9 @@ class MLModelTrainer():
292
294
  epochs_without_improvement = 0
293
295
  else:
294
296
  epochs_without_improvement += 1
295
-
297
+
298
+ if bIsPreview:
299
+ break
296
300
  nElapsedSecs = time.perf_counter() - nStart
297
301
 
298
302
  #if epochs_without_improvement >= patience:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: radnn
3
- Version: 0.1.0
3
+ Version: 0.1.1
4
4
  Summary: Rapid Deep Neural Networks
5
5
  Author-email: "Pantelis I. Kaplanoglou" <pikaplanoglou@ihu.gr>
6
6
  License-Expression: MIT
@@ -27,4 +27,5 @@ Requires-Dist: matplotlib>=3.8.4
27
27
  Requires-Dist: pandas>=2.2.1
28
28
  Requires-Dist: scikit-learn>=1.4.2
29
29
  Requires-Dist: tqdm>=4.67.1
30
+ Requires-Dist: psutil>=5.9.5
30
31
  Dynamic: license-file
@@ -1,4 +1,4 @@
1
- radnn/__init__.py,sha256=9TBMAqk_yL3mM7GhAG8irLW7Eo9A3vIYRB5xrBmoLi0,489
1
+ radnn/__init__.py,sha256=etsub-RbDx1I4hr_kKyzevw0TXIpE_pBQU5uIjR5ibs,489
2
2
  radnn/core.py,sha256=Q_JqMlytOubroTju27RuvS18NCCrC8Qp9vAHb3Vd0DA,10256
3
3
  radnn/errors.py,sha256=WZBFE08DtrSIaaAKfFpBLfJw_0banQkQcQybuY8zGvo,2245
4
4
  radnn/ml_system.py,sha256=E5GnpLNgK2iKLL3cOJ32M7jMUZRnAfXcJCAWFyzRJZ0,5874
@@ -50,7 +50,7 @@ radnn/learn/keras/keras_learning_rate_scheduler.py,sha256=ey1PPJS9ZThj0meUhsFKor
50
50
  radnn/learn/keras/keras_optimization_combo.py,sha256=gvkAR40xxhIKsQMXs_qLStINPskpxGwt_DE_97P8p-w,1799
51
51
  radnn/learn/torch/__init__.py,sha256=bgfVEVjSwy4tz0xGuj6VWc8euTMOcAomXXSGuDXGaMg,135
52
52
  radnn/learn/torch/ml_model_freezer.py,sha256=Y-uF0ckRvftFQqQaPDq1-e0wgSnpvq8BznzVdZWDeQk,9880
53
- radnn/learn/torch/ml_trainer.py,sha256=Y0ZwdQr35AlLqylkemnASy9bwtPKzP6fYrRnFfLcln0,21969
53
+ radnn/learn/torch/ml_trainer.py,sha256=GbqJYcqUqAxornoDZDavnQNQiTt775ktwLxtvl29ZqQ,22087
54
54
  radnn/learn/torch/staircase_lr_scheduler.py,sha256=cV14U9pPVpxskzizR1euR5JJG_UcCxboXpF-i7fHIrI,613
55
55
  radnn/models/__init__.py,sha256=GTYp-CfYPvOmpUfqebJn9IiZRr5C-FU8oHpAYv4mhhM,207
56
56
  radnn/models/model_factory.py,sha256=8KV6zdi6DNoQ7pbOujUbCn_CIeFD2u6jGXwX3MOsGPI,4390
@@ -92,8 +92,8 @@ radnn/system/threads/thread_safe_string_collection.py,sha256=vdRMvwJ8CcLmsJ1uild
92
92
  radnn/system/threads/thread_worker.py,sha256=5KANBBHwnyaMvjyelBT1eyZCzRtH7MNZiHUhN1Xl1BY,3466
93
93
  radnn/test/__init__.py,sha256=XL9SgTJ6bGm3b0tcU3CroenP9rBm5XpDJozFGUv0UkQ,35
94
94
  radnn/test/tensor_hash.py,sha256=AbFUDZmcK76esZ28qx2rpDPyXuc7DtTPW9lIKQQy9zU,4200
95
- radnn-0.1.0.dist-info/licenses/LICENSE.txt,sha256=NMbnQdAQ2kWWQp2_8Sv2HG1p3jNvrPjYFSixnxPA3uE,1106
96
- radnn-0.1.0.dist-info/METADATA,sha256=Vyk3DVNwatIknnki9E3deT6GC0G0X3dFG9FGhEYLpho,1223
97
- radnn-0.1.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
98
- radnn-0.1.0.dist-info/top_level.txt,sha256=FKlLIm6gRAeZlRzs-HCBJAB1q9ELJ7MgaL-qqFuPo6M,6
99
- radnn-0.1.0.dist-info/RECORD,,
95
+ radnn-0.1.1.dist-info/licenses/LICENSE.txt,sha256=NMbnQdAQ2kWWQp2_8Sv2HG1p3jNvrPjYFSixnxPA3uE,1106
96
+ radnn-0.1.1.dist-info/METADATA,sha256=5SwsvIdK4i6ScCaWkFWJMPyW4LTD-HF0rqlT4K2eAT8,1253
97
+ radnn-0.1.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
98
+ radnn-0.1.1.dist-info/top_level.txt,sha256=FKlLIm6gRAeZlRzs-HCBJAB1q9ELJ7MgaL-qqFuPo6M,6
99
+ radnn-0.1.1.dist-info/RECORD,,
File without changes