quantumflow-sdk 0.2.0__py3-none-any.whl → 0.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
quantumflow/__init__.py CHANGED
@@ -39,7 +39,7 @@ from quantumflow.core.teleportation import (
39
39
  )
40
40
  from quantumflow.core.workflow import QuantumWorkflow, WorkflowResult
41
41
 
42
- __version__ = "0.2.0"
42
+ __version__ = "0.2.1"
43
43
  __all__ = [
44
44
  # Core compression
45
45
  "QuantumCompressor",
@@ -2,12 +2,21 @@
2
2
  QuantumFlow Integrations.
3
3
 
4
4
  Provides integration with popular AI agent frameworks:
5
+ - OpenAI: Function calling for GPT-4/GPT-3.5-turbo
5
6
  - LangChain: Tools, Memory, and Chains
6
7
  - CrewAI: Tools and Agents
7
8
  - AutoGen: Agents and Function Tools
8
9
  - MCP: Model Context Protocol Server
9
10
  """
10
11
 
12
+ # OpenAI Integration
13
+ from quantumflow.integrations.openai_functions import (
14
+ get_quantum_functions as get_openai_functions,
15
+ get_quantum_tools as get_openai_tools,
16
+ execute_quantum_function,
17
+ QuantumAssistant,
18
+ )
19
+
11
20
  # LangChain Integration
12
21
  from quantumflow.integrations.langchain_tools import (
13
22
  QuantumCompressTool,
@@ -64,6 +73,11 @@ from quantumflow.integrations.mcp_server import (
64
73
  )
65
74
 
66
75
  __all__ = [
76
+ # OpenAI Functions
77
+ "get_openai_functions",
78
+ "get_openai_tools",
79
+ "execute_quantum_function",
80
+ "QuantumAssistant",
67
81
  # LangChain Tools
68
82
  "QuantumCompressTool",
69
83
  "QuantumGradientTool",
@@ -0,0 +1,578 @@
1
+ """
2
+ OpenAI Function Calling Integration for QuantumFlow.
3
+
4
+ Provides function definitions and execution handlers compatible with
5
+ OpenAI's function calling API (GPT-4, GPT-3.5-turbo).
6
+
7
+ Usage:
8
+ from openai import OpenAI
9
+ from quantumflow.integrations.openai_functions import (
10
+ get_quantum_functions,
11
+ execute_quantum_function,
12
+ )
13
+
14
+ client = OpenAI()
15
+ functions = get_quantum_functions()
16
+
17
+ response = client.chat.completions.create(
18
+ model="gpt-4",
19
+ messages=[{"role": "user", "content": "Compress these tokens: 100, 200, 150"}],
20
+ functions=functions,
21
+ function_call="auto",
22
+ )
23
+
24
+ # Execute the function call
25
+ if response.choices[0].message.function_call:
26
+ result = execute_quantum_function(
27
+ response.choices[0].message.function_call.name,
28
+ json.loads(response.choices[0].message.function_call.arguments)
29
+ )
30
+ """
31
+
32
+ import json
33
+ from typing import Any, Dict, List, Optional, Callable
34
+ from dataclasses import dataclass
35
+
36
+ from quantumflow.core.quantum_compressor import QuantumCompressor
37
+ from quantumflow.core.quantum_backprop import QuantumBackprop
38
+ from quantumflow.core.teleportation import QuantumTeleporter, QKDExchange, SecureMessenger
39
+ from quantumflow.core.entanglement import Entangler
40
+ from quantumflow.core.memory import QuantumMemory
41
+
42
+
43
+ # OpenAI Function Definitions
44
+ QUANTUM_FUNCTIONS: List[Dict[str, Any]] = [
45
+ {
46
+ "name": "quantum_compress",
47
+ "description": "Compress a list of token values using quantum amplitude encoding. Achieves ~53% compression while preserving semantic information.",
48
+ "parameters": {
49
+ "type": "object",
50
+ "properties": {
51
+ "tokens": {
52
+ "type": "array",
53
+ "items": {"type": "number"},
54
+ "description": "List of token values (integers or floats) to compress",
55
+ },
56
+ "backend": {
57
+ "type": "string",
58
+ "enum": ["simulator", "ibm", "aws"],
59
+ "description": "Quantum backend to use. Default: simulator",
60
+ },
61
+ },
62
+ "required": ["tokens"],
63
+ },
64
+ },
65
+ {
66
+ "name": "quantum_decompress",
67
+ "description": "Decompress previously quantum-compressed data back to original tokens.",
68
+ "parameters": {
69
+ "type": "object",
70
+ "properties": {
71
+ "compressed_state": {
72
+ "type": "array",
73
+ "items": {"type": "number"},
74
+ "description": "The compressed quantum state amplitudes",
75
+ },
76
+ "n_qubits": {
77
+ "type": "integer",
78
+ "description": "Number of qubits used in compression",
79
+ },
80
+ "original_length": {
81
+ "type": "integer",
82
+ "description": "Original number of tokens",
83
+ },
84
+ },
85
+ "required": ["compressed_state", "n_qubits", "original_length"],
86
+ },
87
+ },
88
+ {
89
+ "name": "quantum_gradient",
90
+ "description": "Compute gradients using quantum backpropagation via teleportation protocol. Achieves 97.78% gradient similarity with classical methods.",
91
+ "parameters": {
92
+ "type": "object",
93
+ "properties": {
94
+ "weights": {
95
+ "type": "array",
96
+ "items": {"type": "number"},
97
+ "description": "Neural network weights to compute gradients for",
98
+ },
99
+ "loss_value": {
100
+ "type": "number",
101
+ "description": "Current loss value",
102
+ },
103
+ "learning_rate": {
104
+ "type": "number",
105
+ "description": "Learning rate for gradient computation. Default: 0.01",
106
+ },
107
+ },
108
+ "required": ["weights", "loss_value"],
109
+ },
110
+ },
111
+ {
112
+ "name": "quantum_entangle",
113
+ "description": "Create quantum entanglement between data points for correlation analysis.",
114
+ "parameters": {
115
+ "type": "object",
116
+ "properties": {
117
+ "data_a": {
118
+ "type": "array",
119
+ "items": {"type": "number"},
120
+ "description": "First data array",
121
+ },
122
+ "data_b": {
123
+ "type": "array",
124
+ "items": {"type": "number"},
125
+ "description": "Second data array",
126
+ },
127
+ },
128
+ "required": ["data_a", "data_b"],
129
+ },
130
+ },
131
+ {
132
+ "name": "quantum_teleport",
133
+ "description": "Teleport quantum state information using entangled Bell pairs.",
134
+ "parameters": {
135
+ "type": "object",
136
+ "properties": {
137
+ "state": {
138
+ "type": "array",
139
+ "items": {"type": "number"},
140
+ "description": "Quantum state amplitudes to teleport",
141
+ },
142
+ "n_pairs": {
143
+ "type": "integer",
144
+ "description": "Number of Bell pairs to use. Default: 10",
145
+ },
146
+ },
147
+ "required": ["state"],
148
+ },
149
+ },
150
+ {
151
+ "name": "qkd_exchange",
152
+ "description": "Perform BB84 quantum key distribution for unconditionally secure key exchange.",
153
+ "parameters": {
154
+ "type": "object",
155
+ "properties": {
156
+ "key_length": {
157
+ "type": "integer",
158
+ "description": "Desired key length in bits. Default: 256",
159
+ },
160
+ "error_threshold": {
161
+ "type": "number",
162
+ "description": "Maximum acceptable error rate. Default: 0.11",
163
+ },
164
+ },
165
+ "required": [],
166
+ },
167
+ },
168
+ {
169
+ "name": "secure_message",
170
+ "description": "Send a message using quantum-secure encryption with QKD-generated keys.",
171
+ "parameters": {
172
+ "type": "object",
173
+ "properties": {
174
+ "message": {
175
+ "type": "string",
176
+ "description": "The message to encrypt and send",
177
+ },
178
+ "key_length": {
179
+ "type": "integer",
180
+ "description": "Key length for encryption. Default: 256",
181
+ },
182
+ },
183
+ "required": ["message"],
184
+ },
185
+ },
186
+ {
187
+ "name": "quantum_memory_store",
188
+ "description": "Store data in quantum memory with O(log n) space complexity.",
189
+ "parameters": {
190
+ "type": "object",
191
+ "properties": {
192
+ "key": {
193
+ "type": "string",
194
+ "description": "Storage key identifier",
195
+ },
196
+ "data": {
197
+ "type": "array",
198
+ "items": {"type": "number"},
199
+ "description": "Data to store",
200
+ },
201
+ },
202
+ "required": ["key", "data"],
203
+ },
204
+ },
205
+ {
206
+ "name": "quantum_memory_retrieve",
207
+ "description": "Retrieve data from quantum memory.",
208
+ "parameters": {
209
+ "type": "object",
210
+ "properties": {
211
+ "key": {
212
+ "type": "string",
213
+ "description": "Storage key identifier",
214
+ },
215
+ },
216
+ "required": ["key"],
217
+ },
218
+ },
219
+ ]
220
+
221
+
222
+ # Singleton instances for stateful operations
223
+ _compressor: Optional[QuantumCompressor] = None
224
+ _backprop: Optional[QuantumBackprop] = None
225
+ _teleporter: Optional[QuantumTeleporter] = None
226
+ _qkd: Optional[QKDExchange] = None
227
+ _messenger: Optional[SecureMessenger] = None
228
+ _entangler: Optional[Entangler] = None
229
+ _memory: Optional[QuantumMemory] = None
230
+
231
+
232
+ def _get_compressor(backend: str = "simulator") -> QuantumCompressor:
233
+ global _compressor
234
+ if _compressor is None:
235
+ _compressor = QuantumCompressor(backend=backend)
236
+ return _compressor
237
+
238
+
239
+ def _get_backprop() -> QuantumBackprop:
240
+ global _backprop
241
+ if _backprop is None:
242
+ _backprop = QuantumBackprop()
243
+ return _backprop
244
+
245
+
246
+ def _get_teleporter() -> QuantumTeleporter:
247
+ global _teleporter
248
+ if _teleporter is None:
249
+ _teleporter = QuantumTeleporter()
250
+ return _teleporter
251
+
252
+
253
+ def _get_qkd() -> QKDExchange:
254
+ global _qkd
255
+ if _qkd is None:
256
+ _qkd = QKDExchange()
257
+ return _qkd
258
+
259
+
260
+ def _get_messenger() -> SecureMessenger:
261
+ global _messenger
262
+ if _messenger is None:
263
+ _messenger = SecureMessenger()
264
+ return _messenger
265
+
266
+
267
+ def _get_entangler() -> Entangler:
268
+ global _entangler
269
+ if _entangler is None:
270
+ _entangler = Entangler()
271
+ return _entangler
272
+
273
+
274
+ def _get_memory() -> QuantumMemory:
275
+ global _memory
276
+ if _memory is None:
277
+ _memory = QuantumMemory()
278
+ return _memory
279
+
280
+
281
+ def get_quantum_functions() -> List[Dict[str, Any]]:
282
+ """
283
+ Get the list of quantum function definitions for OpenAI's function calling API.
284
+
285
+ Returns:
286
+ List of function definitions compatible with OpenAI's API.
287
+
288
+ Example:
289
+ from openai import OpenAI
290
+ from quantumflow.integrations.openai_functions import get_quantum_functions
291
+
292
+ client = OpenAI()
293
+ response = client.chat.completions.create(
294
+ model="gpt-4",
295
+ messages=[...],
296
+ functions=get_quantum_functions(),
297
+ function_call="auto",
298
+ )
299
+ """
300
+ return QUANTUM_FUNCTIONS.copy()
301
+
302
+
303
+ def get_quantum_tools() -> List[Dict[str, Any]]:
304
+ """
305
+ Get the list of quantum tools for OpenAI's tools API (newer format).
306
+
307
+ Returns:
308
+ List of tool definitions compatible with OpenAI's tools API.
309
+
310
+ Example:
311
+ from openai import OpenAI
312
+ from quantumflow.integrations.openai_functions import get_quantum_tools
313
+
314
+ client = OpenAI()
315
+ response = client.chat.completions.create(
316
+ model="gpt-4-turbo",
317
+ messages=[...],
318
+ tools=get_quantum_tools(),
319
+ tool_choice="auto",
320
+ )
321
+ """
322
+ return [
323
+ {"type": "function", "function": func}
324
+ for func in QUANTUM_FUNCTIONS
325
+ ]
326
+
327
+
328
+ def execute_quantum_function(name: str, arguments: Dict[str, Any]) -> Dict[str, Any]:
329
+ """
330
+ Execute a quantum function by name with the given arguments.
331
+
332
+ Args:
333
+ name: The function name to execute.
334
+ arguments: Dictionary of function arguments.
335
+
336
+ Returns:
337
+ Dictionary containing the function result.
338
+
339
+ Raises:
340
+ ValueError: If the function name is not recognized.
341
+
342
+ Example:
343
+ result = execute_quantum_function(
344
+ "quantum_compress",
345
+ {"tokens": [100, 200, 150, 175]}
346
+ )
347
+ """
348
+ handlers: Dict[str, Callable] = {
349
+ "quantum_compress": _handle_compress,
350
+ "quantum_decompress": _handle_decompress,
351
+ "quantum_gradient": _handle_gradient,
352
+ "quantum_entangle": _handle_entangle,
353
+ "quantum_teleport": _handle_teleport,
354
+ "qkd_exchange": _handle_qkd,
355
+ "secure_message": _handle_secure_message,
356
+ "quantum_memory_store": _handle_memory_store,
357
+ "quantum_memory_retrieve": _handle_memory_retrieve,
358
+ }
359
+
360
+ if name not in handlers:
361
+ raise ValueError(f"Unknown quantum function: {name}")
362
+
363
+ return handlers[name](arguments)
364
+
365
+
366
+ def _handle_compress(args: Dict[str, Any]) -> Dict[str, Any]:
367
+ tokens = args["tokens"]
368
+ backend = args.get("backend", "simulator")
369
+ compressor = _get_compressor(backend)
370
+ result = compressor.compress(tokens)
371
+ return {
372
+ "success": True,
373
+ "compressed_state": result.amplitudes.tolist() if hasattr(result.amplitudes, 'tolist') else list(result.amplitudes),
374
+ "n_qubits": result.n_qubits,
375
+ "original_length": len(tokens),
376
+ "compression_percentage": result.compression_percentage,
377
+ "fidelity": result.fidelity,
378
+ }
379
+
380
+
381
+ def _handle_decompress(args: Dict[str, Any]) -> Dict[str, Any]:
382
+ compressor = _get_compressor()
383
+ result = compressor.decompress(
384
+ compressed_state=args["compressed_state"],
385
+ n_qubits=args["n_qubits"],
386
+ original_length=args["original_length"],
387
+ )
388
+ return {
389
+ "success": True,
390
+ "tokens": result.tolist() if hasattr(result, 'tolist') else list(result),
391
+ }
392
+
393
+
394
+ def _handle_gradient(args: Dict[str, Any]) -> Dict[str, Any]:
395
+ backprop = _get_backprop()
396
+ weights = args["weights"]
397
+ loss = args["loss_value"]
398
+ lr = args.get("learning_rate", 0.01)
399
+ result = backprop.compute_gradients(weights, loss, learning_rate=lr)
400
+ return {
401
+ "success": True,
402
+ "gradients": result.gradients.tolist() if hasattr(result.gradients, 'tolist') else list(result.gradients),
403
+ "similarity": result.similarity,
404
+ "teleportation_fidelity": result.fidelity,
405
+ }
406
+
407
+
408
+ def _handle_entangle(args: Dict[str, Any]) -> Dict[str, Any]:
409
+ entangler = _get_entangler()
410
+ result = entangler.entangle(args["data_a"], args["data_b"])
411
+ return {
412
+ "success": True,
413
+ "correlation": result.correlation,
414
+ "bell_state": result.bell_state,
415
+ "fidelity": result.fidelity,
416
+ }
417
+
418
+
419
+ def _handle_teleport(args: Dict[str, Any]) -> Dict[str, Any]:
420
+ teleporter = _get_teleporter()
421
+ n_pairs = args.get("n_pairs", 10)
422
+ result = teleporter.teleport(args["state"], n_pairs=n_pairs)
423
+ return {
424
+ "success": True,
425
+ "teleported_state": result.state.tolist() if hasattr(result.state, 'tolist') else list(result.state),
426
+ "fidelity": result.fidelity,
427
+ "bell_pairs_used": n_pairs,
428
+ }
429
+
430
+
431
+ def _handle_qkd(args: Dict[str, Any]) -> Dict[str, Any]:
432
+ qkd = _get_qkd()
433
+ key_length = args.get("key_length", 256)
434
+ error_threshold = args.get("error_threshold", 0.11)
435
+ result = qkd.exchange(key_length=key_length, error_threshold=error_threshold)
436
+ return {
437
+ "success": True,
438
+ "key": result.key,
439
+ "key_length": len(result.key),
440
+ "error_rate": result.error_rate,
441
+ "secure": result.secure,
442
+ }
443
+
444
+
445
+ def _handle_secure_message(args: Dict[str, Any]) -> Dict[str, Any]:
446
+ messenger = _get_messenger()
447
+ message = args["message"]
448
+ key_length = args.get("key_length", 256)
449
+ result = messenger.send_message(message, key_length=key_length)
450
+ return {
451
+ "success": True,
452
+ "encrypted": result.encrypted,
453
+ "message_hash": result.message_hash,
454
+ "key_id": result.key_id,
455
+ }
456
+
457
+
458
+ def _handle_memory_store(args: Dict[str, Any]) -> Dict[str, Any]:
459
+ memory = _get_memory()
460
+ key = args["key"]
461
+ data = args["data"]
462
+ memory.store(key, data)
463
+ return {
464
+ "success": True,
465
+ "key": key,
466
+ "stored_length": len(data),
467
+ "quantum_bits_used": memory.get_usage(key),
468
+ }
469
+
470
+
471
+ def _handle_memory_retrieve(args: Dict[str, Any]) -> Dict[str, Any]:
472
+ memory = _get_memory()
473
+ key = args["key"]
474
+ data = memory.retrieve(key)
475
+ if data is None:
476
+ return {
477
+ "success": False,
478
+ "error": f"Key '{key}' not found in quantum memory",
479
+ }
480
+ return {
481
+ "success": True,
482
+ "key": key,
483
+ "data": data.tolist() if hasattr(data, 'tolist') else list(data),
484
+ }
485
+
486
+
487
+ @dataclass
488
+ class QuantumAssistant:
489
+ """
490
+ A helper class for integrating QuantumFlow with OpenAI's chat completions.
491
+
492
+ Example:
493
+ from openai import OpenAI
494
+ from quantumflow.integrations.openai_functions import QuantumAssistant
495
+
496
+ client = OpenAI()
497
+ assistant = QuantumAssistant(client)
498
+
499
+ # Chat with quantum capabilities
500
+ response = assistant.chat("Compress these tokens: 100, 200, 150, 175")
501
+ print(response)
502
+ """
503
+
504
+ client: Any # OpenAI client
505
+ model: str = "gpt-4"
506
+ messages: List[Dict[str, str]] = None
507
+
508
+ def __post_init__(self):
509
+ if self.messages is None:
510
+ self.messages = [
511
+ {
512
+ "role": "system",
513
+ "content": (
514
+ "You are a quantum computing assistant with access to QuantumFlow tools. "
515
+ "You can compress tokens, compute quantum gradients, perform quantum key distribution, "
516
+ "send secure messages, and manage quantum memory. Use these tools to help users "
517
+ "leverage quantum computing capabilities."
518
+ ),
519
+ }
520
+ ]
521
+
522
+ def chat(self, user_message: str) -> str:
523
+ """
524
+ Send a message and get a response, automatically handling function calls.
525
+
526
+ Args:
527
+ user_message: The user's message.
528
+
529
+ Returns:
530
+ The assistant's response text.
531
+ """
532
+ self.messages.append({"role": "user", "content": user_message})
533
+
534
+ response = self.client.chat.completions.create(
535
+ model=self.model,
536
+ messages=self.messages,
537
+ tools=get_quantum_tools(),
538
+ tool_choice="auto",
539
+ )
540
+
541
+ message = response.choices[0].message
542
+
543
+ # Handle tool calls
544
+ while message.tool_calls:
545
+ self.messages.append(message)
546
+
547
+ for tool_call in message.tool_calls:
548
+ function_name = tool_call.function.name
549
+ arguments = json.loads(tool_call.function.arguments)
550
+
551
+ try:
552
+ result = execute_quantum_function(function_name, arguments)
553
+ tool_response = json.dumps(result)
554
+ except Exception as e:
555
+ tool_response = json.dumps({"error": str(e)})
556
+
557
+ self.messages.append({
558
+ "role": "tool",
559
+ "tool_call_id": tool_call.id,
560
+ "content": tool_response,
561
+ })
562
+
563
+ # Get next response
564
+ response = self.client.chat.completions.create(
565
+ model=self.model,
566
+ messages=self.messages,
567
+ tools=get_quantum_tools(),
568
+ tool_choice="auto",
569
+ )
570
+ message = response.choices[0].message
571
+
572
+ # Final response
573
+ self.messages.append({"role": "assistant", "content": message.content})
574
+ return message.content
575
+
576
+ def reset(self):
577
+ """Reset the conversation history."""
578
+ self.__post_init__()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: quantumflow-sdk
3
- Version: 0.2.0
3
+ Version: 0.2.1
4
4
  Summary: Quantum-optimized AI agent workflow platform with 53% token compression
5
5
  Author-email: BlockQuantAI <hello@blockquant.ai>
6
6
  License-Expression: MIT
@@ -9,7 +9,7 @@ db/__init__.py,sha256=CLyI_3_AP7wQATuxLV2yHPvYDNikJYmH5BMQ3Oez1xw,280
9
9
  db/crud.py,sha256=q_HpP0RzsI7Lz1EMhEWzaMxdxzGAdVTBD2LALqbGLGQ,8175
10
10
  db/database.py,sha256=Md_e3z1t6NzKCCVdS4gRo0Pf6LNZvRClIX4QU8F8InI,2078
11
11
  db/models.py,sha256=W-NLqT6kGtXTN3r4DqVPSPglt-_iFDBlqB6e3nzflrg,5975
12
- quantumflow/__init__.py,sha256=-uhqJ01N-_CmulHeZleJraqd_52b7G3O8LFW42JgqPw,1731
12
+ quantumflow/__init__.py,sha256=lUdk3uElyzBJe_VRjAjbehIULFDcbmvFePieaayWIwk,1731
13
13
  quantumflow/algorithms/__init__.py,sha256=waXASb2jnbAcjV-xS1wx-bGmPJ5lCj111dJ14eB8KCo,916
14
14
  quantumflow/algorithms/compression/__init__.py,sha256=rejDCdZJEy1tamQdDaZodGbo8wA1rszlXEtwvYgZO7A,361
15
15
  quantumflow/algorithms/compression/amplitude_amplification.py,sha256=pebJiATIhwEdnAZY4CwInYPEKbtZufJ0Ka3OCdtvZRk,5440
@@ -48,15 +48,16 @@ quantumflow/core/quantum_backprop.py,sha256=XozlPtwinegI5NosxlW4TrpP5Zh58_yI8Wnx
48
48
  quantumflow/core/quantum_compressor.py,sha256=okzfF4-1uL22FcK9Xhng1DLzmIbz3ADN-R1xzFTv-tI,10094
49
49
  quantumflow/core/teleportation.py,sha256=_T5rRItjFramqWdqBNLwu_fY7Yr9pmdUda4L7STcwcA,12420
50
50
  quantumflow/core/workflow.py,sha256=HCazmlPns68TvIJytvcVoy0LSHb9sO-pUcDN5wPR2Zw,10116
51
- quantumflow/integrations/__init__.py,sha256=_QS8M9XxmBzRspuBCly6qocCopPCPsykFt-QhHWmfQ8,2571
51
+ quantumflow/integrations/__init__.py,sha256=ksQr0HHYMwTBY0_MgyT5MUBX9fdRn_QErDzHs8rQ7F8,2979
52
52
  quantumflow/integrations/autogen_tools.py,sha256=sTTX7mGFjUKbmVatlcY9N9F2NeR6vkIj-VYduE0SNus,14672
53
53
  quantumflow/integrations/crewai_agents.py,sha256=t62hukL0xg2FV54yczTAakNYQA-AOZ9AWWgzDnH0LGM,12604
54
54
  quantumflow/integrations/crewai_tools.py,sha256=bY5uJyKmCegt6Kb9hvErhvaKcCDlk2_injx50-krN7E,13744
55
55
  quantumflow/integrations/langchain_memory.py,sha256=wgYTdovncZNWpFwcNZjhNUqNRi661ys9GXaHYmbXP-Q,12608
56
56
  quantumflow/integrations/langchain_tools.py,sha256=bDrKZDYSRQJJGSNc9iay1Q4NoIR8CHmtZLcybS5ub_w,12401
57
57
  quantumflow/integrations/mcp_server.py,sha256=KJTAxJOyCVl7-whTD1iss9VZmyi0K1f4gNJCH8Cvl_0,21117
58
- quantumflow_sdk-0.2.0.dist-info/METADATA,sha256=wVYAu4ziVhtNxe2Fxachem29PJq4AnM6NGPRpBWPkWw,5461
59
- quantumflow_sdk-0.2.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
60
- quantumflow_sdk-0.2.0.dist-info/entry_points.txt,sha256=ebX2acoOLgym42XZEqym3OfKCYiPz-mFuPSSGsHFz4c,53
61
- quantumflow_sdk-0.2.0.dist-info/top_level.txt,sha256=hEr_GRvoZ3-83naVIhNuJvoAND1aCvhBag_ynxQguIo,19
62
- quantumflow_sdk-0.2.0.dist-info/RECORD,,
58
+ quantumflow/integrations/openai_functions.py,sha256=8jQH4XkBxK9AbwC47BEYVIrbRAEWGdsMyw0xbZrGNB4,18412
59
+ quantumflow_sdk-0.2.1.dist-info/METADATA,sha256=QcTBk2aAfAE7goV311z5qrdubgYNhormcxUNdYqGsSI,5461
60
+ quantumflow_sdk-0.2.1.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
61
+ quantumflow_sdk-0.2.1.dist-info/entry_points.txt,sha256=ebX2acoOLgym42XZEqym3OfKCYiPz-mFuPSSGsHFz4c,53
62
+ quantumflow_sdk-0.2.1.dist-info/top_level.txt,sha256=hEr_GRvoZ3-83naVIhNuJvoAND1aCvhBag_ynxQguIo,19
63
+ quantumflow_sdk-0.2.1.dist-info/RECORD,,