r5py 1.0.0.dev11__py3-none-any.whl → 1.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of r5py might be problematic. Click here for more details.
- r5py/__init__.py +3 -1
- r5py/r5/__init__.py +2 -0
- r5py/r5/detailed_itineraries.py +11 -2
- r5py/r5/isochrones.py +351 -0
- r5py/r5/street_layer.py +7 -3
- r5py/r5/street_segment.py +41 -0
- r5py/r5/transport_network.py +59 -146
- r5py/r5/travel_time_matrix.py +1 -0
- r5py/r5/trip_planner.py +6 -7
- r5py/util/__init__.py +6 -0
- r5py/util/config.py +18 -2
- r5py/util/file_digest.py +42 -0
- r5py/util/good_enough_equidistant_crs.py +8 -3
- r5py/util/spatially_clustered_geodataframe.py +78 -0
- r5py/util/working_copy.py +44 -0
- {r5py-1.0.0.dev11.dist-info → r5py-1.0.1.dist-info}/METADATA +11 -8
- {r5py-1.0.0.dev11.dist-info → r5py-1.0.1.dist-info}/RECORD +20 -15
- {r5py-1.0.0.dev11.dist-info → r5py-1.0.1.dist-info}/WHEEL +1 -1
- {r5py-1.0.0.dev11.dist-info → r5py-1.0.1.dist-info}/LICENSE +0 -0
- {r5py-1.0.0.dev11.dist-info → r5py-1.0.1.dist-info}/top_level.txt +0 -0
r5py/__init__.py
CHANGED
|
@@ -2,12 +2,13 @@
|
|
|
2
2
|
|
|
3
3
|
"""Python wrapper for the R5 routing analysis engine."""
|
|
4
4
|
|
|
5
|
-
__version__ = "1.0.
|
|
5
|
+
__version__ = "1.0.1"
|
|
6
6
|
|
|
7
7
|
|
|
8
8
|
from .r5 import (
|
|
9
9
|
DetailedItineraries,
|
|
10
10
|
DetailedItinerariesComputer,
|
|
11
|
+
Isochrones,
|
|
11
12
|
RegionalTask,
|
|
12
13
|
TransportMode,
|
|
13
14
|
TransportNetwork,
|
|
@@ -18,6 +19,7 @@ from .r5 import (
|
|
|
18
19
|
__all__ = [
|
|
19
20
|
"DetailedItineraries",
|
|
20
21
|
"DetailedItinerariesComputer",
|
|
22
|
+
"Isochrones",
|
|
21
23
|
"RegionalTask",
|
|
22
24
|
"TransportMode",
|
|
23
25
|
"TransportNetwork",
|
r5py/r5/__init__.py
CHANGED
|
@@ -7,6 +7,7 @@ from .breakdown_stat import BreakdownStat
|
|
|
7
7
|
from .detailed_itineraries import DetailedItineraries, DetailedItinerariesComputer
|
|
8
8
|
from .direct_leg import DirectLeg
|
|
9
9
|
from .egress_leg import EgressLeg
|
|
10
|
+
from .isochrones import Isochrones
|
|
10
11
|
from .regional_task import RegionalTask
|
|
11
12
|
from .scenario import Scenario
|
|
12
13
|
from .street_layer import StreetLayer
|
|
@@ -25,6 +26,7 @@ __all__ = [
|
|
|
25
26
|
"DetailedItinerariesComputer",
|
|
26
27
|
"DirectLeg",
|
|
27
28
|
"EgressLeg",
|
|
29
|
+
"Isochrones",
|
|
28
30
|
"RegionalTask",
|
|
29
31
|
"Scenario",
|
|
30
32
|
"SpeedConfig",
|
r5py/r5/detailed_itineraries.py
CHANGED
|
@@ -84,7 +84,7 @@ class DetailedItineraries(BaseTravelTimeMatrix):
|
|
|
84
84
|
``access_modes``, ``egress_modes``, ``max_time``, ``max_time_walking``,
|
|
85
85
|
``max_time_cycling``, ``max_time_driving``, ``speed_cycling``, ``speed_walking``,
|
|
86
86
|
``max_public_transport_rides``, ``max_bicycle_traffic_stress``
|
|
87
|
-
|
|
87
|
+
Note that not all arguments might make sense in this context, and the
|
|
88
88
|
underlying R5 engine might ignore some of them.
|
|
89
89
|
"""
|
|
90
90
|
super().__init__(
|
|
@@ -122,11 +122,20 @@ class DetailedItineraries(BaseTravelTimeMatrix):
|
|
|
122
122
|
|
|
123
123
|
data = self._compute()
|
|
124
124
|
with warnings.catch_warnings():
|
|
125
|
-
warnings.
|
|
125
|
+
warnings.filterwarnings(
|
|
126
|
+
"ignore",
|
|
127
|
+
message=(
|
|
128
|
+
"You are adding a column named 'geometry' to a GeoDataFrame "
|
|
129
|
+
"constructed without an active geometry column"
|
|
130
|
+
),
|
|
131
|
+
category=FutureWarning,
|
|
132
|
+
)
|
|
126
133
|
for column in data.columns:
|
|
127
134
|
self[column] = data[column]
|
|
128
135
|
self.set_geometry("geometry")
|
|
129
136
|
|
|
137
|
+
del self.transport_network
|
|
138
|
+
|
|
130
139
|
def _compute(self):
|
|
131
140
|
"""
|
|
132
141
|
Compute travel times from all origins to all destinations.
|
r5py/r5/isochrones.py
ADDED
|
@@ -0,0 +1,351 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
"""Compute polygons of equal travel time from a destination."""
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
import datetime
|
|
8
|
+
import warnings
|
|
9
|
+
|
|
10
|
+
import geohexgrid
|
|
11
|
+
import geopandas
|
|
12
|
+
import pandas
|
|
13
|
+
import pyproj
|
|
14
|
+
import shapely
|
|
15
|
+
import simplification.cutil
|
|
16
|
+
|
|
17
|
+
from .base_travel_time_matrix import BaseTravelTimeMatrix
|
|
18
|
+
from .transport_mode import TransportMode
|
|
19
|
+
from .travel_time_matrix import TravelTimeMatrix
|
|
20
|
+
from ..util import GoodEnoughEquidistantCrs, SpatiallyClusteredGeoDataFrame
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
__all__ = ["Isochrones"]
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
EMPTY_POINT = shapely.Point()
|
|
27
|
+
R5_CRS = "EPSG:4326"
|
|
28
|
+
|
|
29
|
+
CONCAVE_HULL_BUFFER_SIZE = 20.0 # metres
|
|
30
|
+
CONCAVE_HULL_RATIO = 0.3
|
|
31
|
+
|
|
32
|
+
VERY_SMALL_BUFFER_SIZE = 0.001 # turn points into polygons
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class Isochrones(BaseTravelTimeMatrix):
|
|
36
|
+
"""Compute polygons of equal travel time from a destination."""
|
|
37
|
+
|
|
38
|
+
_r5py_attributes = BaseTravelTimeMatrix._r5py_attributes + [
|
|
39
|
+
"_isochrones",
|
|
40
|
+
"isochrones",
|
|
41
|
+
"point_grid_resolution",
|
|
42
|
+
"point_grid_sample_ratio",
|
|
43
|
+
]
|
|
44
|
+
|
|
45
|
+
def __init__(
|
|
46
|
+
self,
|
|
47
|
+
transport_network,
|
|
48
|
+
origins,
|
|
49
|
+
isochrones=pandas.timedelta_range(
|
|
50
|
+
start=datetime.timedelta(minutes=0),
|
|
51
|
+
end=datetime.timedelta(hours=1),
|
|
52
|
+
freq=datetime.timedelta(minutes=15),
|
|
53
|
+
),
|
|
54
|
+
point_grid_resolution=100,
|
|
55
|
+
point_grid_sample_ratio=1.0,
|
|
56
|
+
**kwargs,
|
|
57
|
+
):
|
|
58
|
+
"""
|
|
59
|
+
Compute polygons of equal travel time from one or more destinations.
|
|
60
|
+
|
|
61
|
+
``r5py.Isochrones`` are child classes of ``geopandas.GeoDataFrame`` and
|
|
62
|
+
support all of their methods and properties, see
|
|
63
|
+
https://geopandas.org/en/stable/docs.html
|
|
64
|
+
|
|
65
|
+
Arguments
|
|
66
|
+
---------
|
|
67
|
+
transport_network : r5py.TransportNetwork | tuple(str, list(str), dict)
|
|
68
|
+
The transport network to route on. This can either be a readily
|
|
69
|
+
initialised r5py.TransportNetwork or a tuple of the parameters
|
|
70
|
+
passed to ``TransportNetwork.__init__()``: the path to an OpenStreetMap
|
|
71
|
+
extract in PBF format, a list of zero of more paths to GTFS transport
|
|
72
|
+
schedule files, and a dict with ``build_config`` options.
|
|
73
|
+
origins : geopandas.GeoDataFrame | shapely.Point
|
|
74
|
+
Place(s) to find a route _from_
|
|
75
|
+
Must be/have a point geometry. If multiple origin points are passed,
|
|
76
|
+
isochrones will be computed as minimum travel time from any of them.
|
|
77
|
+
isochrones : pandas.TimedeltaIndex | collections.abc.Iterable[int]
|
|
78
|
+
For which interval to compute isochrone polygons. An iterable of
|
|
79
|
+
integers is interpreted as minutes.
|
|
80
|
+
point_grid_resolution : int
|
|
81
|
+
Distance in meters between points in the regular grid of points laid over the
|
|
82
|
+
transport network’s extent that is used to compute isochrones.
|
|
83
|
+
Increase this value for performance, decrease it for precision.
|
|
84
|
+
point_grid_sample_ratio : float
|
|
85
|
+
Share of points of the point grid that are used in computation,
|
|
86
|
+
ranging from 0.01 to 1.0.
|
|
87
|
+
Increase this value for performance, decrease it for precision.
|
|
88
|
+
**kwargs : mixed
|
|
89
|
+
Any arguments than can be passed to r5py.RegionalTask:
|
|
90
|
+
``departure``, ``departure_time_window``, ``percentiles``, ``transport_modes``,
|
|
91
|
+
``access_modes``, ``egress_modes``, ``max_time``, ``max_time_walking``,
|
|
92
|
+
``max_time_cycling``, ``max_time_driving``, ``speed_cycling``, ``speed_walking``,
|
|
93
|
+
``max_public_transport_rides``, ``max_bicycle_traffic_stress``
|
|
94
|
+
Note that not all arguments might make sense in this context, and the
|
|
95
|
+
underlying R5 engine might ignore some of them.
|
|
96
|
+
If percentiles are specified, the lowest one will be used for
|
|
97
|
+
isochrone computation.
|
|
98
|
+
"""
|
|
99
|
+
geopandas.GeoDataFrame.__init__(self)
|
|
100
|
+
BaseTravelTimeMatrix.__init__(
|
|
101
|
+
self,
|
|
102
|
+
transport_network,
|
|
103
|
+
**kwargs,
|
|
104
|
+
)
|
|
105
|
+
|
|
106
|
+
self.EQUIDISTANT_CRS = GoodEnoughEquidistantCrs(self.transport_network.extent)
|
|
107
|
+
|
|
108
|
+
if isinstance(origins, shapely.Geometry):
|
|
109
|
+
origins = geopandas.GeoDataFrame(
|
|
110
|
+
{
|
|
111
|
+
"id": [
|
|
112
|
+
"origin",
|
|
113
|
+
],
|
|
114
|
+
"geometry": [
|
|
115
|
+
origins,
|
|
116
|
+
],
|
|
117
|
+
},
|
|
118
|
+
crs=R5_CRS,
|
|
119
|
+
)
|
|
120
|
+
self.origins = origins
|
|
121
|
+
self.isochrones = isochrones
|
|
122
|
+
|
|
123
|
+
self.point_grid_resolution = point_grid_resolution
|
|
124
|
+
self.point_grid_sample_ratio = max(0.01, min(1.0, point_grid_sample_ratio))
|
|
125
|
+
|
|
126
|
+
travel_times = TravelTimeMatrix(
|
|
127
|
+
transport_network,
|
|
128
|
+
origins=self.origins,
|
|
129
|
+
destinations=self.destinations,
|
|
130
|
+
max_time=self.isochrones.max(),
|
|
131
|
+
**kwargs,
|
|
132
|
+
)
|
|
133
|
+
|
|
134
|
+
data = self._compute_isochrones_from_travel_times(travel_times)
|
|
135
|
+
|
|
136
|
+
with warnings.catch_warnings():
|
|
137
|
+
warnings.filterwarnings(
|
|
138
|
+
"ignore",
|
|
139
|
+
message=(
|
|
140
|
+
"You are adding a column named 'geometry' to a GeoDataFrame "
|
|
141
|
+
"constructed without an active geometry column"
|
|
142
|
+
),
|
|
143
|
+
category=FutureWarning,
|
|
144
|
+
)
|
|
145
|
+
for column in data.columns:
|
|
146
|
+
self[column] = data[column]
|
|
147
|
+
self.set_geometry("geometry")
|
|
148
|
+
|
|
149
|
+
del self.transport_network
|
|
150
|
+
|
|
151
|
+
def _compute_isochrones_from_travel_times(self, travel_times):
|
|
152
|
+
travel_times = travel_times.dropna().groupby("to_id").min().reset_index()
|
|
153
|
+
|
|
154
|
+
if self.request.percentiles == [50]:
|
|
155
|
+
travel_time_column = "travel_time"
|
|
156
|
+
else:
|
|
157
|
+
travel_time_column = f"travel_time_p{self.request.percentiles[0]:d}"
|
|
158
|
+
|
|
159
|
+
isochrones = {
|
|
160
|
+
"travel_time": [],
|
|
161
|
+
"geometry": [],
|
|
162
|
+
}
|
|
163
|
+
|
|
164
|
+
for isochrone in self.isochrones:
|
|
165
|
+
reached_nodes = (
|
|
166
|
+
self.destinations.set_index("id")
|
|
167
|
+
.join(
|
|
168
|
+
travel_times[
|
|
169
|
+
travel_times[travel_time_column]
|
|
170
|
+
<= (isochrone.total_seconds() / 60)
|
|
171
|
+
].set_index("to_id"),
|
|
172
|
+
how="inner",
|
|
173
|
+
)
|
|
174
|
+
.reset_index()
|
|
175
|
+
)
|
|
176
|
+
|
|
177
|
+
# isochrone polygons might be disjoint (e.g., around metro stops)
|
|
178
|
+
if not reached_nodes.empty:
|
|
179
|
+
reached_nodes = SpatiallyClusteredGeoDataFrame(
|
|
180
|
+
reached_nodes, eps=(2.0 * self.point_grid_resolution)
|
|
181
|
+
).to_crs(self.EQUIDISTANT_CRS)
|
|
182
|
+
isochrone_polygons = pandas.concat(
|
|
183
|
+
[
|
|
184
|
+
(
|
|
185
|
+
reached_nodes[reached_nodes["cluster"] != -1]
|
|
186
|
+
.dissolve(by="cluster")
|
|
187
|
+
.concave_hull(ratio=CONCAVE_HULL_RATIO)
|
|
188
|
+
.buffer(VERY_SMALL_BUFFER_SIZE)
|
|
189
|
+
),
|
|
190
|
+
(
|
|
191
|
+
reached_nodes[reached_nodes["cluster"] == -1].buffer(
|
|
192
|
+
VERY_SMALL_BUFFER_SIZE
|
|
193
|
+
)
|
|
194
|
+
),
|
|
195
|
+
]
|
|
196
|
+
).union_all()
|
|
197
|
+
|
|
198
|
+
isochrones["travel_time"].append(isochrone)
|
|
199
|
+
isochrones["geometry"].append(isochrone_polygons)
|
|
200
|
+
|
|
201
|
+
isochrones = geopandas.GeoDataFrame(
|
|
202
|
+
isochrones, geometry="geometry", crs=self.EQUIDISTANT_CRS
|
|
203
|
+
)
|
|
204
|
+
|
|
205
|
+
# clip smaller isochrones by larger isochrones
|
|
206
|
+
# (concave_hull’s ratio parameter depends on input shapes and does not
|
|
207
|
+
# produce the same results, e.g., around bridges or at the coast line)
|
|
208
|
+
for row in range(len(isochrones) - 2, 0, -1):
|
|
209
|
+
isochrones.loc[row, "geometry"] = shapely.intersection(
|
|
210
|
+
isochrones.loc[row, "geometry"], isochrones.loc[row + 1, "geometry"]
|
|
211
|
+
)
|
|
212
|
+
|
|
213
|
+
isochrones["geometry"] = (
|
|
214
|
+
isochrones["geometry"]
|
|
215
|
+
.buffer(CONCAVE_HULL_BUFFER_SIZE)
|
|
216
|
+
.boundary.apply(
|
|
217
|
+
lambda geometry: (
|
|
218
|
+
geometry
|
|
219
|
+
if isinstance(geometry, shapely.MultiLineString)
|
|
220
|
+
else shapely.MultiLineString([geometry])
|
|
221
|
+
)
|
|
222
|
+
)
|
|
223
|
+
.apply(
|
|
224
|
+
lambda multilinestring: (
|
|
225
|
+
shapely.MultiLineString(
|
|
226
|
+
[
|
|
227
|
+
simplification.cutil.simplify_coords_vwp(
|
|
228
|
+
linestring.coords,
|
|
229
|
+
self.point_grid_resolution * 5.0,
|
|
230
|
+
)
|
|
231
|
+
for linestring in multilinestring.geoms
|
|
232
|
+
]
|
|
233
|
+
)
|
|
234
|
+
)
|
|
235
|
+
)
|
|
236
|
+
.to_crs(R5_CRS)
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
return isochrones
|
|
240
|
+
|
|
241
|
+
@property
|
|
242
|
+
def destinations(self):
|
|
243
|
+
"""A regular grid of points covering the range of the chosen transport mode."""
|
|
244
|
+
try:
|
|
245
|
+
return self._destinations
|
|
246
|
+
except AttributeError:
|
|
247
|
+
destinations = self._regular_point_grid
|
|
248
|
+
destinations["geometry"] = self.transport_network.snap_to_network(
|
|
249
|
+
destinations["geometry"]
|
|
250
|
+
)
|
|
251
|
+
destinations = destinations[destinations["geometry"] != EMPTY_POINT]
|
|
252
|
+
destinations["geometry"] = destinations["geometry"].normalize()
|
|
253
|
+
destinations = destinations.drop_duplicates()
|
|
254
|
+
|
|
255
|
+
# with snapping, sometimes we end up with clumps of points
|
|
256
|
+
# below, we try to form clusters, from all clusters we retain
|
|
257
|
+
# one geometry, only
|
|
258
|
+
destinations = SpatiallyClusteredGeoDataFrame(
|
|
259
|
+
destinations, eps=(0.5 * self.point_grid_resolution)
|
|
260
|
+
)
|
|
261
|
+
destinations = pandas.concat(
|
|
262
|
+
[
|
|
263
|
+
(
|
|
264
|
+
destinations[destinations["cluster"] != -1]
|
|
265
|
+
.groupby("cluster")
|
|
266
|
+
.first()
|
|
267
|
+
.set_crs(R5_CRS)
|
|
268
|
+
),
|
|
269
|
+
destinations[destinations["cluster"] == -1],
|
|
270
|
+
]
|
|
271
|
+
)[["id", "geometry"]].copy()
|
|
272
|
+
|
|
273
|
+
if self.point_grid_sample_ratio < 1.0:
|
|
274
|
+
destinations = destinations.sample(frac=self.point_grid_sample_ratio)
|
|
275
|
+
|
|
276
|
+
self._destinations = destinations
|
|
277
|
+
|
|
278
|
+
return destinations
|
|
279
|
+
|
|
280
|
+
@destinations.setter
|
|
281
|
+
def destinations(self, destinations):
|
|
282
|
+
# https://bugs.python.org/issue14965
|
|
283
|
+
super(self.__class__, self.__class__).destinations.__set__(self, destinations)
|
|
284
|
+
|
|
285
|
+
@property
|
|
286
|
+
def isochrones(self):
|
|
287
|
+
"""
|
|
288
|
+
Compute isochrones for these travel times.
|
|
289
|
+
|
|
290
|
+
pandas.TimedeltaIndex | collections.abc.Iterable[int]
|
|
291
|
+
An iterable of integers is interpreted as minutes.
|
|
292
|
+
"""
|
|
293
|
+
try:
|
|
294
|
+
return self._isochrones
|
|
295
|
+
except AttributeError:
|
|
296
|
+
raise
|
|
297
|
+
|
|
298
|
+
@isochrones.setter
|
|
299
|
+
def isochrones(self, isochrones):
|
|
300
|
+
if not isinstance(isochrones, pandas.TimedeltaIndex):
|
|
301
|
+
isochrones = pandas.to_timedelta(isochrones, unit="minutes")
|
|
302
|
+
try:
|
|
303
|
+
# do not compute for 0 travel time
|
|
304
|
+
isochrones = isochrones.drop(datetime.timedelta(0))
|
|
305
|
+
except KeyError:
|
|
306
|
+
pass
|
|
307
|
+
self._isochrones = isochrones
|
|
308
|
+
|
|
309
|
+
@property
|
|
310
|
+
def _regular_point_grid(self):
|
|
311
|
+
extent = shapely.ops.transform(
|
|
312
|
+
pyproj.Transformer.from_crs(
|
|
313
|
+
R5_CRS,
|
|
314
|
+
self.EQUIDISTANT_CRS,
|
|
315
|
+
always_xy=True,
|
|
316
|
+
).transform,
|
|
317
|
+
self.transport_network.extent,
|
|
318
|
+
)
|
|
319
|
+
|
|
320
|
+
grid = geohexgrid.make_grid_from_bounds(
|
|
321
|
+
*extent.bounds,
|
|
322
|
+
self.point_grid_resolution,
|
|
323
|
+
crs=self.EQUIDISTANT_CRS,
|
|
324
|
+
)
|
|
325
|
+
grid["geometry"] = grid["geometry"].centroid
|
|
326
|
+
grid["id"] = grid.index
|
|
327
|
+
grid = grid[["id", "geometry"]].to_crs(R5_CRS)
|
|
328
|
+
|
|
329
|
+
# for walking and cycling, we can clip the extent to an area reachable
|
|
330
|
+
# by the (well-defined) travel speeds:
|
|
331
|
+
if set(self.request.transport_modes) <= set(
|
|
332
|
+
(TransportMode.WALK, TransportMode.BICYCLE)
|
|
333
|
+
):
|
|
334
|
+
if TransportMode.WALK in self.request.transport_modes:
|
|
335
|
+
speed = self.request.speed_walking
|
|
336
|
+
if TransportMode.BICYCLE in self.request.transport_modes:
|
|
337
|
+
speed = self.request.speed_cycling
|
|
338
|
+
|
|
339
|
+
speed = speed * (1000.0 / 3600.0) * 1.1 # km/h -> m/s, plus a bit of buffer
|
|
340
|
+
|
|
341
|
+
grid = grid.clip(
|
|
342
|
+
(
|
|
343
|
+
pandas.concat([self.origins] * 2) # workaround until
|
|
344
|
+
# https://github.com/pyproj4/pyproj/issues/1309 is fixed
|
|
345
|
+
.to_crs(self.EQUIDISTANT_CRS)
|
|
346
|
+
.buffer(speed * max(self.isochrones).total_seconds())
|
|
347
|
+
.to_crs(R5_CRS)
|
|
348
|
+
)
|
|
349
|
+
)
|
|
350
|
+
|
|
351
|
+
return grid.copy()
|
r5py/r5/street_layer.py
CHANGED
|
@@ -22,6 +22,9 @@ __all__ = ["StreetLayer"]
|
|
|
22
22
|
start_jvm()
|
|
23
23
|
|
|
24
24
|
|
|
25
|
+
EMPTY_POINT = shapely.Point()
|
|
26
|
+
|
|
27
|
+
|
|
25
28
|
class StreetLayer:
|
|
26
29
|
"""Wrap a com.conveyal.r5.streets.StreetLayer."""
|
|
27
30
|
|
|
@@ -72,13 +75,14 @@ class StreetLayer:
|
|
|
72
75
|
Closest location on the street network or `POINT EMPTY` if no
|
|
73
76
|
such location could be found within `radius`
|
|
74
77
|
"""
|
|
75
|
-
|
|
78
|
+
try:
|
|
79
|
+
split = self._street_layer.findSplit(point.y, point.x, radius, street_mode)
|
|
76
80
|
return shapely.Point(
|
|
77
81
|
split.fixedLon / com.conveyal.r5.streets.VertexStore.FIXED_FACTOR,
|
|
78
82
|
split.fixedLat / com.conveyal.r5.streets.VertexStore.FIXED_FACTOR,
|
|
79
83
|
)
|
|
80
|
-
|
|
81
|
-
return
|
|
84
|
+
except (AttributeError, TypeError):
|
|
85
|
+
return EMPTY_POINT
|
|
82
86
|
|
|
83
87
|
|
|
84
88
|
@jpype._jcustomizer.JConversion(
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
"""A less complex representation of com.conveyal.r5.api.util.StreetSegment."""
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
import datetime
|
|
7
|
+
|
|
8
|
+
import shapely
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
__all__ = ["StreetSegment"]
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class StreetSegment:
|
|
15
|
+
"""A less complex representation of com.conveyal.r5.api.util.StreetSegment."""
|
|
16
|
+
|
|
17
|
+
distance = 0
|
|
18
|
+
duration = datetime.timedelta()
|
|
19
|
+
geometry = shapely.LineString()
|
|
20
|
+
|
|
21
|
+
def __init__(self, street_path):
|
|
22
|
+
"""
|
|
23
|
+
Initialise a less complex representation of com.conveyal.r5.api.util.StreetSegment.
|
|
24
|
+
|
|
25
|
+
Arguments
|
|
26
|
+
---------
|
|
27
|
+
street_path : com.conveyal.r5.profile.StreetPath
|
|
28
|
+
StreetPath, obtained, e.g., from StreetRouter state
|
|
29
|
+
"""
|
|
30
|
+
self.distance = street_path.getDistance()
|
|
31
|
+
self.duration = street_path.getDuration()
|
|
32
|
+
self.geometry = shapely.line_merge(
|
|
33
|
+
shapely.MultiLineString(
|
|
34
|
+
[
|
|
35
|
+
shapely.from_wkt(
|
|
36
|
+
str(street_path.getEdge(edge).getGeometry().toText())
|
|
37
|
+
)
|
|
38
|
+
for edge in street_path.getEdges()
|
|
39
|
+
]
|
|
40
|
+
)
|
|
41
|
+
)
|
r5py/r5/transport_network.py
CHANGED
|
@@ -5,24 +5,22 @@
|
|
|
5
5
|
|
|
6
6
|
|
|
7
7
|
import functools
|
|
8
|
+
import hashlib
|
|
8
9
|
import pathlib
|
|
9
|
-
import random
|
|
10
|
-
import shutil
|
|
11
|
-
import time
|
|
12
10
|
import warnings
|
|
13
11
|
|
|
14
|
-
import filelock
|
|
15
12
|
import jpype
|
|
16
13
|
import jpype.types
|
|
17
14
|
|
|
18
15
|
from .street_layer import StreetLayer
|
|
19
16
|
from .transit_layer import TransitLayer
|
|
20
17
|
from .transport_mode import TransportMode
|
|
21
|
-
from ..util import Config, contains_gtfs_data, start_jvm
|
|
18
|
+
from ..util import Config, contains_gtfs_data, FileDigest, start_jvm, WorkingCopy
|
|
22
19
|
|
|
23
20
|
import com.conveyal.gtfs
|
|
24
21
|
import com.conveyal.osmlib
|
|
25
22
|
import com.conveyal.r5
|
|
23
|
+
import java.io
|
|
26
24
|
|
|
27
25
|
|
|
28
26
|
__all__ = ["TransportNetwork"]
|
|
@@ -48,114 +46,63 @@ class TransportNetwork:
|
|
|
48
46
|
gtfs : str | pathlib.Path | list[str] | list[pathlib.Path]
|
|
49
47
|
path(s) to public transport schedule information in GTFS format
|
|
50
48
|
"""
|
|
51
|
-
osm_pbf =
|
|
49
|
+
osm_pbf = WorkingCopy(osm_pbf)
|
|
52
50
|
if isinstance(gtfs, (str, pathlib.Path)):
|
|
53
51
|
gtfs = [gtfs]
|
|
54
|
-
gtfs = [
|
|
52
|
+
gtfs = [WorkingCopy(path) for path in gtfs]
|
|
55
53
|
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
osm_file.readFromFile(f"{osm_pbf}")
|
|
63
|
-
|
|
64
|
-
self.osm_file = osm_file # keep the mapdb open, close in destructor
|
|
65
|
-
|
|
66
|
-
transport_network.streetLayer = com.conveyal.r5.streets.StreetLayer()
|
|
67
|
-
transport_network.streetLayer.loadFromOsm(osm_file)
|
|
68
|
-
transport_network.streetLayer.parentNetwork = transport_network
|
|
69
|
-
transport_network.streetLayer.indexStreets()
|
|
70
|
-
|
|
71
|
-
transport_network.transitLayer = com.conveyal.r5.transit.TransitLayer()
|
|
72
|
-
for gtfs_file in gtfs:
|
|
73
|
-
gtfs_feed = com.conveyal.gtfs.GTFSFeed.readOnlyTempFileFromGtfs(gtfs_file)
|
|
74
|
-
transport_network.transitLayer.loadFromGtfs(gtfs_feed)
|
|
75
|
-
gtfs_feed.close()
|
|
76
|
-
transport_network.transitLayer.parentNetwork = transport_network
|
|
77
|
-
|
|
78
|
-
transport_network.streetLayer.associateStops(transport_network.transitLayer)
|
|
79
|
-
transport_network.streetLayer.buildEdgeLists()
|
|
80
|
-
|
|
81
|
-
transport_network.transitLayer.rebuildTransientIndexes()
|
|
54
|
+
# a hash representing all input files
|
|
55
|
+
digest = hashlib.sha256(
|
|
56
|
+
"".join([FileDigest(osm_pbf)] + [FileDigest(path) for path in gtfs]).encode(
|
|
57
|
+
"utf-8"
|
|
58
|
+
)
|
|
59
|
+
).hexdigest()
|
|
82
60
|
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
61
|
+
try:
|
|
62
|
+
transport_network = self._load_pickled_transport_network(
|
|
63
|
+
Config().CACHE_DIR / f"{digest}.transport_network"
|
|
64
|
+
)
|
|
65
|
+
except FileNotFoundError:
|
|
66
|
+
transport_network = com.conveyal.r5.transit.TransportNetwork()
|
|
67
|
+
transport_network.scenarioId = PACKAGE
|
|
68
|
+
|
|
69
|
+
osm_mapdb = Config().CACHE_DIR / f"{digest}.mapdb"
|
|
70
|
+
osm_file = com.conveyal.osmlib.OSM(f"{osm_mapdb}")
|
|
71
|
+
osm_file.intersectionDetection = True
|
|
72
|
+
osm_file.readFromFile(f"{osm_pbf}")
|
|
73
|
+
|
|
74
|
+
transport_network.streetLayer = com.conveyal.r5.streets.StreetLayer()
|
|
75
|
+
transport_network.streetLayer.parentNetwork = transport_network
|
|
76
|
+
transport_network.streetLayer.loadFromOsm(osm_file)
|
|
77
|
+
transport_network.streetLayer.indexStreets()
|
|
78
|
+
|
|
79
|
+
transport_network.transitLayer = com.conveyal.r5.transit.TransitLayer()
|
|
80
|
+
transport_network.transitLayer.parentNetwork = transport_network
|
|
81
|
+
for gtfs_file in gtfs:
|
|
82
|
+
gtfs_feed = com.conveyal.gtfs.GTFSFeed.readOnlyTempFileFromGtfs(
|
|
83
|
+
f"{gtfs_file}"
|
|
84
|
+
)
|
|
85
|
+
transport_network.transitLayer.loadFromGtfs(gtfs_feed)
|
|
86
|
+
gtfs_feed.close()
|
|
86
87
|
|
|
87
|
-
|
|
88
|
+
transport_network.streetLayer.associateStops(transport_network.transitLayer)
|
|
89
|
+
transport_network.streetLayer.buildEdgeLists()
|
|
88
90
|
|
|
89
|
-
|
|
91
|
+
transport_network.transitLayer.rebuildTransientIndexes()
|
|
90
92
|
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
93
|
+
transfer_finder = com.conveyal.r5.transit.TransferFinder(transport_network)
|
|
94
|
+
transfer_finder.findTransfers()
|
|
95
|
+
transfer_finder.findParkRideTransfer()
|
|
94
96
|
|
|
95
|
-
|
|
96
|
-
# delete Java objects, and
|
|
97
|
-
# trigger Java garbage collection
|
|
98
|
-
try:
|
|
99
|
-
self.osm_file.close()
|
|
100
|
-
except jpype.JVMNotRunning:
|
|
101
|
-
# JVM was stopped already, file should be closed
|
|
102
|
-
pass
|
|
103
|
-
try:
|
|
104
|
-
del self.street_layer
|
|
105
|
-
except AttributeError: # might not have been accessed a single time
|
|
106
|
-
pass
|
|
107
|
-
try:
|
|
108
|
-
del self.transit_layer
|
|
109
|
-
except AttributeError:
|
|
110
|
-
pass
|
|
111
|
-
try:
|
|
112
|
-
del self._transport_network
|
|
113
|
-
except AttributeError:
|
|
114
|
-
pass
|
|
97
|
+
transport_network.transitLayer.buildDistanceTables(None)
|
|
115
98
|
|
|
116
|
-
|
|
117
|
-
try:
|
|
118
|
-
jpype.java.lang.System.gc()
|
|
119
|
-
except jpype.JVMNotRunning:
|
|
120
|
-
pass
|
|
99
|
+
osm_file.close() # not needed after here?
|
|
121
100
|
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
temporary_files = [child for child in self._cache_directory.iterdir()]
|
|
125
|
-
except FileNotFoundError: # deleted in the meantime/race condition
|
|
126
|
-
temporary_files = []
|
|
127
|
-
|
|
128
|
-
for _ in range(MAX_TRIES):
|
|
129
|
-
for temporary_file in temporary_files:
|
|
130
|
-
try:
|
|
131
|
-
temporary_file.unlink()
|
|
132
|
-
temporary_files.remove(temporary_file)
|
|
133
|
-
except (FileNotFoundError, IOError, OSError):
|
|
134
|
-
print(
|
|
135
|
-
f"could not delete {temporary_file}, keeping in {temporary_files}"
|
|
136
|
-
)
|
|
137
|
-
pass
|
|
138
|
-
|
|
139
|
-
if not temporary_files: # empty
|
|
140
|
-
break
|
|
141
|
-
|
|
142
|
-
# there are still files open, let’s wait a moment and try again
|
|
143
|
-
time.sleep(0.1)
|
|
144
|
-
else:
|
|
145
|
-
remaining_files = ", ".join(
|
|
146
|
-
[f"{temporary_file}" for temporary_file in temporary_files]
|
|
147
|
-
)
|
|
148
|
-
warnings.warn(
|
|
149
|
-
f"Failed to clean cache directory ‘{self._cache_directory}’. "
|
|
150
|
-
f"Remaining file(s): {remaining_files}",
|
|
151
|
-
RuntimeWarning,
|
|
101
|
+
self._save_pickled_transport_network(
|
|
102
|
+
transport_network, Config().CACHE_DIR / f"{digest}.transport_network"
|
|
152
103
|
)
|
|
153
104
|
|
|
154
|
-
|
|
155
|
-
try:
|
|
156
|
-
self._cache_directory.rmdir()
|
|
157
|
-
except OSError: # not empty
|
|
158
|
-
pass # the JVM destructor is going to take care of this
|
|
105
|
+
self._transport_network = transport_network
|
|
159
106
|
|
|
160
107
|
@classmethod
|
|
161
108
|
def from_directory(cls, path):
|
|
@@ -219,56 +166,22 @@ class TransportNetwork:
|
|
|
219
166
|
# then find the smaller extent of the two (or the larger one?)
|
|
220
167
|
return self.street_layer.extent
|
|
221
168
|
|
|
222
|
-
@functools.cached_property
|
|
223
|
-
def _cache_directory(self):
|
|
224
|
-
cache_dir = (
|
|
225
|
-
pathlib.Path(Config().TEMP_DIR)
|
|
226
|
-
/ f"{self.__class__.__name__:s}_{id(self):x}_{random.randrange(16**5):07x}"
|
|
227
|
-
)
|
|
228
|
-
cache_dir.mkdir(exist_ok=True)
|
|
229
|
-
return cache_dir
|
|
230
|
-
|
|
231
|
-
def _working_copy(self, input_file):
|
|
232
|
-
"""Create a copy or link of an input file in a cache directory.
|
|
233
|
-
|
|
234
|
-
This method exists because R5 creates temporary files in the
|
|
235
|
-
directory of input files. This can not only be annoying clutter,
|
|
236
|
-
but also create problems of concurrency, performance, etc., for
|
|
237
|
-
instance, when the data comes from a shared network drive or a
|
|
238
|
-
read-only file system.
|
|
239
|
-
|
|
240
|
-
Arguments
|
|
241
|
-
---------
|
|
242
|
-
input_file : str or pathlib.Path
|
|
243
|
-
The file to create a copy or link of in a cache directory
|
|
244
|
-
|
|
245
|
-
Returns
|
|
246
|
-
-------
|
|
247
|
-
pathlib.Path
|
|
248
|
-
The path to the copy or link created
|
|
249
|
-
"""
|
|
250
|
-
# try to first create a symbolic link, if that fails (e.g., on Windows),
|
|
251
|
-
# copy the file to a cache directory
|
|
252
|
-
input_file = pathlib.Path(input_file).absolute()
|
|
253
|
-
destination_file = pathlib.Path(
|
|
254
|
-
self._cache_directory / input_file.name
|
|
255
|
-
).absolute()
|
|
256
|
-
|
|
257
|
-
with filelock.FileLock(
|
|
258
|
-
destination_file.parent / f"{destination_file.name}.lock"
|
|
259
|
-
):
|
|
260
|
-
if not destination_file.exists():
|
|
261
|
-
try:
|
|
262
|
-
destination_file.symlink_to(input_file)
|
|
263
|
-
except OSError:
|
|
264
|
-
shutil.copyfile(str(input_file), str(destination_file))
|
|
265
|
-
return destination_file
|
|
266
|
-
|
|
267
169
|
@property
|
|
268
170
|
def linkage_cache(self):
|
|
269
171
|
"""Expose the `TransportNetwork`’s `linkageCache` to Python."""
|
|
270
172
|
return self._transport_network.linkageCache
|
|
271
173
|
|
|
174
|
+
def _load_pickled_transport_network(self, path):
|
|
175
|
+
try:
|
|
176
|
+
input_file = java.io.File(f"{path}")
|
|
177
|
+
return com.conveyal.r5.kryo.KryoNetworkSerializer.read(input_file)
|
|
178
|
+
except java.io.FileNotFoundException:
|
|
179
|
+
raise FileNotFoundError
|
|
180
|
+
|
|
181
|
+
def _save_pickled_transport_network(self, transport_network, path):
|
|
182
|
+
output_file = java.io.File(f"{path}")
|
|
183
|
+
com.conveyal.r5.kryo.KryoNetworkSerializer.write(transport_network, output_file)
|
|
184
|
+
|
|
272
185
|
def snap_to_network(
|
|
273
186
|
self,
|
|
274
187
|
points,
|
r5py/r5/travel_time_matrix.py
CHANGED
r5py/r5/trip_planner.py
CHANGED
|
@@ -17,6 +17,7 @@ import shapely
|
|
|
17
17
|
from .access_leg import AccessLeg
|
|
18
18
|
from .direct_leg import DirectLeg
|
|
19
19
|
from .egress_leg import EgressLeg
|
|
20
|
+
from .street_segment import StreetSegment
|
|
20
21
|
from .transfer_leg import TransferLeg
|
|
21
22
|
from .transit_leg import TransitLeg
|
|
22
23
|
from .transport_mode import TransportMode
|
|
@@ -64,7 +65,9 @@ class TripPlanner:
|
|
|
64
65
|
|
|
65
66
|
EQUIDISTANT_CRS = GoodEnoughEquidistantCrs(self.transport_network.extent)
|
|
66
67
|
self._crs_transformer_function = pyproj.Transformer.from_crs(
|
|
67
|
-
R5_CRS,
|
|
68
|
+
R5_CRS,
|
|
69
|
+
EQUIDISTANT_CRS,
|
|
70
|
+
always_xy=True,
|
|
68
71
|
).transform
|
|
69
72
|
|
|
70
73
|
@property
|
|
@@ -165,17 +168,13 @@ class TripPlanner:
|
|
|
165
168
|
return direct_paths
|
|
166
169
|
|
|
167
170
|
def _street_segment_from_router_state(self, router_state, transport_mode):
|
|
168
|
-
"""Retrieve a
|
|
171
|
+
"""Retrieve a StreetSegment for a route."""
|
|
169
172
|
street_path = com.conveyal.r5.profile.StreetPath(
|
|
170
173
|
router_state,
|
|
171
174
|
self.transport_network,
|
|
172
175
|
False,
|
|
173
176
|
)
|
|
174
|
-
street_segment =
|
|
175
|
-
street_path,
|
|
176
|
-
transport_mode,
|
|
177
|
-
self.transport_network.street_layer,
|
|
178
|
-
)
|
|
177
|
+
street_segment = StreetSegment(street_path)
|
|
179
178
|
return street_segment
|
|
180
179
|
|
|
181
180
|
@functools.cached_property
|
r5py/util/__init__.py
CHANGED
|
@@ -8,18 +8,24 @@ from .camel_to_snake_case import camel_to_snake_case
|
|
|
8
8
|
from .config import Config
|
|
9
9
|
from .contains_gtfs_data import contains_gtfs_data
|
|
10
10
|
from .data_validation import check_od_data_set
|
|
11
|
+
from .file_digest import FileDigest
|
|
11
12
|
from .good_enough_equidistant_crs import GoodEnoughEquidistantCrs
|
|
12
13
|
from .jvm import start_jvm
|
|
13
14
|
from .parse_int_date import parse_int_date
|
|
14
15
|
from .snake_to_camel_case import snake_to_camel_case
|
|
16
|
+
from .spatially_clustered_geodataframe import SpatiallyClusteredGeoDataFrame
|
|
17
|
+
from .working_copy import WorkingCopy
|
|
15
18
|
|
|
16
19
|
__all__ = [
|
|
17
20
|
"camel_to_snake_case",
|
|
18
21
|
"check_od_data_set",
|
|
19
22
|
"Config",
|
|
20
23
|
"contains_gtfs_data",
|
|
24
|
+
"FileDigest",
|
|
21
25
|
"GoodEnoughEquidistantCrs",
|
|
22
26
|
"parse_int_date",
|
|
23
27
|
"snake_to_camel_case",
|
|
28
|
+
"SpatiallyClusteredGeoDataFrame",
|
|
24
29
|
"start_jvm",
|
|
30
|
+
"WorkingCopy",
|
|
25
31
|
]
|
r5py/util/config.py
CHANGED
|
@@ -2,6 +2,7 @@
|
|
|
2
2
|
|
|
3
3
|
"""Handle configuration options and command line options."""
|
|
4
4
|
|
|
5
|
+
import datetime
|
|
5
6
|
import functools
|
|
6
7
|
import importlib.resources
|
|
7
8
|
import os
|
|
@@ -19,6 +20,7 @@ PACKAGE = __package__.split(".")[0]
|
|
|
19
20
|
CONFIG_FILE_TEMPLATE = importlib.resources.files(f"{PACKAGE}.util").joinpath(
|
|
20
21
|
f"{PACKAGE}.yml.template"
|
|
21
22
|
)
|
|
23
|
+
CACHE_MAX_AGE = datetime.timedelta(weeks=2)
|
|
22
24
|
|
|
23
25
|
if "HOME" not in os.environ: # e.g., testing environment or container
|
|
24
26
|
os.environ["HOME"] = "."
|
|
@@ -73,11 +75,25 @@ class Config:
|
|
|
73
75
|
pathlib.Path(
|
|
74
76
|
os.environ.get("LOCALAPPDATA")
|
|
75
77
|
or os.environ.get("XDG_CACHE_HOME")
|
|
76
|
-
or (pathlib.Path(os.environ
|
|
78
|
+
or (pathlib.Path(os.environ.get("HOME")) / ".cache")
|
|
77
79
|
)
|
|
78
80
|
/ PACKAGE
|
|
79
81
|
)
|
|
80
82
|
cache_dir.mkdir(parents=True, exist_ok=True)
|
|
83
|
+
|
|
84
|
+
# clean old files to keep cache dir from growing too much
|
|
85
|
+
cache_treshold = (datetime.datetime.now() - CACHE_MAX_AGE).timestamp()
|
|
86
|
+
for cached_file in cache_dir.glob("**/*"):
|
|
87
|
+
try:
|
|
88
|
+
*_, atime, mtime, _ = cached_file.stat()
|
|
89
|
+
assert max(atime, mtime) > cache_treshold
|
|
90
|
+
except (
|
|
91
|
+
AssertionError, # expired
|
|
92
|
+
FileNotFoundError, # broken symlink
|
|
93
|
+
PermissionError,
|
|
94
|
+
):
|
|
95
|
+
cached_file.unlink()
|
|
96
|
+
|
|
81
97
|
return cache_dir
|
|
82
98
|
|
|
83
99
|
@functools.cached_property
|
|
@@ -88,7 +104,7 @@ class Config:
|
|
|
88
104
|
pathlib.Path(
|
|
89
105
|
os.environ.get("APPDATA")
|
|
90
106
|
or os.environ.get("XDG_CONFIG_HOME")
|
|
91
|
-
or (pathlib.Path(os.environ
|
|
107
|
+
or (pathlib.Path(os.environ.get("HOME")) / ".config")
|
|
92
108
|
)
|
|
93
109
|
/ f"{PACKAGE}.yml",
|
|
94
110
|
]
|
r5py/util/file_digest.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
"""Create a hash sum of a file."""
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
import hashlib
|
|
7
|
+
import pathlib
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
__all__ = ["FileDigest"]
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
BUFFER_SIZE = 64 * 1024
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class FileDigest(str):
|
|
17
|
+
"""Create a hash sum of a file."""
|
|
18
|
+
|
|
19
|
+
def __new__(cls, input_file, digest="blake2s"):
|
|
20
|
+
"""
|
|
21
|
+
Create a hash sum of a file.
|
|
22
|
+
|
|
23
|
+
Arguments
|
|
24
|
+
---------
|
|
25
|
+
input_file : pathlib.Path | str
|
|
26
|
+
for which file to compute a hash digest
|
|
27
|
+
digest : str | func
|
|
28
|
+
name of hash algorithm (s.
|
|
29
|
+
https://docs.python.org/3/library/hashlib.html) or function that
|
|
30
|
+
returns a hash sum
|
|
31
|
+
"""
|
|
32
|
+
input_file = pathlib.Path(input_file)
|
|
33
|
+
try:
|
|
34
|
+
with input_file.open("rb") as f:
|
|
35
|
+
hashdigest = hashlib.file_digest(f, digest)
|
|
36
|
+
except AttributeError: # Python<=3.10
|
|
37
|
+
hashdigest = hashlib.new(digest)
|
|
38
|
+
with input_file.open("rb") as f:
|
|
39
|
+
while data := f.read(BUFFER_SIZE):
|
|
40
|
+
hashdigest.update(data)
|
|
41
|
+
|
|
42
|
+
return hashdigest.hexdigest()
|
|
@@ -10,6 +10,11 @@ import shapely
|
|
|
10
10
|
from .exceptions import UnexpectedCrsError
|
|
11
11
|
|
|
12
12
|
|
|
13
|
+
FALLBACK_CRS = 3857
|
|
14
|
+
DATUM_NAME = "WGS 84"
|
|
15
|
+
VERY_SMALL_BUFFER_SIZE = 0.001
|
|
16
|
+
|
|
17
|
+
|
|
13
18
|
class GoodEnoughEquidistantCrs(pyproj.CRS):
|
|
14
19
|
"""
|
|
15
20
|
Find the most appropriate UTM reference system for the current extent.
|
|
@@ -33,13 +38,13 @@ class GoodEnoughEquidistantCrs(pyproj.CRS):
|
|
|
33
38
|
"""
|
|
34
39
|
if GoodEnoughEquidistantCrs._is_plausible_in_epsg4326(extent):
|
|
35
40
|
# default CRS in case we do not find any better match
|
|
36
|
-
crs = pyproj.CRS.from_epsg(
|
|
41
|
+
crs = pyproj.CRS.from_epsg(FALLBACK_CRS)
|
|
37
42
|
|
|
38
43
|
# buffer extent (so everything is a polygon)
|
|
39
|
-
extent = extent.buffer(
|
|
44
|
+
extent = extent.buffer(VERY_SMALL_BUFFER_SIZE)
|
|
40
45
|
|
|
41
46
|
crsinfo = pyproj.database.query_utm_crs_info(
|
|
42
|
-
datum_name=
|
|
47
|
+
datum_name=DATUM_NAME,
|
|
43
48
|
area_of_interest=pyproj.aoi.AreaOfInterest(*extent.bounds),
|
|
44
49
|
)
|
|
45
50
|
for candidate_crs in crsinfo:
|
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
"""Assign a cluster label column to a point-geometry GeoDataFrame."""
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
import warnings
|
|
8
|
+
|
|
9
|
+
import geopandas
|
|
10
|
+
import numpy
|
|
11
|
+
import shapely
|
|
12
|
+
import sklearn.cluster
|
|
13
|
+
|
|
14
|
+
from .good_enough_equidistant_crs import GoodEnoughEquidistantCrs
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
__all__ = ["SpatiallyClusteredGeoDataFrame"]
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class SpatiallyClusteredGeoDataFrame(geopandas.GeoDataFrame):
|
|
21
|
+
"""Assign a cluster label column to a point-geometry GeoDataFrame."""
|
|
22
|
+
|
|
23
|
+
def __init__(self, data, *args, eps=200.0, min_cluster_size=3, **kwargs):
|
|
24
|
+
"""
|
|
25
|
+
Assign a cluster label column to a point-geometry GeoDataFrame.
|
|
26
|
+
|
|
27
|
+
Arguments:
|
|
28
|
+
----------
|
|
29
|
+
data : geopandas.GeoDataFrame
|
|
30
|
+
input data set
|
|
31
|
+
eps : int | float
|
|
32
|
+
EPS parameter to a DBSCAN cluster algorithm, the maximum
|
|
33
|
+
intra-cluster distance between two points
|
|
34
|
+
*args, **kwargs: passed to geopandas.GeoDataFrame.__init__()
|
|
35
|
+
"""
|
|
36
|
+
geopandas.GeoDataFrame.__init__(self, *args, **kwargs)
|
|
37
|
+
|
|
38
|
+
EQUIDISTANT_CRS = GoodEnoughEquidistantCrs(
|
|
39
|
+
shapely.box(*data.to_crs("EPSG:4326").geometry.total_bounds)
|
|
40
|
+
)
|
|
41
|
+
|
|
42
|
+
# loosely based on:
|
|
43
|
+
# https://github.com/geopandas/scipy2018-geospatial-data/blob/master/08-clustering.ipynb
|
|
44
|
+
|
|
45
|
+
coordinates = numpy.vstack(
|
|
46
|
+
data.to_crs(EQUIDISTANT_CRS)["geometry"]
|
|
47
|
+
.apply(lambda geometry: numpy.hstack(geometry.xy))
|
|
48
|
+
.values
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
with warnings.catch_warnings():
|
|
52
|
+
warnings.filterwarnings(
|
|
53
|
+
"ignore",
|
|
54
|
+
"Could not find the number of physical cores",
|
|
55
|
+
category=UserWarning,
|
|
56
|
+
)
|
|
57
|
+
data["cluster"] = (
|
|
58
|
+
sklearn.cluster.DBSCAN(
|
|
59
|
+
eps=eps,
|
|
60
|
+
min_samples=min_cluster_size,
|
|
61
|
+
n_jobs=-1,
|
|
62
|
+
)
|
|
63
|
+
.fit(coordinates)
|
|
64
|
+
.labels_
|
|
65
|
+
)
|
|
66
|
+
|
|
67
|
+
with warnings.catch_warnings():
|
|
68
|
+
warnings.filterwarnings(
|
|
69
|
+
"ignore",
|
|
70
|
+
message=(
|
|
71
|
+
"You are adding a column named 'geometry' to a GeoDataFrame "
|
|
72
|
+
"constructed without an active geometry column"
|
|
73
|
+
),
|
|
74
|
+
category=FutureWarning,
|
|
75
|
+
)
|
|
76
|
+
for column in data.columns:
|
|
77
|
+
self[column] = data[column]
|
|
78
|
+
self.set_geometry("geometry")
|
|
@@ -0,0 +1,44 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
"""Create a copy or link of an input file in a cache directory."""
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
import filelock
|
|
7
|
+
import pathlib
|
|
8
|
+
import shutil
|
|
9
|
+
|
|
10
|
+
from .config import Config
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
__all__ = ["WorkingCopy"]
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class WorkingCopy(pathlib.Path):
|
|
17
|
+
"""Create a copy or link of an input file in a cache directory."""
|
|
18
|
+
|
|
19
|
+
def __new__(cls, path):
|
|
20
|
+
"""
|
|
21
|
+
Create a copy or link of an input file in a cache directory.
|
|
22
|
+
|
|
23
|
+
This exists because R5 creates temporary files in the directory of input
|
|
24
|
+
files. This can not only be annoying clutter, but also create problems
|
|
25
|
+
of concurrency, performance, etc., for instance, when the data comes
|
|
26
|
+
from a shared network drive or a read-only file system.
|
|
27
|
+
|
|
28
|
+
Arguments
|
|
29
|
+
---------
|
|
30
|
+
path : str or pathlib.Path
|
|
31
|
+
The file to create a copy or link of in a cache directory
|
|
32
|
+
"""
|
|
33
|
+
# try to first create a symbolic link, if that fails (e.g., on Windows),
|
|
34
|
+
# copy the file to a cache directory
|
|
35
|
+
path = pathlib.Path(path).absolute()
|
|
36
|
+
destination = pathlib.Path(Config().CACHE_DIR / path.name).absolute()
|
|
37
|
+
|
|
38
|
+
with filelock.FileLock(destination.parent / f"{destination.name}.lock"):
|
|
39
|
+
if not destination.exists():
|
|
40
|
+
try:
|
|
41
|
+
destination.symlink_to(path)
|
|
42
|
+
except OSError:
|
|
43
|
+
shutil.copyfile(f"{path}", f"{destination}")
|
|
44
|
+
return destination
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: r5py
|
|
3
|
-
Version: 1.0.
|
|
3
|
+
Version: 1.0.1
|
|
4
4
|
Summary: Python wrapper for the R5 routing analysis engine
|
|
5
5
|
Author: Christoph Fink, Willem Klumpenhouwer, Marcus Sairava, Rafael Pereira, Henrikki Tenkanen
|
|
6
6
|
License: GPL-3.0-or-later or MIT
|
|
@@ -13,12 +13,12 @@ Classifier: Programming Language :: Python :: 3
|
|
|
13
13
|
Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
|
|
14
14
|
Classifier: License :: OSI Approved :: MIT License
|
|
15
15
|
Classifier: Operating System :: OS Independent
|
|
16
|
-
Requires-Python: >=3.
|
|
16
|
+
Requires-Python: >=3.10
|
|
17
17
|
Description-Content-Type: text/markdown
|
|
18
18
|
License-File: LICENSE
|
|
19
19
|
Requires-Dist: ConfigArgParse
|
|
20
20
|
Requires-Dist: filelock
|
|
21
|
-
Requires-Dist:
|
|
21
|
+
Requires-Dist: geohexgrid
|
|
22
22
|
Requires-Dist: geopandas
|
|
23
23
|
Requires-Dist: joblib
|
|
24
24
|
Requires-Dist: jpype1
|
|
@@ -27,7 +27,10 @@ Requires-Dist: pandas>=2.1.0
|
|
|
27
27
|
Requires-Dist: psutil
|
|
28
28
|
Requires-Dist: pyproj
|
|
29
29
|
Requires-Dist: requests
|
|
30
|
+
Requires-Dist: scikit-learn
|
|
30
31
|
Requires-Dist: shapely>=2.0
|
|
32
|
+
Requires-Dist: simplification
|
|
33
|
+
Requires-Dist: typing_extensions; python_version < "3.13"
|
|
31
34
|
Provides-Extra: docs
|
|
32
35
|
Requires-Dist: contextily; extra == "docs"
|
|
33
36
|
Requires-Dist: folium; extra == "docs"
|
|
@@ -68,7 +71,7 @@ Requires-Dist: typing-extensions; extra == "tests"
|
|
|
68
71
|
[![downloads (pypi)][downloads-pypi-badge]][downloads-pypi-link]
|
|
69
72
|
[![downloads (conda-forge)][downloads-conda-forge-badge]][downloads-conda-forge-link]
|
|
70
73
|
<br />
|
|
71
|
-
[![
|
|
74
|
+
[![Unit tests][test-status-badge]][test-status-link]
|
|
72
75
|
[![Documentation Status][rtd-status-badge]][rtd-status-link]
|
|
73
76
|
[![Coverage][coverage-badge]][coverage-link]
|
|
74
77
|
<br />
|
|
@@ -135,9 +138,7 @@ your project better.
|
|
|
135
138
|
|
|
136
139
|
<!-- (1) badges -->
|
|
137
140
|
[binder-badge]: https://img.shields.io/badge/Try%20r5py%20with-binder-F5A252.svg?logo=
|
|
138
|
-
[binder-link]: https://
|
|
139
|
-
[build-status-badge]: https://github.com/r5py/r5py/actions/workflows/build-merged-pull-requests.yml/badge.svg
|
|
140
|
-
[build-status-link]: https://github.com/r5py/r5py/actions/workflows/build-merged-pull-requests.yml
|
|
141
|
+
[binder-link]: https://mybinder.org/v2/gh/r5py/r5py/stable?urlpath=tree/docs/user-guide/user-manual/quickstart.md
|
|
141
142
|
[coverage-badge]: https://codecov.io/gh/r5py/r5py/branch/main/graph/badge.svg?token=WG8RBMZBK6
|
|
142
143
|
[coverage-link]: https://codecov.io/gh/r5py/r5py
|
|
143
144
|
[doi-badge]: https://zenodo.org/badge/DOI/10.5281/zenodo.7060437.svg
|
|
@@ -150,11 +151,13 @@ your project better.
|
|
|
150
151
|
[rtd-status-link]: https://r5py.readthedocs.io/
|
|
151
152
|
[stable-version-badge]: https://img.shields.io/pypi/v/r5py?label=Stable
|
|
152
153
|
[stable-version-link]: https://github.com/r5py/r5py/releases
|
|
154
|
+
[test-status-badge]: https://github.com/r5py/r5py/actions/workflows/test.yml/badge.svg
|
|
155
|
+
[test-status-link]: https://github.com/r5py/r5py/actions/workflows/test.yml
|
|
153
156
|
|
|
154
157
|
<!-- (2) other links -->
|
|
155
158
|
[conda-create-env-from-yml]: https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
|
|
156
159
|
[conveyal]: https://www.conveyal.com/
|
|
157
|
-
[env-file]: https://github.com/r5py/r5py/blob/main/ci/
|
|
160
|
+
[env-file]: https://github.com/r5py/r5py/blob/main/ci/r5py.yaml
|
|
158
161
|
[geopandas]: https://geopandas.org/
|
|
159
162
|
[r5-github]: https://github.com/conveyal/r5/
|
|
160
163
|
[r5r-github]: https://github.com/ipeaGIT/r5r/
|
|
@@ -1,42 +1,47 @@
|
|
|
1
|
-
r5py/__init__.py,sha256=
|
|
1
|
+
r5py/__init__.py,sha256=G4_W_JrAJL28AYFzW0kImNgE-wAfjb15kpCwQulRuNc,546
|
|
2
2
|
r5py/__main__.py,sha256=Wvn0ChD7E-dCSZ8b8k_HhHG0KMOk0qMNFkijGuSH3-0,81
|
|
3
|
-
r5py/r5/__init__.py,sha256=
|
|
3
|
+
r5py/r5/__init__.py,sha256=6IQpvStxKeNxflizfRWh05USpdM18KBSB3UZ8Z_cGY4,1124
|
|
4
4
|
r5py/r5/access_leg.py,sha256=W3GfPEpqmWD1c4xipd6UcVIaBC-yb6srGCZV30E2dPY,293
|
|
5
5
|
r5py/r5/base_travel_time_matrix.py,sha256=Vl82Wkk2iANNy6L3r937yXNnQ9lmMOErGT_-fQnb1Ms,6978
|
|
6
6
|
r5py/r5/breakdown_stat.py,sha256=ZQkWA0hXlcRH3KVgtxPSNHP0FUDri8MWqdFk8EUdDMU,533
|
|
7
|
-
r5py/r5/detailed_itineraries.py,sha256=
|
|
7
|
+
r5py/r5/detailed_itineraries.py,sha256=Oo8JnF5jM2FsYFR1ma9r4y3evOmU7itDYs5M4vbqrZo,11245
|
|
8
8
|
r5py/r5/direct_leg.py,sha256=T7wX8puhOVIssCpflXthYs-G9OA8pasFbdz9p8k8teg,1054
|
|
9
9
|
r5py/r5/egress_leg.py,sha256=9rsCIcwlZUzoZE6q4imNY3VWpjJepO1IJvheVrlPi90,297
|
|
10
|
+
r5py/r5/isochrones.py,sha256=NNpV3Df4NeLdDksGERkb2Eos33ziMBGEeaWyCKPt5P8,12974
|
|
10
11
|
r5py/r5/regional_task.py,sha256=wTNx2NT3-GCEvDyz0e-_YYkVWtpE66dg2IlXTA1gI-4,23234
|
|
11
12
|
r5py/r5/scenario.py,sha256=nUNAlN3cO7E_b4sMpNqdL0FD7WQaQ49iIvh-k8l4YRM,763
|
|
12
|
-
r5py/r5/street_layer.py,sha256=
|
|
13
|
+
r5py/r5/street_layer.py,sha256=2AWhIE0-aTNGQenX6bF1xv5bmhR_LV0CgqM4BKgVYfk,2329
|
|
14
|
+
r5py/r5/street_segment.py,sha256=0O0QV8Eyfss-xHJShKGSQV1IusZfTrrxzu_AWl3KACo,1109
|
|
13
15
|
r5py/r5/transfer_leg.py,sha256=_IpzQJAyW4hDPO5V4k-ZjIPd3uyxhHPa4U6_b8UbKt4,311
|
|
14
16
|
r5py/r5/transit_layer.py,sha256=vVo_o10yDCzpujOQ99xdzmznwVjAbANjdDflQy2QOpI,3223
|
|
15
17
|
r5py/r5/transit_leg.py,sha256=R0Qc9YLMEXYu51NIdo7Q0bdmpYIJf5irEDXWrW6pZWE,221
|
|
16
18
|
r5py/r5/transport_mode.py,sha256=zHSqXb0R4oyjTp069CzO69IgoCKt0nmOAwsSy272rGo,3675
|
|
17
|
-
r5py/r5/transport_network.py,sha256=
|
|
18
|
-
r5py/r5/travel_time_matrix.py,sha256=
|
|
19
|
+
r5py/r5/transport_network.py,sha256=wy7jsIqcladee6FdUiOu0kJgMhGYymtJpfyjX9RRnNU,7925
|
|
20
|
+
r5py/r5/travel_time_matrix.py,sha256=Z_ErylB8mMD_eO2BogV3K_OFdYFVCcmIPmcMe7GGRiU,8003
|
|
19
21
|
r5py/r5/trip.py,sha256=AqhlhgYaGRL5jVzV08BhsqgWxe8f4wAb5HMP8HIGwc8,2944
|
|
20
22
|
r5py/r5/trip_leg.py,sha256=9E4vZpBEJCXIVqAXWJvnPloC-upEASKhFnjiuen8i8A,6495
|
|
21
|
-
r5py/r5/trip_planner.py,sha256=
|
|
22
|
-
r5py/util/__init__.py,sha256=
|
|
23
|
+
r5py/r5/trip_planner.py,sha256=QM3kSx-EC1VWtmReMtwxzG0CdbtlRi3-PpLxOAoHGrA,23754
|
|
24
|
+
r5py/util/__init__.py,sha256=3iqzebRt7RE1TMzzuGNzyXca0SBcBx1rHLs8eW3ijo4,940
|
|
23
25
|
r5py/util/camel_to_snake_case.py,sha256=zj5F3PNBvsuS6vqN4USeeo8NI-3hnscGhwun0G95AK0,673
|
|
24
26
|
r5py/util/classpath.py,sha256=b16xL94pDxTpc0vrf68R1nvZHnHqZXGcFJaN36eW3wc,2773
|
|
25
|
-
r5py/util/config.py,sha256=
|
|
27
|
+
r5py/util/config.py,sha256=5jz42iUaftgBfJ2HNnktZw5oXIPE2ytl3Nxt2RjjDoM,5267
|
|
26
28
|
r5py/util/contains_gtfs_data.py,sha256=ooX4hfVDKK0aqX1MI46jSFZ7dZ6riyXaORrgF6PUFrk,1211
|
|
27
29
|
r5py/util/data_validation.py,sha256=H5Mcp2nS4vu5RKym20mPnGpl-8d0SDchzDRJBrrL6WE,1039
|
|
28
30
|
r5py/util/environment.py,sha256=cbSM8TKTuhbXsTIIB06pMtydBOiqLkitF2Lj2asVTho,1082
|
|
29
31
|
r5py/util/exceptions.py,sha256=r65XUg_AJ_bTw8ARNj7A2-GbFZlSTrOAjDynx1pSD2Y,1049
|
|
30
|
-
r5py/util/
|
|
32
|
+
r5py/util/file_digest.py,sha256=95UbaxbTZLa54j1CupsKria028xZ8f6ueZsTupnjlYE,1061
|
|
33
|
+
r5py/util/good_enough_equidistant_crs.py,sha256=7FX3Ly3qegSV_YRA4OFk49LC29xUyTte1Gc5qOEi_9E,2458
|
|
31
34
|
r5py/util/jvm.py,sha256=NCwoYLDznXydcIRAZl2kzUQA6D6NCvzjVG74pm6ioR0,5027
|
|
32
35
|
r5py/util/memory_footprint.py,sha256=p8efCUs4UXRg6P1GrRxVs71m7SpEw2mASoz6PVTRvgQ,4672
|
|
33
36
|
r5py/util/parse_int_date.py,sha256=JmnV8TwdUdUp3kSp2e73ZSxCbRyqv2FmQzNt0I_MsM0,667
|
|
34
37
|
r5py/util/sample_data_set.py,sha256=aqUCx6drWD-WbCauewO4EzgOGnFr35mAZt-YHlqb92k,2463
|
|
35
38
|
r5py/util/snake_to_camel_case.py,sha256=uJ5hTCVDUEmIxTyy4LGFTbpGC_rtnjDZVQ2vmVRTQ4k,485
|
|
39
|
+
r5py/util/spatially_clustered_geodataframe.py,sha256=FxG8V3SSeK-PuCep565p1b3TNcl8oCkY764tk1L0sKM,2410
|
|
36
40
|
r5py/util/validating_requests_session.py,sha256=sH5FgpS9eGax5DG2qA2GrGuiwgTJgh8tKsZ9OiXKmvk,1807
|
|
37
41
|
r5py/util/warnings.py,sha256=CvxKWKlNO_p3riB4SkNqbU5AGPsaY_3-OzqaBObE3B8,139
|
|
38
|
-
r5py
|
|
39
|
-
r5py-1.0.
|
|
40
|
-
r5py-1.0.
|
|
41
|
-
r5py-1.0.
|
|
42
|
-
r5py-1.0.
|
|
42
|
+
r5py/util/working_copy.py,sha256=sbLbRCi39LtC-0tXxvh2y7ZN2D15chbhleCZXzHAFSc,1432
|
|
43
|
+
r5py-1.0.1.dist-info/LICENSE,sha256=VAnuGDX1TPylSN9G2xLa-urDpj_SQwn-qqs068dx4tk,51
|
|
44
|
+
r5py-1.0.1.dist-info/METADATA,sha256=URprsHGGXPJ0Ve6vCwJHw7R4iEZ7d7y84fJvmNdTrV4,9954
|
|
45
|
+
r5py-1.0.1.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
|
|
46
|
+
r5py-1.0.1.dist-info/top_level.txt,sha256=fOH1R85dkNDOI7jkg-lIsl5CQIO4fE5X868K9dTqs9U,5
|
|
47
|
+
r5py-1.0.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|