radnn 0.0.7.2__py3-none-any.whl → 0.0.7.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. radnn/__init__.py +5 -4
  2. radnn/core.py +44 -28
  3. radnn/data/__init__.py +6 -0
  4. radnn/data/data_feed.py +142 -0
  5. radnn/data/dataset_base.py +3 -5
  6. radnn/data/image_dataset.py +0 -2
  7. radnn/data/preprocess/normalizer.py +7 -1
  8. radnn/data/preprocess/standardizer.py +9 -2
  9. radnn/data/sample_set.py +30 -17
  10. radnn/data/sequence_dataset.py +0 -2
  11. radnn/data/subset_type.py +39 -0
  12. radnn/data/tf_classification_data_feed.py +97 -0
  13. radnn/errors.py +29 -0
  14. radnn/evaluation/evaluate_classification.py +7 -3
  15. radnn/experiment/ml_experiment.py +29 -0
  16. radnn/experiment/ml_experiment_config.py +7 -3
  17. radnn/experiment/ml_experiment_env.py +6 -2
  18. radnn/experiment/ml_experiment_store.py +0 -1
  19. radnn/learn/learning_algorithm.py +4 -3
  20. radnn/ml_system.py +59 -19
  21. radnn/plots/plot_auto_multi_image.py +21 -12
  22. radnn/plots/plot_confusion_matrix.py +7 -4
  23. radnn/plots/plot_learning_curve.py +7 -3
  24. radnn/plots/plot_multi_scatter.py +7 -3
  25. radnn/plots/plot_roc.py +8 -4
  26. radnn/plots/plot_voronoi_2d.py +8 -5
  27. radnn/system/files/csvfile.py +8 -5
  28. radnn/system/files/fileobject.py +9 -4
  29. radnn/system/files/imgfile.py +8 -4
  30. radnn/system/files/jsonfile.py +8 -4
  31. radnn/system/files/picklefile.py +8 -4
  32. radnn/system/files/textfile.py +8 -4
  33. radnn/system/filestore.py +10 -8
  34. radnn/system/filesystem.py +7 -2
  35. radnn/system/hosts/colab_host.py +29 -0
  36. radnn/system/hosts/linux_host.py +29 -0
  37. radnn/system/hosts/windows_host.py +29 -1
  38. radnn/system/tee_logger.py +7 -3
  39. radnn/utils.py +54 -3
  40. {radnn-0.0.7.2.dist-info → radnn-0.0.7.3.dist-info}/METADATA +1 -1
  41. radnn-0.0.7.3.dist-info/RECORD +56 -0
  42. radnn-0.0.7.2.dist-info/RECORD +0 -53
  43. {radnn-0.0.7.2.dist-info → radnn-0.0.7.3.dist-info}/LICENSE.txt +0 -0
  44. {radnn-0.0.7.2.dist-info → radnn-0.0.7.3.dist-info}/WHEEL +0 -0
  45. {radnn-0.0.7.2.dist-info → radnn-0.0.7.3.dist-info}/top_level.txt +0 -0
@@ -1,3 +1,32 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
7
+ # ......................................................................................
8
+
9
+ # Copyright (c) 2019-2025 Pantelis I. Kaplanoglou
10
+
11
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
12
+ # of this software and associated documentation files (the "Software"), to deal
13
+ # in the Software without restriction, including without limitation the rights
14
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
15
+ # copies of the Software, and to permit persons to whom the Software is
16
+ # furnished to do so, subject to the following conditions:
17
+
18
+ # The above copyright notice and this permission notice shall be included in all
19
+ # copies or substantial portions of the Software.
20
+
21
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
24
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
25
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
26
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
27
+ # SOFTWARE.
28
+
29
+ # ......................................................................................
1
30
  import os
2
31
  import numpy as np
3
32
  from datetime import datetime
@@ -1,7 +1,12 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
- # Copyright (c) 2023-2025 Pantelis I. Kaplanoglou
9
+ # Copyright (c) 2019-2025 Pantelis I. Kaplanoglou
5
10
 
6
11
  # Permission is hereby granted, free of charge, to any person obtaining a copy
7
12
  # of this software and associated documentation files (the "Software"), to deal
@@ -22,7 +27,6 @@
22
27
  # SOFTWARE.
23
28
 
24
29
  # ......................................................................................
25
-
26
30
  import os
27
31
  import json
28
32
  import re
@@ -1,5 +1,10 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
9
  # Copyright (c) 2023-2025 Pantelis I. Kaplanoglou
5
10
 
@@ -22,7 +27,6 @@
22
27
  # SOFTWARE.
23
28
 
24
29
  # ......................................................................................
25
-
26
30
  import os
27
31
  import shutil
28
32
  import sys
@@ -1,5 +1,4 @@
1
1
  from radnn import FileStore
2
-
3
2
  class MLExperimentStore(FileStore):
4
3
  def __init__(self, base_folder, is_verbose=False, must_exist=False):
5
4
  super(MLExperimentStore, self).__init__(base_folder, is_verbose, must_exist)
@@ -1,6 +1,7 @@
1
- from radnn.core import is_tensorflow_installed
1
+ from radnn import mlsys
2
2
 
3
- if is_tensorflow_installed:
3
+
4
+ if mlsys.is_tensorflow_installed:
4
5
  from .keras_optimization_algorithm import KOptimizationAlgorithm
5
6
 
6
7
  class LearningAlgorithm(object):
@@ -29,7 +30,7 @@ class LearningAlgorithm(object):
29
30
  return oResult
30
31
  # -----------------------------------------------------------------------------------
31
32
  def prepare(self):
32
- if is_tensorflow_installed:
33
+ if mlsys.is_tensorflow_installed:
33
34
  self._implementation = KOptimizationAlgorithm(self.config, self.is_verbose)
34
35
  return self
35
36
  # -----------------------------------------------------------------------------------
radnn/ml_system.py CHANGED
@@ -1,12 +1,38 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
7
+ # ......................................................................................
8
+
9
+ # Copyright (c) 2018-2025 Pantelis I. Kaplanoglou
10
+
11
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
12
+ # of this software and associated documentation files (the "Software"), to deal
13
+ # in the Software without restriction, including without limitation the rights
14
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
15
+ # copies of the Software, and to permit persons to whom the Software is
16
+ # furnished to do so, subject to the following conditions:
17
+
18
+ # The above copyright notice and this permission notice shall be included in all
19
+ # copies or substantial portions of the Software.
20
+
21
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
24
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
25
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
26
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
27
+ # SOFTWARE.
28
+
29
+ # .......................................................................................
1
30
  import os
2
31
  import random
3
32
  import numpy as np
4
33
  import importlib
5
34
 
6
35
  class MLSystem(object):
7
- IS_USING_TENSORFLOW = False
8
- IS_USING_TORCH = False
9
-
10
36
  # --------------------------------------------------------------------------------------
11
37
  _instance = None
12
38
  @classmethod
@@ -17,30 +43,36 @@ class MLSystem(object):
17
43
  return cls._instance
18
44
  # --------------------------------------------------------------------------------------
19
45
  @property
20
- def is_tensorflow(self):
21
- return self.is_tensorflow_installed and (not MLSystem.IS_USING_TORCH) and (MLSystem.IS_USING_TENSORFLOW)
46
+ def is_using_tensorflow(self):
47
+ return self.is_tensorflow_installed and self._is_using_tensorflow
48
+ # --------------------------------------------------------------------------------------
49
+ @is_using_tensorflow.setter
50
+ def is_using_tensorflow(self, value):
51
+ self._is_using_tensorflow = value
52
+ self._is_using_torch = not value
22
53
  # --------------------------------------------------------------------------------------
23
54
  @property
24
- def is_torch(self):
25
- return self.is_torch_installed and (MLSystem.IS_USING_TORCH)
55
+ def is_using_torch(self):
56
+ return self.is_torch_installed and self.is_using_torch
57
+ # --------------------------------------------------------------------------------------
58
+ @is_using_torch.setter
59
+ def is_using_torch(self, value):
60
+ self._is_using_torch = value
61
+ self._is_using_tensorflow = not value
26
62
  # --------------------------------------------------------------------------------------
27
63
  def __init__(self):
28
64
  self._is_random_seed_initialized = False
29
65
  self._filesys = None
66
+ self._seed = None
30
67
  self.switches = dict()
31
68
  self.switches["IsDebuggable"] = False
32
69
 
33
70
  self.is_tensorflow_installed = False
34
71
  self.is_torch_installed = False
35
72
  self.is_opencv_installed = False
36
- # --------------------------------------------------------------------------------------
37
- def use_tensorflow(self):
38
- self.IS_USING_TENSORFLOW = True
39
- self.IS_USING_TORCH = False
40
- # --------------------------------------------------------------------------------------
41
- def use_torch(self):
42
- self.IS_USING_TORCH = True
43
- self.IS_USING_TENSORFLOW = False
73
+
74
+ self._is_using_tensorflow = False
75
+ self.is_using_torch = False
44
76
  # --------------------------------------------------------------------------------------
45
77
  @property
46
78
  def filesys(self):
@@ -49,10 +81,17 @@ class MLSystem(object):
49
81
  @filesys.setter
50
82
  def filesys(self, value):
51
83
  self._filesys = value
84
+
85
+ # --------------------------------------------------------------------------------------
86
+ @property
87
+ def seed(self):
88
+ return self._seed
52
89
  # --------------------------------------------------------------------------------------
53
90
  # We are seeding the number generators to get some amount of determinism for the whole ML training process.
54
91
  # For Tensorflow it is not ensuring 100% deterministic reproduction of an experiment on the GPU.
55
- def random_seed_all(self, seed, is_done_once=False):
92
+ def random_seed_all(self, seed, is_done_once=False, is_parallel_deterministic=False):
93
+ self._seed = seed
94
+
56
95
  bContinue = True
57
96
  if is_done_once:
58
97
  bContinue = (not self._is_random_seed_initialized)
@@ -61,12 +100,13 @@ class MLSystem(object):
61
100
  random.seed(seed)
62
101
  os.environ['PYTHONHASHSEED'] = str(seed)
63
102
  np.random.seed(seed)
64
- if mlsys.is_tensorflow:
103
+ if mlsys.is_tensorflow_installed:
65
104
  import tensorflow as tf
66
105
  tf.compat.v1.reset_default_graph()
106
+ if is_parallel_deterministic:
107
+ tf.config.experimental.enable_op_determinism() # Enable determinism for num_parallel_calls
67
108
  tf.random.set_seed(seed)
68
- tf.keras.utils.set_random_seed(seed)
69
- elif mlsys.is_torch:
109
+ if mlsys.is_torch_installed:
70
110
  import torch
71
111
  torch.manual_seed(seed)
72
112
  # GPU and multi-GPU
@@ -1,5 +1,10 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
9
  # Copyright (c) 2022-2025 Pantelis I. Kaplanoglou
5
10
 
@@ -21,8 +26,7 @@
21
26
  # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
27
  # SOFTWARE.
23
28
 
24
- # ......................................................................................
25
-
29
+ # .......................................................................................
26
30
  import numpy as np
27
31
  import matplotlib.pyplot as plt
28
32
 
@@ -44,9 +48,9 @@ class AutoMultiImagePlot(object):
44
48
  self.row_count = len(self.rows)
45
49
  self.row_titles.append(row_title)
46
50
 
47
- def add_column(self, images, image_title=None, color_map=None, aspect=None, extent=None):
51
+ def add_column(self, image, image_title=None, color_map=None, aspect=None, extent=None):
48
52
  oRowColumns = self.rows[self.current_row]
49
- dImage = {"image": images, "title": image_title
53
+ dImage = {"image": image, "title": image_title
50
54
  , "cmap": color_map, "aspect": aspect
51
55
  , "extend": extent}
52
56
 
@@ -63,7 +67,7 @@ class AutoMultiImagePlot(object):
63
67
  nColumns = restrict_columns
64
68
  if nColumns is None:
65
69
  nColumns = self.max_col_count
66
- fig, oSubplotGrid = plt.subplots(nrows=self.row_count, ncols=nColumns
70
+ fig, oSubplotGrid = plt.subplots( nrows=self.row_count, ncols=nColumns
67
71
  , figsize=figure_size
68
72
  , subplot_kw={'xticks': [], 'yticks': []})
69
73
  bIsSingleRow = self.row_count == 1
@@ -73,7 +77,6 @@ class AutoMultiImagePlot(object):
73
77
  if title is None:
74
78
  title = self.title
75
79
  fig.suptitle(title)
76
-
77
80
  for nRowIndex, oRowColumns in enumerate(self.rows):
78
81
  if len(oRowColumns) > 0:
79
82
  sRowTitle = self.row_titles[nRowIndex]
@@ -88,17 +91,23 @@ class AutoMultiImagePlot(object):
88
91
  if bMustPlot:
89
92
  dImage = oRowColumns[nImageIndex]
90
93
  oSubPlot = oSubplotGrid[nRowIndex, nColIndex]
91
- oSubPlot.title.set_text(dImage["title"])
94
+ sTitle = dImage['title']
95
+ if sTitle is not None:
96
+ oSubPlot.title.set_text(sTitle)
97
+ oSubPlot.set_xticks([])
98
+ oSubPlot.set_yticks([])
92
99
  oSubPlot.imshow(dImage["image"], cmap=dImage["cmap"],
93
100
  aspect=dImage["aspect"], extent=dImage["extend"],
94
101
  vmin=self.min, vmax=self.max
95
102
  )
103
+
96
104
  if nColIndex == 0:
97
- oSubPlot.text(0.0, 0.5, sRowTitle, transform=oSubPlot.transAxes,
98
- horizontalalignment='right', verticalalignment='center',
99
- fontsize=9, fontweight='bold')
105
+ if sRowTitle is not None:
106
+ oSubPlot.text(0.0, 0.5, sRowTitle, transform=oSubPlot.transAxes,
107
+ horizontalalignment='right', verticalalignment='center',
108
+ fontsize=9, fontweight='bold')
100
109
  nImageIndex += nIncr
101
-
110
+ fig.subplots_adjust(wspace=0.1, hspace=0.6)
102
111
  return self
103
112
 
104
113
  # --------------------------------------------------------------------------------------
@@ -1,5 +1,10 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
9
  # Copyright (c) 2020-2025 Pantelis I. Kaplanoglou
5
10
 
@@ -21,9 +26,7 @@
21
26
  # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
27
  # SOFTWARE.
23
28
 
24
- # ......................................................................................
25
-
26
-
29
+ # .......................................................................................
27
30
  import matplotlib.pyplot as plt
28
31
 
29
32
  class PlotConfusionMatrix(object):
@@ -1,5 +1,10 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
9
  # Copyright (c) 2020-2025 Pantelis I. Kaplanoglou
5
10
 
@@ -21,8 +26,7 @@
21
26
  # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
27
  # SOFTWARE.
23
28
 
24
- # ......................................................................................
25
-
29
+ # .......................................................................................
26
30
  import matplotlib.pyplot as plt
27
31
 
28
32
  class PlotLearningCurve(object):
@@ -1,5 +1,10 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
9
  # Copyright (c) 2022-2025 Pantelis I. Kaplanoglou
5
10
 
@@ -21,8 +26,7 @@
21
26
  # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
27
  # SOFTWARE.
23
28
 
24
- # ......................................................................................
25
-
29
+ # .......................................................................................
26
30
  import numpy as np
27
31
  import matplotlib.pyplot as plt
28
32
  from matplotlib import cm
radnn/plots/plot_roc.py CHANGED
@@ -1,7 +1,12 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
- # Copyright (c) 2024-2025 Pantelis I. Kaplanoglou
9
+ # Copyright (c) 2023-2025 Pantelis I. Kaplanoglou
5
10
 
6
11
  # Permission is hereby granted, free of charge, to any person obtaining a copy
7
12
  # of this software and associated documentation files (the "Software"), to deal
@@ -21,8 +26,7 @@
21
26
  # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
27
  # SOFTWARE.
23
28
 
24
- # ......................................................................................
25
-
29
+ # .......................................................................................
26
30
  from sklearn import metrics
27
31
  import matplotlib.pyplot as plt
28
32
 
@@ -1,7 +1,12 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
- # Copyright (c) 2024-2025 Pantelis I. Kaplanoglou
9
+ # Copyright (c) 2023-2025 Pantelis I. Kaplanoglou
5
10
 
6
11
  # Permission is hereby granted, free of charge, to any person obtaining a copy
7
12
  # of this software and associated documentation files (the "Software"), to deal
@@ -21,9 +26,7 @@
21
26
  # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
27
  # SOFTWARE.
23
28
 
24
- # ......................................................................................
25
-
26
-
29
+ # .......................................................................................
27
30
  import matplotlib.pyplot as plt
28
31
  import numpy as np
29
32
  from matplotlib import cm
@@ -1,7 +1,12 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
- # Copyright (c) 2024-2025 Pantelis I. Kaplanoglou
9
+ # Copyright (c) 2018-2025 Pantelis I. Kaplanoglou
5
10
 
6
11
  # Permission is hereby granted, free of charge, to any person obtaining a copy
7
12
  # of this software and associated documentation files (the "Software"), to deal
@@ -21,9 +26,7 @@
21
26
  # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
27
  # SOFTWARE.
23
28
 
24
- # ......................................................................................
25
-
26
-
29
+ # .......................................................................................
27
30
  import pandas as pd
28
31
 
29
32
 
@@ -1,7 +1,12 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
- # Copyright (c) 2024-2025 Pantelis I. Kaplanoglou
9
+ # Copyright (c) 2018-2025 Pantelis I. Kaplanoglou
5
10
 
6
11
  # Permission is hereby granted, free of charge, to any person obtaining a copy
7
12
  # of this software and associated documentation files (the "Software"), to deal
@@ -21,10 +26,10 @@
21
26
  # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
27
  # SOFTWARE.
23
28
 
24
- # ......................................................................................
25
-
29
+ # .......................................................................................
26
30
  import os
27
31
  import glob
32
+
28
33
  class FileObject(object):
29
34
  # ----------------------------------------------------------------------------------
30
35
  def __init__(self, filename, parent_folder=None, error_template=None, default_file_extension=None):
@@ -1,7 +1,12 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
- # Copyright (c) 2024-2025 Pantelis I. Kaplanoglou
9
+ # Copyright (c) 2018-2025 Pantelis I. Kaplanoglou
5
10
 
6
11
  # Permission is hereby granted, free of charge, to any person obtaining a copy
7
12
  # of this software and associated documentation files (the "Software"), to deal
@@ -21,8 +26,7 @@
21
26
  # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
27
  # SOFTWARE.
23
28
 
24
- # ......................................................................................
25
-
29
+ # .......................................................................................
26
30
  import cv2
27
31
 
28
32
 
@@ -1,7 +1,12 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
- # Copyright (c) 2024-2025 Pantelis I. Kaplanoglou
9
+ # Copyright (c) 2018-2025 Pantelis I. Kaplanoglou
5
10
 
6
11
  # Permission is hereby granted, free of charge, to any person obtaining a copy
7
12
  # of this software and associated documentation files (the "Software"), to deal
@@ -21,8 +26,7 @@
21
26
  # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
27
  # SOFTWARE.
23
28
 
24
- # ......................................................................................
25
-
29
+ # .......................................................................................
26
30
  import os
27
31
  import json
28
32
  import glob
@@ -1,7 +1,12 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
- # Copyright (c) 2024-2025 Pantelis I. Kaplanoglou
9
+ # Copyright (c) 2018-2025 Pantelis I. Kaplanoglou
5
10
 
6
11
  # Permission is hereby granted, free of charge, to any person obtaining a copy
7
12
  # of this software and associated documentation files (the "Software"), to deal
@@ -21,8 +26,7 @@
21
26
  # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
27
  # SOFTWARE.
23
28
 
24
- # ......................................................................................
25
-
29
+ # .......................................................................................
26
30
  import os
27
31
  import sys
28
32
  import shutil
@@ -1,7 +1,12 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
- # Copyright (c) 2024-2025 Pantelis I. Kaplanoglou
9
+ # Copyright (c) 2018-2025 Pantelis I. Kaplanoglou
5
10
 
6
11
  # Permission is hereby granted, free of charge, to any person obtaining a copy
7
12
  # of this software and associated documentation files (the "Software"), to deal
@@ -21,8 +26,7 @@
21
26
  # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
27
  # SOFTWARE.
23
28
 
24
- # ......................................................................................
25
-
29
+ # .......................................................................................
26
30
  import os
27
31
  import numpy as np
28
32
  from .fileobject import FileObject
radnn/system/filestore.py CHANGED
@@ -1,5 +1,10 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
9
  # Copyright (c) 2018-2025 Pantelis I. Kaplanoglou
5
10
 
@@ -21,9 +26,7 @@
21
26
  # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
27
  # SOFTWARE.
23
28
 
24
- # ......................................................................................
25
-
26
-
29
+ # .......................................................................................
27
30
  import os
28
31
  import shutil
29
32
  import glob
@@ -37,9 +40,8 @@ from radnn.system.files import JSONFile
37
40
  from radnn.system.files import PickleFile
38
41
  from radnn.system.files import TextFile
39
42
  from radnn.system.files import CSVFile
40
-
41
- from radnn.core import is_opencv_installed
42
- if (is_opencv_installed()):
43
+ from radnn.ml_system import mlsys
44
+ if mlsys.is_opencv_installed:
43
45
  from radnn.system.files.imgfile import PNGFile
44
46
 
45
47
 
@@ -62,7 +64,7 @@ class FileStore(object):
62
64
  self.obj = PickleFile(None, parent_folder=self.base_folder)
63
65
  self.text = TextFile(None, parent_folder=self.base_folder)
64
66
  self.csv = CSVFile(None, parent_folder=self.base_folder)
65
- if (is_opencv_installed()):
67
+ if mlsys.is_opencv_installed:
66
68
  self.img = PNGFile(None, parent_folder=base_folder)
67
69
  self.donefs = None
68
70
  #................................................................................
@@ -1,5 +1,10 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
1
7
  # ......................................................................................
2
- # MIT License
3
8
 
4
9
  # Copyright (c) 2018-2025 Pantelis I. Kaplanoglou
5
10
 
@@ -20,8 +25,8 @@
20
25
  # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
26
  # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
27
  # SOFTWARE.
23
- # ......................................................................................
24
28
 
29
+ # .......................................................................................
25
30
  import os
26
31
  from radnn.core import system_name
27
32
  from radnn.system.filestore import FileStore