quantumflow-sdk 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (60) hide show
  1. api/__init__.py +1 -0
  2. api/auth.py +208 -0
  3. api/main.py +403 -0
  4. api/models.py +137 -0
  5. api/routes/__init__.py +1 -0
  6. api/routes/auth_routes.py +234 -0
  7. api/routes/teleport_routes.py +415 -0
  8. db/__init__.py +15 -0
  9. db/crud.py +319 -0
  10. db/database.py +93 -0
  11. db/models.py +197 -0
  12. quantumflow/__init__.py +47 -0
  13. quantumflow/algorithms/__init__.py +48 -0
  14. quantumflow/algorithms/compression/__init__.py +7 -0
  15. quantumflow/algorithms/compression/amplitude_amplification.py +189 -0
  16. quantumflow/algorithms/compression/qft_compression.py +133 -0
  17. quantumflow/algorithms/compression/token_compression.py +261 -0
  18. quantumflow/algorithms/cryptography/__init__.py +6 -0
  19. quantumflow/algorithms/cryptography/qkd.py +205 -0
  20. quantumflow/algorithms/cryptography/qrng.py +231 -0
  21. quantumflow/algorithms/machine_learning/__init__.py +7 -0
  22. quantumflow/algorithms/machine_learning/qnn.py +276 -0
  23. quantumflow/algorithms/machine_learning/qsvm.py +249 -0
  24. quantumflow/algorithms/machine_learning/vqe.py +229 -0
  25. quantumflow/algorithms/optimization/__init__.py +7 -0
  26. quantumflow/algorithms/optimization/grover.py +223 -0
  27. quantumflow/algorithms/optimization/qaoa.py +251 -0
  28. quantumflow/algorithms/optimization/quantum_annealing.py +237 -0
  29. quantumflow/algorithms/utility/__init__.py +6 -0
  30. quantumflow/algorithms/utility/circuit_optimizer.py +194 -0
  31. quantumflow/algorithms/utility/error_correction.py +330 -0
  32. quantumflow/api/__init__.py +1 -0
  33. quantumflow/api/routes/__init__.py +4 -0
  34. quantumflow/api/routes/billing_routes.py +520 -0
  35. quantumflow/backends/__init__.py +33 -0
  36. quantumflow/backends/base_backend.py +184 -0
  37. quantumflow/backends/braket_backend.py +345 -0
  38. quantumflow/backends/ibm_backend.py +112 -0
  39. quantumflow/backends/simulator_backend.py +86 -0
  40. quantumflow/billing/__init__.py +25 -0
  41. quantumflow/billing/models.py +126 -0
  42. quantumflow/billing/stripe_service.py +619 -0
  43. quantumflow/core/__init__.py +12 -0
  44. quantumflow/core/entanglement.py +164 -0
  45. quantumflow/core/memory.py +147 -0
  46. quantumflow/core/quantum_backprop.py +394 -0
  47. quantumflow/core/quantum_compressor.py +309 -0
  48. quantumflow/core/teleportation.py +386 -0
  49. quantumflow/integrations/__init__.py +107 -0
  50. quantumflow/integrations/autogen_tools.py +501 -0
  51. quantumflow/integrations/crewai_agents.py +425 -0
  52. quantumflow/integrations/crewai_tools.py +407 -0
  53. quantumflow/integrations/langchain_memory.py +385 -0
  54. quantumflow/integrations/langchain_tools.py +366 -0
  55. quantumflow/integrations/mcp_server.py +575 -0
  56. quantumflow_sdk-0.1.0.dist-info/METADATA +190 -0
  57. quantumflow_sdk-0.1.0.dist-info/RECORD +60 -0
  58. quantumflow_sdk-0.1.0.dist-info/WHEEL +5 -0
  59. quantumflow_sdk-0.1.0.dist-info/entry_points.txt +2 -0
  60. quantumflow_sdk-0.1.0.dist-info/top_level.txt +3 -0
@@ -0,0 +1,251 @@
1
+ """
2
+ Quantum Approximate Optimization Algorithm (QAOA).
3
+
4
+ Solves combinatorial optimization problems like MaxCut, TSP, etc.
5
+ Hybrid quantum-classical algorithm using parameterized circuits.
6
+ """
7
+
8
+ import math
9
+ from dataclasses import dataclass
10
+ from typing import Optional, Callable
11
+ import numpy as np
12
+ from qiskit import QuantumCircuit
13
+
14
+ from quantumflow.backends.base_backend import QuantumBackend, get_backend, BackendType
15
+
16
+
17
+ @dataclass
18
+ class QAOAResult:
19
+ """Result from QAOA optimization."""
20
+
21
+ circuit: QuantumCircuit
22
+ optimal_params: np.ndarray
23
+ best_solution: str
24
+ best_cost: float
25
+ cost_history: list[float]
26
+ n_iterations: int
27
+
28
+
29
+ class QAOA:
30
+ """
31
+ Quantum Approximate Optimization Algorithm.
32
+
33
+ Solves combinatorial optimization by:
34
+ 1. Encoding problem as cost Hamiltonian
35
+ 2. Alternating cost and mixer layers
36
+ 3. Classical optimization of parameters
37
+
38
+ Supported problems:
39
+ - MaxCut
40
+ - Weighted MaxCut
41
+ - Custom QUBO/Ising problems
42
+
43
+ Example:
44
+ >>> qaoa = QAOA(p=2)
45
+ >>> edges = [(0, 1), (1, 2), (2, 0)]
46
+ >>> result = qaoa.maxcut(edges, n_nodes=3)
47
+ >>> print(f"Best cut: {result.best_solution}, Cost: {result.best_cost}")
48
+ """
49
+
50
+ def __init__(
51
+ self,
52
+ backend: BackendType | str = BackendType.AUTO,
53
+ p: int = 1,
54
+ shots: int = 1024,
55
+ ):
56
+ """
57
+ Initialize QAOA.
58
+
59
+ Args:
60
+ backend: Quantum backend
61
+ p: Number of QAOA layers (depth)
62
+ shots: Measurement shots per evaluation
63
+ """
64
+ self.backend = get_backend(backend)
65
+ self.p = p
66
+ self.shots = shots
67
+ self._connected = False
68
+
69
+ def _ensure_connected(self):
70
+ if not self._connected:
71
+ self.backend.connect()
72
+ self._connected = True
73
+
74
+ def maxcut(
75
+ self,
76
+ edges: list[tuple[int, int]],
77
+ n_nodes: int,
78
+ weights: Optional[list[float]] = None,
79
+ max_iterations: int = 100,
80
+ ) -> QAOAResult:
81
+ """
82
+ Solve MaxCut problem.
83
+
84
+ Args:
85
+ edges: List of (i, j) edges
86
+ n_nodes: Number of nodes
87
+ weights: Optional edge weights
88
+ max_iterations: Max optimization iterations
89
+
90
+ Returns:
91
+ QAOAResult with optimal solution
92
+ """
93
+ if weights is None:
94
+ weights = [1.0] * len(edges)
95
+
96
+ # Build cost function
97
+ def cost_fn(bitstring: str) -> float:
98
+ cost = 0
99
+ for (i, j), w in zip(edges, weights):
100
+ if bitstring[i] != bitstring[j]:
101
+ cost += w
102
+ return cost
103
+
104
+ return self._optimize(
105
+ n_qubits=n_nodes,
106
+ cost_hamiltonian=self._maxcut_hamiltonian(edges, weights, n_nodes),
107
+ cost_fn=cost_fn,
108
+ max_iterations=max_iterations,
109
+ )
110
+
111
+ def optimize_qubo(
112
+ self,
113
+ Q: np.ndarray,
114
+ max_iterations: int = 100,
115
+ ) -> QAOAResult:
116
+ """
117
+ Solve QUBO (Quadratic Unconstrained Binary Optimization).
118
+
119
+ Args:
120
+ Q: QUBO matrix (n x n)
121
+ max_iterations: Max optimization iterations
122
+
123
+ Returns:
124
+ QAOAResult with optimal solution
125
+ """
126
+ n_qubits = Q.shape[0]
127
+
128
+ def cost_fn(bitstring: str) -> float:
129
+ x = np.array([int(b) for b in bitstring])
130
+ return float(x @ Q @ x)
131
+
132
+ return self._optimize(
133
+ n_qubits=n_qubits,
134
+ cost_hamiltonian=self._qubo_hamiltonian(Q),
135
+ cost_fn=cost_fn,
136
+ max_iterations=max_iterations,
137
+ )
138
+
139
+ def _optimize(
140
+ self,
141
+ n_qubits: int,
142
+ cost_hamiltonian: Callable[[QuantumCircuit, float], None],
143
+ cost_fn: Callable[[str], float],
144
+ max_iterations: int,
145
+ ) -> QAOAResult:
146
+ """Run QAOA optimization loop."""
147
+ self._ensure_connected()
148
+
149
+ # Initialize parameters: gamma (cost), beta (mixer)
150
+ params = np.random.uniform(0, np.pi, 2 * self.p)
151
+ cost_history = []
152
+
153
+ # Simple gradient-free optimization (COBYLA-style)
154
+ best_params = params.copy()
155
+ best_cost = float('inf')
156
+
157
+ for iteration in range(max_iterations):
158
+ # Evaluate current parameters
159
+ circuit = self._build_circuit(n_qubits, params, cost_hamiltonian)
160
+ result = self.backend.execute(circuit, shots=self.shots)
161
+
162
+ # Calculate expected cost
163
+ total_cost = 0
164
+ for bitstring, count in result.counts.items():
165
+ total_cost += cost_fn(bitstring) * count
166
+ avg_cost = total_cost / self.shots
167
+
168
+ cost_history.append(avg_cost)
169
+
170
+ if avg_cost < best_cost:
171
+ best_cost = avg_cost
172
+ best_params = params.copy()
173
+
174
+ # Simple parameter update (gradient approximation)
175
+ for i in range(len(params)):
176
+ delta = 0.1 * (np.random.random() - 0.5)
177
+ params[i] += delta
178
+
179
+ # Get best solution
180
+ final_circuit = self._build_circuit(n_qubits, best_params, cost_hamiltonian)
181
+ final_result = self.backend.execute(final_circuit, shots=self.shots)
182
+ best_solution = max(final_result.counts, key=final_result.counts.get)
183
+
184
+ return QAOAResult(
185
+ circuit=final_circuit,
186
+ optimal_params=best_params,
187
+ best_solution=best_solution,
188
+ best_cost=best_cost,
189
+ cost_history=cost_history,
190
+ n_iterations=max_iterations,
191
+ )
192
+
193
+ def _build_circuit(
194
+ self,
195
+ n_qubits: int,
196
+ params: np.ndarray,
197
+ cost_hamiltonian: Callable,
198
+ ) -> QuantumCircuit:
199
+ """Build QAOA circuit with given parameters."""
200
+ qc = QuantumCircuit(n_qubits, n_qubits, name="qaoa")
201
+
202
+ # Initial superposition
203
+ qc.h(range(n_qubits))
204
+
205
+ # QAOA layers
206
+ for layer in range(self.p):
207
+ gamma = params[2 * layer]
208
+ beta = params[2 * layer + 1]
209
+
210
+ # Cost layer
211
+ cost_hamiltonian(qc, gamma)
212
+
213
+ # Mixer layer (X rotations)
214
+ for i in range(n_qubits):
215
+ qc.rx(2 * beta, i)
216
+
217
+ # Measure
218
+ qc.measure(range(n_qubits), range(n_qubits))
219
+
220
+ return qc
221
+
222
+ def _maxcut_hamiltonian(
223
+ self,
224
+ edges: list[tuple[int, int]],
225
+ weights: list[float],
226
+ n_qubits: int,
227
+ ) -> Callable:
228
+ """Create MaxCut cost Hamiltonian."""
229
+ def apply_cost(qc: QuantumCircuit, gamma: float):
230
+ for (i, j), w in zip(edges, weights):
231
+ qc.rzz(w * gamma, i, j)
232
+ return apply_cost
233
+
234
+ def _qubo_hamiltonian(self, Q: np.ndarray) -> Callable:
235
+ """Create QUBO cost Hamiltonian."""
236
+ n = Q.shape[0]
237
+
238
+ def apply_cost(qc: QuantumCircuit, gamma: float):
239
+ # Diagonal terms
240
+ for i in range(n):
241
+ if Q[i, i] != 0:
242
+ qc.rz(Q[i, i] * gamma, i)
243
+
244
+ # Off-diagonal terms
245
+ for i in range(n):
246
+ for j in range(i + 1, n):
247
+ if Q[i, j] != 0 or Q[j, i] != 0:
248
+ coeff = Q[i, j] + Q[j, i]
249
+ qc.rzz(coeff * gamma / 2, i, j)
250
+
251
+ return apply_cost
@@ -0,0 +1,237 @@
1
+ """
2
+ Quantum Annealing Simulation.
3
+
4
+ Simulates quantum annealing for optimization problems.
5
+ Note: True quantum annealing requires specialized hardware (D-Wave).
6
+ """
7
+
8
+ import math
9
+ from dataclasses import dataclass
10
+ from typing import Optional
11
+ import numpy as np
12
+ from qiskit import QuantumCircuit
13
+
14
+ from quantumflow.backends.base_backend import QuantumBackend, get_backend, BackendType
15
+
16
+
17
+ @dataclass
18
+ class AnnealingResult:
19
+ """Result from quantum annealing."""
20
+
21
+ circuit: QuantumCircuit
22
+ best_solution: str
23
+ best_energy: float
24
+ energy_history: list[float]
25
+ n_steps: int
26
+
27
+
28
+ class QuantumAnnealing:
29
+ """
30
+ Quantum Annealing Simulation using gate-based circuits.
31
+
32
+ Simulates the annealing process by:
33
+ 1. Starting in ground state of transverse field
34
+ 2. Slowly evolving to problem Hamiltonian
35
+ 3. Measuring final state
36
+
37
+ Best for: Optimization problems expressible as Ising models.
38
+
39
+ Example:
40
+ >>> qa = QuantumAnnealing()
41
+ >>> J = {(0,1): -1, (1,2): -1} # Ferromagnetic coupling
42
+ >>> result = qa.anneal(J, h={}, n_qubits=3)
43
+ >>> print(f"Ground state: {result.best_solution}")
44
+ """
45
+
46
+ def __init__(
47
+ self,
48
+ backend: BackendType | str = BackendType.AUTO,
49
+ n_steps: int = 20,
50
+ ):
51
+ """
52
+ Initialize quantum annealing.
53
+
54
+ Args:
55
+ backend: Quantum backend
56
+ n_steps: Number of annealing steps (Trotter steps)
57
+ """
58
+ self.backend = get_backend(backend)
59
+ self.n_steps = n_steps
60
+ self._connected = False
61
+
62
+ def _ensure_connected(self):
63
+ if not self._connected:
64
+ self.backend.connect()
65
+ self._connected = True
66
+
67
+ def anneal(
68
+ self,
69
+ J: dict[tuple[int, int], float],
70
+ h: dict[int, float],
71
+ n_qubits: int,
72
+ shots: int = 1024,
73
+ ) -> AnnealingResult:
74
+ """
75
+ Run quantum annealing for Ising problem.
76
+
77
+ Hamiltonian: H = -sum_ij J_ij * Z_i * Z_j - sum_i h_i * Z_i
78
+
79
+ Args:
80
+ J: Coupling strengths {(i,j): strength}
81
+ h: Local fields {i: field}
82
+ n_qubits: Number of qubits
83
+ shots: Measurement shots
84
+
85
+ Returns:
86
+ AnnealingResult with ground state
87
+ """
88
+ self._ensure_connected()
89
+
90
+ # Build annealing circuit
91
+ circuit = self._build_annealing_circuit(J, h, n_qubits)
92
+
93
+ # Execute
94
+ result = self.backend.execute(circuit, shots=shots)
95
+
96
+ # Find ground state (lowest energy)
97
+ best_solution = None
98
+ best_energy = float('inf')
99
+
100
+ for bitstring, count in result.counts.items():
101
+ energy = self._calculate_energy(bitstring, J, h)
102
+ if energy < best_energy:
103
+ best_energy = energy
104
+ best_solution = bitstring
105
+
106
+ # Simulate energy history (for visualization)
107
+ energy_history = self._simulate_energy_history(best_energy)
108
+
109
+ return AnnealingResult(
110
+ circuit=circuit,
111
+ best_solution=best_solution or "0" * n_qubits,
112
+ best_energy=best_energy,
113
+ energy_history=energy_history,
114
+ n_steps=self.n_steps,
115
+ )
116
+
117
+ def anneal_qubo(
118
+ self,
119
+ Q: np.ndarray,
120
+ shots: int = 1024,
121
+ ) -> AnnealingResult:
122
+ """
123
+ Run quantum annealing for QUBO problem.
124
+
125
+ Args:
126
+ Q: QUBO matrix
127
+ shots: Measurement shots
128
+
129
+ Returns:
130
+ AnnealingResult
131
+ """
132
+ n_qubits = Q.shape[0]
133
+
134
+ # Convert QUBO to Ising
135
+ J, h, offset = self._qubo_to_ising(Q)
136
+
137
+ result = self.anneal(J, h, n_qubits, shots)
138
+ result.best_energy += offset
139
+
140
+ return result
141
+
142
+ def _build_annealing_circuit(
143
+ self,
144
+ J: dict[tuple[int, int], float],
145
+ h: dict[int, float],
146
+ n_qubits: int,
147
+ ) -> QuantumCircuit:
148
+ """Build circuit simulating quantum annealing."""
149
+ circuit = QuantumCircuit(n_qubits, n_qubits, name="annealing")
150
+
151
+ # Start in |+⟩^n (ground state of transverse field)
152
+ circuit.h(range(n_qubits))
153
+
154
+ # Annealing schedule: s goes from 0 to 1
155
+ dt = 1.0 / self.n_steps
156
+
157
+ for step in range(self.n_steps):
158
+ s = (step + 1) / self.n_steps # Annealing parameter
159
+
160
+ # Transverse field (decreasing)
161
+ gamma = (1 - s) * math.pi / 4
162
+ for i in range(n_qubits):
163
+ circuit.rx(2 * gamma * dt, i)
164
+
165
+ # Problem Hamiltonian (increasing)
166
+ beta = s * math.pi / 4
167
+
168
+ # ZZ interactions
169
+ for (i, j), strength in J.items():
170
+ circuit.rzz(2 * strength * beta * dt, i, j)
171
+
172
+ # Z terms
173
+ for i, field in h.items():
174
+ circuit.rz(2 * field * beta * dt, i)
175
+
176
+ # Measure
177
+ circuit.measure(range(n_qubits), range(n_qubits))
178
+
179
+ return circuit
180
+
181
+ def _calculate_energy(
182
+ self,
183
+ bitstring: str,
184
+ J: dict[tuple[int, int], float],
185
+ h: dict[int, float],
186
+ ) -> float:
187
+ """Calculate Ising energy for a bitstring."""
188
+ # Convert to spins (+1/-1)
189
+ spins = [1 if b == '0' else -1 for b in bitstring]
190
+
191
+ energy = 0.0
192
+
193
+ # Coupling terms
194
+ for (i, j), strength in J.items():
195
+ energy -= strength * spins[i] * spins[j]
196
+
197
+ # Field terms
198
+ for i, field in h.items():
199
+ energy -= field * spins[i]
200
+
201
+ return energy
202
+
203
+ def _qubo_to_ising(
204
+ self,
205
+ Q: np.ndarray,
206
+ ) -> tuple[dict, dict, float]:
207
+ """Convert QUBO to Ising formulation."""
208
+ n = Q.shape[0]
209
+ J = {}
210
+ h = {}
211
+ offset = 0.0
212
+
213
+ for i in range(n):
214
+ for j in range(i, n):
215
+ if i == j:
216
+ h[i] = Q[i, i] / 2
217
+ offset += Q[i, i] / 2
218
+ else:
219
+ coupling = (Q[i, j] + Q[j, i]) / 4
220
+ if coupling != 0:
221
+ J[(i, j)] = coupling
222
+ h[i] = h.get(i, 0) + (Q[i, j] + Q[j, i]) / 4
223
+ h[j] = h.get(j, 0) + (Q[i, j] + Q[j, i]) / 4
224
+ offset += (Q[i, j] + Q[j, i]) / 4
225
+
226
+ return J, h, offset
227
+
228
+ def _simulate_energy_history(self, final_energy: float) -> list[float]:
229
+ """Simulate energy evolution during annealing."""
230
+ history = []
231
+ for step in range(self.n_steps):
232
+ s = step / self.n_steps
233
+ # Energy decreases as we anneal
234
+ energy = final_energy + (1 - s) * abs(final_energy) * 2
235
+ history.append(energy)
236
+ history.append(final_energy)
237
+ return history
@@ -0,0 +1,6 @@
1
+ """Utility Algorithms."""
2
+
3
+ from quantumflow.algorithms.utility.error_correction import ErrorCorrection
4
+ from quantumflow.algorithms.utility.circuit_optimizer import CircuitOptimizer
5
+
6
+ __all__ = ["ErrorCorrection", "CircuitOptimizer"]
@@ -0,0 +1,194 @@
1
+ """
2
+ Quantum Circuit Optimizer.
3
+
4
+ Optimizes quantum circuits for better performance on real hardware.
5
+ """
6
+
7
+ from dataclasses import dataclass
8
+ from typing import Optional
9
+ import numpy as np
10
+ from qiskit import QuantumCircuit, transpile
11
+
12
+ from quantumflow.backends.base_backend import QuantumBackend, get_backend, BackendType
13
+
14
+
15
+ @dataclass
16
+ class OptimizationResult:
17
+ """Result from circuit optimization."""
18
+
19
+ original_circuit: QuantumCircuit
20
+ optimized_circuit: QuantumCircuit
21
+ original_depth: int
22
+ optimized_depth: int
23
+ original_gates: int
24
+ optimized_gates: int
25
+ depth_reduction: float
26
+ gate_reduction: float
27
+
28
+
29
+ class CircuitOptimizer:
30
+ """
31
+ Quantum Circuit Optimizer.
32
+
33
+ Applies various optimization techniques:
34
+ - Gate cancellation
35
+ - Gate fusion
36
+ - Commutation optimization
37
+ - Hardware-specific transpilation
38
+
39
+ Example:
40
+ >>> opt = CircuitOptimizer()
41
+ >>> result = opt.optimize(circuit)
42
+ >>> print(f"Depth reduced by {result.depth_reduction:.1%}")
43
+ """
44
+
45
+ def __init__(
46
+ self,
47
+ backend: BackendType | str = BackendType.AUTO,
48
+ optimization_level: int = 2,
49
+ ):
50
+ """
51
+ Initialize optimizer.
52
+
53
+ Args:
54
+ backend: Target backend for optimization
55
+ optimization_level: 0-3 (higher = more optimization)
56
+ """
57
+ self.backend = get_backend(backend)
58
+ self.optimization_level = optimization_level
59
+
60
+ def optimize(
61
+ self,
62
+ circuit: QuantumCircuit,
63
+ target_basis: Optional[list[str]] = None,
64
+ ) -> OptimizationResult:
65
+ """
66
+ Optimize a quantum circuit.
67
+
68
+ Args:
69
+ circuit: Circuit to optimize
70
+ target_basis: Target gate set (e.g., ['cx', 'u3'])
71
+
72
+ Returns:
73
+ OptimizationResult with optimized circuit
74
+ """
75
+ original_depth = circuit.depth()
76
+ original_gates = sum(circuit.count_ops().values())
77
+
78
+ # Apply optimizations
79
+ optimized = self._apply_optimizations(circuit)
80
+
81
+ # Transpile for target
82
+ if target_basis:
83
+ optimized = transpile(
84
+ optimized,
85
+ basis_gates=target_basis,
86
+ optimization_level=self.optimization_level,
87
+ )
88
+ else:
89
+ optimized = transpile(
90
+ optimized,
91
+ optimization_level=self.optimization_level,
92
+ )
93
+
94
+ optimized_depth = optimized.depth()
95
+ optimized_gates = sum(optimized.count_ops().values())
96
+
97
+ depth_reduction = 1 - (optimized_depth / original_depth) if original_depth > 0 else 0
98
+ gate_reduction = 1 - (optimized_gates / original_gates) if original_gates > 0 else 0
99
+
100
+ return OptimizationResult(
101
+ original_circuit=circuit,
102
+ optimized_circuit=optimized,
103
+ original_depth=original_depth,
104
+ optimized_depth=optimized_depth,
105
+ original_gates=original_gates,
106
+ optimized_gates=optimized_gates,
107
+ depth_reduction=depth_reduction,
108
+ gate_reduction=gate_reduction,
109
+ )
110
+
111
+ def _apply_optimizations(self, circuit: QuantumCircuit) -> QuantumCircuit:
112
+ """Apply custom optimization passes using transpile."""
113
+ # Use transpile with high optimization level
114
+ return transpile(circuit, optimization_level=3)
115
+
116
+ def cancel_redundant_gates(self, circuit: QuantumCircuit) -> QuantumCircuit:
117
+ """Cancel adjacent inverse gates."""
118
+ return transpile(circuit, optimization_level=2)
119
+
120
+ def fuse_single_qubit_gates(self, circuit: QuantumCircuit) -> QuantumCircuit:
121
+ """Fuse consecutive single-qubit gates."""
122
+ return transpile(circuit, optimization_level=2)
123
+
124
+ def optimize_for_hardware(
125
+ self,
126
+ circuit: QuantumCircuit,
127
+ coupling_map: Optional[list[list[int]]] = None,
128
+ ) -> QuantumCircuit:
129
+ """
130
+ Optimize circuit for specific hardware topology.
131
+
132
+ Args:
133
+ circuit: Circuit to optimize
134
+ coupling_map: Hardware qubit connectivity
135
+
136
+ Returns:
137
+ Hardware-optimized circuit
138
+ """
139
+ return transpile(
140
+ circuit,
141
+ coupling_map=coupling_map,
142
+ optimization_level=self.optimization_level,
143
+ )
144
+
145
+ def estimate_cost(self, circuit: QuantumCircuit) -> dict:
146
+ """
147
+ Estimate circuit execution cost.
148
+
149
+ Returns:
150
+ Dict with depth, gate counts, estimated time
151
+ """
152
+ ops = circuit.count_ops()
153
+
154
+ # Rough gate time estimates (in microseconds)
155
+ gate_times = {
156
+ 'x': 0.02, 'y': 0.02, 'z': 0.02,
157
+ 'h': 0.02, 's': 0.02, 't': 0.02,
158
+ 'rx': 0.03, 'ry': 0.03, 'rz': 0.03,
159
+ 'cx': 0.3, 'cz': 0.3,
160
+ 'ccx': 0.9, 'swap': 0.6,
161
+ 'measure': 1.0,
162
+ }
163
+
164
+ total_time = sum(
165
+ ops.get(gate, 0) * gate_times.get(gate, 0.1)
166
+ for gate in ops
167
+ )
168
+
169
+ two_qubit_gates = ops.get('cx', 0) + ops.get('cz', 0) + ops.get('swap', 0)
170
+
171
+ return {
172
+ 'depth': circuit.depth(),
173
+ 'total_gates': sum(ops.values()),
174
+ 'two_qubit_gates': two_qubit_gates,
175
+ 'estimated_time_us': total_time,
176
+ 'gate_counts': dict(ops),
177
+ }
178
+
179
+ def compare_circuits(
180
+ self,
181
+ circuit1: QuantumCircuit,
182
+ circuit2: QuantumCircuit,
183
+ ) -> dict:
184
+ """Compare two circuits."""
185
+ cost1 = self.estimate_cost(circuit1)
186
+ cost2 = self.estimate_cost(circuit2)
187
+
188
+ return {
189
+ 'circuit1': cost1,
190
+ 'circuit2': cost2,
191
+ 'depth_diff': cost1['depth'] - cost2['depth'],
192
+ 'gate_diff': cost1['total_gates'] - cost2['total_gates'],
193
+ 'time_diff_us': cost1['estimated_time_us'] - cost2['estimated_time_us'],
194
+ }