quant-met 0.0.9__py3-none-any.whl → 0.0.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -28,30 +28,14 @@ class DressedGraphene(BaseHamiltonian[DressedGrapheneParameters]):
28
28
  if parameters.delta is not None:
29
29
  self.delta_orbital_basis = np.astype(parameters.delta, np.complex64)
30
30
 
31
- def setup_lattice(self, parameters: DressedGrapheneParameters) -> BaseLattice:
32
- """Set up lattice based on parameters."""
31
+ def setup_lattice(self, parameters: DressedGrapheneParameters) -> BaseLattice: # noqa: D102
33
32
  return GrapheneLattice(lattice_constant=parameters.lattice_constant)
34
33
 
35
34
  @classmethod
36
- def get_parameters_model(cls) -> type[DressedGrapheneParameters]:
37
- """Return the specific parameters model for the subclass."""
35
+ def get_parameters_model(cls) -> type[DressedGrapheneParameters]: # noqa: D102
38
36
  return DressedGrapheneParameters
39
37
 
40
- def hamiltonian(self, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]:
41
- """
42
- Return the normal state Hamiltonian in orbital basis.
43
-
44
- Parameters
45
- ----------
46
- k : :class:`numpy.ndarray`
47
- List of k points.
48
-
49
- Returns
50
- -------
51
- :class:`numpy.ndarray`
52
- Hamiltonian in matrix form.
53
-
54
- """
38
+ def hamiltonian(self, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]: # noqa: D102
55
39
  assert _check_valid_array(k)
56
40
 
57
41
  t_gr = self.hopping_gr
@@ -88,25 +72,9 @@ class DressedGraphene(BaseHamiltonian[DressedGrapheneParameters]):
88
72
 
89
73
  return h.squeeze()
90
74
 
91
- def hamiltonian_derivative(
75
+ def hamiltonian_derivative( # noqa: D102
92
76
  self, k: npt.NDArray[np.float64], direction: str
93
77
  ) -> npt.NDArray[np.complex64]:
94
- """
95
- Deriative of the Hamiltonian.
96
-
97
- Parameters
98
- ----------
99
- k: :class:`numpy.ndarray`
100
- List of k points.
101
- direction: str
102
- Direction for derivative, either 'x' oder 'y'.
103
-
104
- Returns
105
- -------
106
- :class:`numpy.ndarray`
107
- Derivative of Hamiltonian.
108
-
109
- """
110
78
  assert _check_valid_array(k)
111
79
  assert direction in ["x", "y"]
112
80
 
@@ -27,30 +27,14 @@ class Graphene(BaseHamiltonian[GrapheneParameters]):
27
27
  if parameters.delta is not None:
28
28
  self.delta_orbital_basis = np.astype(parameters.delta, np.complex64)
29
29
 
30
- def setup_lattice(self, parameters: GrapheneParameters) -> GrapheneLattice:
31
- """Set up lattice based on parameters."""
30
+ def setup_lattice(self, parameters: GrapheneParameters) -> GrapheneLattice: # noqa: D102
32
31
  return GrapheneLattice(lattice_constant=parameters.lattice_constant)
33
32
 
34
33
  @classmethod
35
- def get_parameters_model(cls) -> type[GrapheneParameters]:
36
- """Return the specific parameters model for the subclass."""
34
+ def get_parameters_model(cls) -> type[GrapheneParameters]: # noqa: D102
37
35
  return GrapheneParameters
38
36
 
39
- def hamiltonian(self, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]:
40
- """
41
- Return the normal state Hamiltonian in orbital basis.
42
-
43
- Parameters
44
- ----------
45
- k : :class:`numpy.ndarray`
46
- List of k points.
47
-
48
- Returns
49
- -------
50
- :class:`numpy.ndarray`
51
- Hamiltonian in matrix form.
52
-
53
- """
37
+ def hamiltonian(self, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]: # noqa: D102
54
38
  assert _check_valid_array(k)
55
39
  hopping = self.hopping
56
40
  lattice_constant = self.lattice.lattice_constant
@@ -72,25 +56,9 @@ class Graphene(BaseHamiltonian[GrapheneParameters]):
72
56
 
73
57
  return h.squeeze()
74
58
 
75
- def hamiltonian_derivative(
59
+ def hamiltonian_derivative( # noqa: D102
76
60
  self, k: npt.NDArray[np.float64], direction: str
77
61
  ) -> npt.NDArray[np.complex64]:
78
- """
79
- Deriative of the Hamiltonian.
80
-
81
- Parameters
82
- ----------
83
- k: :class:`numpy.ndarray`
84
- List of k points.
85
- direction: str
86
- Direction for derivative, either 'x' oder 'y'.
87
-
88
- Returns
89
- -------
90
- :class:`numpy.ndarray`
91
- Derivative of Hamiltonian.
92
-
93
- """
94
62
  assert _check_valid_array(k)
95
63
  assert direction in ["x", "y"]
96
64
 
@@ -2,7 +2,7 @@
2
2
  #
3
3
  # SPDX-License-Identifier: MIT
4
4
 
5
- """Provides the implementation for Graphene."""
5
+ """Provides the implementation for a one band tight binding model."""
6
6
 
7
7
  import numpy as np
8
8
  import numpy.typing as npt
@@ -15,7 +15,7 @@ from .base_hamiltonian import BaseHamiltonian
15
15
 
16
16
 
17
17
  class OneBand(BaseHamiltonian[OneBandParameters]):
18
- """Hamiltonian for Graphene."""
18
+ """Hamiltonian for one band tight binding model."""
19
19
 
20
20
  def __init__(self, parameters: OneBandParameters) -> None:
21
21
  super().__init__(parameters)
@@ -24,30 +24,14 @@ class OneBand(BaseHamiltonian[OneBandParameters]):
24
24
  if parameters.delta is not None:
25
25
  self.delta_orbital_basis = np.astype(parameters.delta, np.complex64)
26
26
 
27
- def setup_lattice(self, parameters: OneBandParameters) -> SquareLattice:
28
- """Set up lattice based on parameters."""
27
+ def setup_lattice(self, parameters: OneBandParameters) -> SquareLattice: # noqa: D102
29
28
  return SquareLattice(lattice_constant=parameters.lattice_constant)
30
29
 
31
30
  @classmethod
32
- def get_parameters_model(cls) -> type[OneBandParameters]:
33
- """Return the specific parameters model for the subclass."""
31
+ def get_parameters_model(cls) -> type[OneBandParameters]: # noqa: D102
34
32
  return OneBandParameters
35
33
 
36
- def hamiltonian(self, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]:
37
- """
38
- Return the normal state Hamiltonian in orbital basis.
39
-
40
- Parameters
41
- ----------
42
- k : :class:`numpy.ndarray`
43
- List of k points.
44
-
45
- Returns
46
- -------
47
- :class:`numpy.ndarray`
48
- Hamiltonian in matrix form.
49
-
50
- """
34
+ def hamiltonian(self, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]: # noqa: D102
51
35
  assert _check_valid_array(k)
52
36
  hopping = self.hopping
53
37
  lattice_constant = self.lattice.lattice_constant
@@ -64,25 +48,9 @@ class OneBand(BaseHamiltonian[OneBandParameters]):
64
48
 
65
49
  return h
66
50
 
67
- def hamiltonian_derivative(
51
+ def hamiltonian_derivative( # noqa: D102
68
52
  self, k: npt.NDArray[np.float64], direction: str
69
53
  ) -> npt.NDArray[np.complex64]:
70
- """
71
- Deriative of the Hamiltonian.
72
-
73
- Parameters
74
- ----------
75
- k: :class:`numpy.ndarray`
76
- List of k points.
77
- direction: str
78
- Direction for derivative, either 'x' oder 'y'.
79
-
80
- Returns
81
- -------
82
- :class:`numpy.ndarray`
83
- Derivative of Hamiltonian.
84
-
85
- """
86
54
  assert _check_valid_array(k)
87
55
  assert direction in ["x", "y"]
88
56
 
@@ -2,7 +2,7 @@
2
2
  #
3
3
  # SPDX-License-Identifier: MIT
4
4
 
5
- """Provides the implementation for Graphene."""
5
+ """Provides the implementation for a three band tight binding model."""
6
6
 
7
7
  import numpy as np
8
8
  import numpy.typing as npt
@@ -24,30 +24,14 @@ class ThreeBand(BaseHamiltonian[ThreeBandParameters]):
24
24
  if parameters.delta is not None:
25
25
  self.delta_orbital_basis = np.astype(parameters.delta, np.complex64)
26
26
 
27
- def setup_lattice(self, parameters: ThreeBandParameters) -> SquareLattice:
28
- """Set up lattice based on parameters."""
27
+ def setup_lattice(self, parameters: ThreeBandParameters) -> SquareLattice: # noqa: D102
29
28
  return SquareLattice(lattice_constant=parameters.lattice_constant)
30
29
 
31
30
  @classmethod
32
- def get_parameters_model(cls) -> type[ThreeBandParameters]:
33
- """Return the specific parameters model for the subclass."""
31
+ def get_parameters_model(cls) -> type[ThreeBandParameters]: # noqa: D102
34
32
  return ThreeBandParameters
35
33
 
36
- def hamiltonian(self, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]:
37
- """
38
- Return the normal state Hamiltonian in orbital basis.
39
-
40
- Parameters
41
- ----------
42
- k : :class:`numpy.ndarray`
43
- List of k points.
44
-
45
- Returns
46
- -------
47
- :class:`numpy.ndarray`
48
- Hamiltonian in matrix form.
49
-
50
- """
34
+ def hamiltonian(self, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]: # noqa: D102
51
35
  assert _check_valid_array(k)
52
36
  hopping = self.hopping
53
37
  lattice_constant = self.lattice.lattice_constant
@@ -75,25 +59,9 @@ class ThreeBand(BaseHamiltonian[ThreeBandParameters]):
75
59
 
76
60
  return h.squeeze()
77
61
 
78
- def hamiltonian_derivative(
62
+ def hamiltonian_derivative( # noqa: D102
79
63
  self, k: npt.NDArray[np.float64], direction: str
80
64
  ) -> npt.NDArray[np.complex64]:
81
- """
82
- Deriative of the Hamiltonian.
83
-
84
- Parameters
85
- ----------
86
- k: :class:`numpy.ndarray`
87
- List of k points.
88
- direction: str
89
- Direction for derivative, either 'x' oder 'y'.
90
-
91
- Returns
92
- -------
93
- :class:`numpy.ndarray`
94
- Derivative of Hamiltonian.
95
-
96
- """
97
65
  assert _check_valid_array(k)
98
66
  assert direction in ["x", "y"]
99
67
 
@@ -2,7 +2,7 @@
2
2
  #
3
3
  # SPDX-License-Identifier: MIT
4
4
 
5
- """Provides the implementation for Graphene."""
5
+ """Provides the implementation for a two band tight binding model."""
6
6
 
7
7
  import numpy as np
8
8
  import numpy.typing as npt
@@ -24,30 +24,14 @@ class TwoBand(BaseHamiltonian[TwoBandParameters]):
24
24
  if parameters.delta is not None:
25
25
  self.delta_orbital_basis = np.astype(parameters.delta, np.complex64)
26
26
 
27
- def setup_lattice(self, parameters: TwoBandParameters) -> SquareLattice:
28
- """Set up lattice based on parameters."""
27
+ def setup_lattice(self, parameters: TwoBandParameters) -> SquareLattice: # noqa: D102
29
28
  return SquareLattice(lattice_constant=parameters.lattice_constant)
30
29
 
31
30
  @classmethod
32
- def get_parameters_model(cls) -> type[TwoBandParameters]:
33
- """Return the specific parameters model for the subclass."""
31
+ def get_parameters_model(cls) -> type[TwoBandParameters]: # noqa: D102
34
32
  return TwoBandParameters
35
33
 
36
- def hamiltonian(self, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]:
37
- """
38
- Return the normal state Hamiltonian in orbital basis.
39
-
40
- Parameters
41
- ----------
42
- k : :class:`numpy.ndarray`
43
- List of k points.
44
-
45
- Returns
46
- -------
47
- :class:`numpy.ndarray`
48
- Hamiltonian in matrix form.
49
-
50
- """
34
+ def hamiltonian(self, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]: # noqa: D102
51
35
  assert _check_valid_array(k)
52
36
  hopping = self.hopping
53
37
  lattice_constant = self.lattice.lattice_constant
@@ -68,25 +52,9 @@ class TwoBand(BaseHamiltonian[TwoBandParameters]):
68
52
 
69
53
  return h.squeeze()
70
54
 
71
- def hamiltonian_derivative(
55
+ def hamiltonian_derivative( # noqa: D102
72
56
  self, k: npt.NDArray[np.float64], direction: str
73
57
  ) -> npt.NDArray[np.complex64]:
74
- """
75
- Deriative of the Hamiltonian.
76
-
77
- Parameters
78
- ----------
79
- k: :class:`numpy.ndarray`
80
- List of k points.
81
- direction: str
82
- Direction for derivative, either 'x' oder 'y'.
83
-
84
- Returns
85
- -------
86
- :class:`numpy.ndarray`
87
- Derivative of Hamiltonian.
88
-
89
- """
90
58
  assert _check_valid_array(k)
91
59
  assert direction in ["x", "y"]
92
60
 
@@ -12,36 +12,45 @@ from quant_met.parameters import GenericParameters
12
12
 
13
13
 
14
14
  def quantum_metric(
15
- h: BaseHamiltonian[GenericParameters], k_grid: npt.NDArray[np.float64], bands: list[int]
15
+ h: BaseHamiltonian[GenericParameters], k: npt.NDArray[np.float64], bands: list[int]
16
16
  ) -> npt.NDArray[np.float64]:
17
- """Calculate the quantum metric in the normal state.
17
+ """Calculate the quantum metric (geometric tensor) for specified bands.
18
+
19
+ This function computes the quantum geometric tensor associated with
20
+ the specified bands of a given Hamiltonian over a grid of k-points.
21
+ The output is a 2x2 matrix representing the quantum metric.
18
22
 
19
23
  Parameters
20
24
  ----------
21
- bands
22
- h : :class:`~quant_met.BaseHamiltonian`
23
- Hamiltonian object.
24
- k_grid : :class:`numpy.ndarray`
25
- List of k points.
25
+ h : BaseHamiltonian
26
+ Hamiltonian object used to compute Bloch states and their derivatives.
27
+ k : numpy.ndarray
28
+ Array of k points in the Brillouin zone.
29
+ bands : list of int
30
+ Indices of the bands for which the quantum metric is to be calculated.
26
31
 
27
32
  Returns
28
33
  -------
29
34
  :class:`numpy.ndarray`
30
- Quantum metric in the normal state.
35
+ A 2x2 matrix representing the quantum metric.
31
36
 
37
+ Raises
38
+ ------
39
+ ValueError
40
+ If `bands` contains invalid indices or `k_grid` is empty.
32
41
  """
33
- energies, bloch = h.diagonalize_nonint(k_grid)
42
+ energies, bloch = h.diagonalize_nonint(k)
34
43
 
35
- number_k_points = len(k_grid)
44
+ number_k_points = len(k)
36
45
 
37
46
  quantum_geom_tensor = np.zeros(shape=(2, 2), dtype=np.complex64)
38
47
 
39
48
  for band in bands:
40
49
  for i, direction_1 in enumerate(["x", "y"]):
41
- h_derivative_direction_1 = h.hamiltonian_derivative(k=k_grid, direction=direction_1)
50
+ h_derivative_direction_1 = h.hamiltonian_derivative(k=k, direction=direction_1)
42
51
  for j, direction_2 in enumerate(["x", "y"]):
43
- h_derivative_direction_2 = h.hamiltonian_derivative(k=k_grid, direction=direction_2)
44
- for k_index in range(len(k_grid)):
52
+ h_derivative_direction_2 = h.hamiltonian_derivative(k=k, direction=direction_2)
53
+ for k_index in range(len(k)):
45
54
  for n in [i for i in range(h.number_of_bands) if i != band]:
46
55
  quantum_geom_tensor[i, j] += (
47
56
  (
@@ -58,52 +67,3 @@ def quantum_metric(
58
67
  )
59
68
 
60
69
  return np.real(quantum_geom_tensor) / number_k_points
61
-
62
-
63
- def quantum_metric_bdg(
64
- h: BaseHamiltonian[GenericParameters], k_grid: npt.NDArray[np.float64], bands: list[int]
65
- ) -> npt.NDArray[np.float64]:
66
- """Calculate the quantum metric in the BdG state.
67
-
68
- Parameters
69
- ----------
70
- bands
71
- h : :class:`~quant_met.BaseHamiltonian`
72
- Hamiltonian object.
73
- k_grid : :class:`numpy.ndarray`
74
- List of k points.
75
-
76
- Returns
77
- -------
78
- :class:`numpy.ndarray`
79
- Quantum metric in the normal state.
80
-
81
- """
82
- energies, bdg_functions = h.diagonalize_bdg(k_grid)
83
-
84
- number_k_points = len(k_grid)
85
-
86
- quantum_geom_tensor = np.zeros(shape=(2, 2), dtype=np.complex64)
87
-
88
- for band in bands:
89
- for i, direction_1 in enumerate(["x", "y"]):
90
- h_derivative_dir_1 = h.bdg_hamiltonian_derivative(k=k_grid, direction=direction_1)
91
- for j, direction_2 in enumerate(["x", "y"]):
92
- h_derivative_dir_2 = h.bdg_hamiltonian_derivative(k=k_grid, direction=direction_2)
93
- for k_index in range(len(k_grid)):
94
- for n in [i for i in range(2 * h.number_of_bands) if i != band]:
95
- quantum_geom_tensor[i, j] += (
96
- (
97
- bdg_functions[k_index][:, band].conjugate()
98
- @ h_derivative_dir_1[k_index]
99
- @ bdg_functions[k_index][:, n]
100
- )
101
- * (
102
- bdg_functions[k_index][:, n].conjugate()
103
- @ h_derivative_dir_2[k_index]
104
- @ bdg_functions[k_index][:, band]
105
- )
106
- / (energies[k_index][band] - energies[k_index][n]) ** 2
107
- )
108
-
109
- return np.real(quantum_geom_tensor) / number_k_points
@@ -4,37 +4,91 @@
4
4
 
5
5
  """Self-consistency loop."""
6
6
 
7
+ import logging
8
+ import sys
9
+
7
10
  import numpy as np
8
11
  import numpy.typing as npt
9
12
 
10
13
  from quant_met.mean_field.hamiltonians.base_hamiltonian import BaseHamiltonian
11
14
  from quant_met.parameters import GenericParameters
12
15
 
16
+ logger = logging.getLogger(__name__)
17
+
13
18
 
14
19
  def self_consistency_loop(
15
20
  h: BaseHamiltonian[GenericParameters],
16
21
  k_space_grid: npt.NDArray[np.float64],
17
22
  epsilon: float,
23
+ max_iter: int = 1000,
18
24
  ) -> BaseHamiltonian[GenericParameters]:
19
- """Self-consistency loop.
25
+ """Self-consistently solves the gap equation for a given Hamiltonian.
26
+
27
+ This function performs a self-consistency loop to solve the gap equation
28
+ for a Hamiltonian `h`.
29
+ The gaps in the orbital basis are iteratively updated until the change is within
30
+ a specified tolerance `epsilon`.
20
31
 
21
32
  Parameters
22
33
  ----------
23
- k_space_grid
24
- h
25
- epsilon
34
+ h : :class:`BaseHamiltonian<quant_met.mean_field.hamiltonians.BaseHamiltonian>`
35
+ The Hamiltonian object with the parameters for the calculation.
36
+
37
+ k_space_grid : :class:`numpy.ndarray`
38
+ A grid of points in the Brillouin zone at which the gap equation is evaluated.
39
+ See
40
+
41
+ epsilon : float
42
+ The convergence criterion. The loop will terminate when the change
43
+ in the delta orbital basis is less than this value.
44
+
45
+ max_iter : int
46
+ Maximal number of iterations, default 300.
47
+
48
+ Returns
49
+ -------
50
+ :class:`quant_met.mean_field.BaseHamiltonian`
51
+ The updated Hamiltonian object with the new gaps.
52
+
53
+ Notes
54
+ -----
55
+ The function initializes the gaps with random complex numbers before entering the
56
+ self-consistency loop.
57
+ The mixing parameter is set to 0.2, which controls how much of the new gaps is taken
58
+ relative to the previous value in each iteration.
26
59
  """
60
+ logger.info("Starting self-consistency loop.")
61
+
27
62
  rng = np.random.default_rng()
28
63
  delta_init = np.zeros(shape=h.delta_orbital_basis.shape, dtype=np.complex64)
29
64
  delta_init += (0.2 * rng.random(size=h.delta_orbital_basis.shape) - 1) + 1.0j * (
30
65
  0.2 * rng.random(size=h.delta_orbital_basis.shape) - 1
31
66
  )
32
67
  h.delta_orbital_basis = delta_init
68
+ logger.debug("Initial gaps set to: %s", h.delta_orbital_basis)
33
69
 
70
+ iteration_count = 0
34
71
  while True:
72
+ iteration_count += 1
73
+ if iteration_count > max_iter:
74
+ sys.exit("Maximum number of iterations reached.")
75
+
76
+ logger.debug("Iteration %d: Computing new gaps.", iteration_count)
77
+
35
78
  new_gap = h.gap_equation(k=k_space_grid)
36
- if (np.abs(h.delta_orbital_basis - new_gap) < epsilon).all():
79
+
80
+ if not np.allclose(h.delta_orbital_basis, 0):
81
+ delta_change = np.abs(h.delta_orbital_basis - new_gap) / np.abs(h.delta_orbital_basis)
82
+ else:
83
+ delta_change = np.abs(h.delta_orbital_basis - new_gap)
84
+ logger.debug("New gaps computed: %s", new_gap)
85
+
86
+ if (delta_change < epsilon).all():
37
87
  h.delta_orbital_basis = new_gap
88
+ logger.info("Convergence achieved after %d iterations.", iteration_count)
38
89
  return h
39
- mixing_greed = 0.5
90
+
91
+ mixing_greed = 0.2
40
92
  h.delta_orbital_basis = mixing_greed * new_gap + (1 - mixing_greed) * h.delta_orbital_basis
93
+ logger.debug("Updated gaps: %s", h.delta_orbital_basis)
94
+ logger.debug("Change in gaps: %s", delta_change)
@@ -13,7 +13,7 @@ from quant_met.parameters import GenericParameters
13
13
 
14
14
  def superfluid_weight(
15
15
  h: BaseHamiltonian[GenericParameters],
16
- k_grid: npt.NDArray[np.float64],
16
+ k: npt.NDArray[np.float64],
17
17
  ) -> tuple[npt.NDArray[np.complex64], npt.NDArray[np.complex64]]:
18
18
  """Calculate the superfluid weight.
19
19
 
@@ -21,7 +21,7 @@ def superfluid_weight(
21
21
  ----------
22
22
  h : :class:`~quant_met.mean_field.Hamiltonian`
23
23
  Hamiltonian.
24
- k_grid : :class:`numpy.ndarray`
24
+ k : :class:`numpy.ndarray`
25
25
  List of k points.
26
26
 
27
27
  Returns
@@ -37,10 +37,10 @@ def superfluid_weight(
37
37
 
38
38
  for i, direction_1 in enumerate(["x", "y"]):
39
39
  for j, direction_2 in enumerate(["x", "y"]):
40
- for k in k_grid:
41
- c_mnpq = _c_factor(h, k)
42
- j_up = _current_operator(h, direction_1, k)
43
- j_down = _current_operator(h, direction_2, -k)
40
+ for k_point in k:
41
+ c_mnpq = _c_factor(h, k_point)
42
+ j_up = _current_operator(h, direction_1, k_point)
43
+ j_down = _current_operator(h, direction_2, -k_point)
44
44
  for m in range(h.number_of_bands):
45
45
  for n in range(h.number_of_bands):
46
46
  for p in range(h.number_of_bands):
@@ -3,30 +3,42 @@
3
3
  # SPDX-License-Identifier: MIT
4
4
 
5
5
  """
6
- Parameters (:mod:`quant_met.parameters`)
7
- ========================================
6
+ Parameter Classes
7
+ =================
8
+
9
+ Main class holding all the parameters for the calculation.
10
+
11
+ Classes holding the configuration for the Hamiltonians.
12
+
13
+ .. autosummary::
14
+ :toctree: generated/parameters/hamiltonians
15
+
16
+ hamiltonians
8
17
 
9
18
  .. autosummary::
10
19
  :toctree: generated/parameters/
11
20
 
12
- DressedGrapheneParameters
13
- GrapheneParameters
14
- OneBandParameters
15
- Parameters
21
+ Parameters # noqa
22
+ Control # noqa
23
+ KPoints # noqa
16
24
  """ # noqa: D205, D400
17
25
 
18
26
  from .hamiltonians import (
19
27
  DressedGrapheneParameters,
20
28
  GenericParameters,
21
29
  GrapheneParameters,
30
+ HamiltonianParameters,
22
31
  OneBandParameters,
23
32
  ThreeBandParameters,
24
33
  TwoBandParameters,
25
34
  )
26
- from .main import Parameters
35
+ from .main import Control, KPoints, Parameters
27
36
 
28
37
  __all__ = [
29
38
  "Parameters",
39
+ "Control",
40
+ "KPoints",
41
+ "HamiltonianParameters",
30
42
  "DressedGrapheneParameters",
31
43
  "GrapheneParameters",
32
44
  "OneBandParameters",