quant-met 0.0.2__py3-none-any.whl → 0.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,142 @@
1
+ # SPDX-FileCopyrightText: 2024 Tjark Sievers
2
+ #
3
+ # SPDX-License-Identifier: MIT
4
+
5
+ """Provides the implementation for Graphene."""
6
+
7
+ from typing import Any
8
+
9
+ import numpy as np
10
+ import numpy.typing as npt
11
+
12
+ from ._utils import _check_valid_array, _validate_float
13
+ from .base_hamiltonian import BaseHamiltonian
14
+
15
+
16
+ class GrapheneHamiltonian(BaseHamiltonian):
17
+ """Hamiltonian for Graphene."""
18
+
19
+ def __init__(
20
+ self,
21
+ t_nn: float,
22
+ a: float,
23
+ mu: float,
24
+ coulomb_gr: float,
25
+ delta: npt.NDArray[np.float64] | None = None,
26
+ *args: tuple[Any, ...],
27
+ **kwargs: tuple[dict[str, Any], ...],
28
+ ) -> None:
29
+ del args
30
+ del kwargs
31
+ self.t_nn = _validate_float(t_nn, "Hopping")
32
+ if a <= 0:
33
+ msg = "Lattice constant must be positive"
34
+ raise ValueError(msg)
35
+ self.a = _validate_float(a, "Lattice constant")
36
+ self.mu = _validate_float(mu, "Chemical potential")
37
+ self.coulomb_gr = _validate_float(coulomb_gr, "Coloumb interaction")
38
+ self._coloumb_orbital_basis = np.array([self.coulomb_gr, self.coulomb_gr])
39
+ self._number_of_bands = 2
40
+ if delta is None:
41
+ self._delta_orbital_basis = np.zeros(2)
42
+ else:
43
+ self._delta_orbital_basis = delta
44
+
45
+ @property
46
+ def number_of_bands(self) -> int: # noqa: D102
47
+ return self._number_of_bands
48
+
49
+ @property
50
+ def coloumb_orbital_basis(self) -> npt.NDArray[np.float64]: # noqa: D102
51
+ return self._coloumb_orbital_basis
52
+
53
+ @property
54
+ def delta_orbital_basis(self) -> npt.NDArray[np.float64]: # noqa: D102
55
+ return self._delta_orbital_basis
56
+
57
+ @delta_orbital_basis.setter
58
+ def delta_orbital_basis(self, new_delta: npt.NDArray[np.float64]) -> None:
59
+ self._delta_orbital_basis = new_delta
60
+
61
+ def hamiltonian(self, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]:
62
+ """
63
+ Return the normal state Hamiltonian in orbital basis.
64
+
65
+ Parameters
66
+ ----------
67
+ k : :class:`numpy.ndarray`
68
+ List of k points.
69
+
70
+ Returns
71
+ -------
72
+ :class:`numpy.ndarray`
73
+ Hamiltonian in matrix form.
74
+
75
+ """
76
+ assert _check_valid_array(k)
77
+ t_nn = self.t_nn
78
+ a = self.a
79
+ mu = self.mu
80
+ if k.ndim == 1:
81
+ k = np.expand_dims(k, axis=0)
82
+
83
+ h = np.zeros((k.shape[0], self.number_of_bands, self.number_of_bands), dtype=np.complex64)
84
+
85
+ h[:, 0, 1] = -t_nn * (
86
+ np.exp(1j * k[:, 1] * a / np.sqrt(3))
87
+ + 2 * np.exp(-0.5j * a / np.sqrt(3) * k[:, 1]) * (np.cos(0.5 * a * k[:, 0]))
88
+ )
89
+ h[:, 1, 0] = h[:, 0, 1].conjugate()
90
+ h[:, 0, 0] -= mu
91
+ h[:, 1, 1] -= mu
92
+
93
+ return h.squeeze()
94
+
95
+ def hamiltonian_derivative(
96
+ self, k: npt.NDArray[np.float64], direction: str
97
+ ) -> npt.NDArray[np.complex64]:
98
+ """
99
+ Deriative of the Hamiltonian.
100
+
101
+ Parameters
102
+ ----------
103
+ k: :class:`numpy.ndarray`
104
+ List of k points.
105
+ direction: str
106
+ Direction for derivative, either 'x' oder 'y'.
107
+
108
+ Returns
109
+ -------
110
+ :class:`numpy.ndarray`
111
+ Derivative of Hamiltonian.
112
+
113
+ """
114
+ assert _check_valid_array(k)
115
+ assert direction in ["x", "y"]
116
+
117
+ t_nn = self.t_nn
118
+ a = self.a
119
+ if k.ndim == 1:
120
+ k = np.expand_dims(k, axis=0)
121
+
122
+ h = np.zeros((k.shape[0], self.number_of_bands, self.number_of_bands), dtype=np.complex64)
123
+
124
+ if direction == "x":
125
+ h[:, 0, 1] = (
126
+ t_nn * a * np.exp(-0.5j * a / np.sqrt(3) * k[:, 1]) * np.sin(0.5 * a * k[:, 0])
127
+ )
128
+ h[:, 1, 0] = h[:, 0, 1].conjugate()
129
+ else:
130
+ h[:, 0, 1] = (
131
+ -t_nn
132
+ * 1j
133
+ * a
134
+ / np.sqrt(3)
135
+ * (
136
+ np.exp(1j * a / np.sqrt(3) * k[:, 1])
137
+ - np.exp(-0.5j * a / np.sqrt(3) * k[:, 1]) * np.cos(0.5 * a * k[:, 0])
138
+ )
139
+ )
140
+ h[:, 1, 0] = h[:, 0, 1].conjugate()
141
+
142
+ return h.squeeze()
@@ -0,0 +1,108 @@
1
+ # SPDX-FileCopyrightText: 2024 Tjark Sievers
2
+ #
3
+ # SPDX-License-Identifier: MIT
4
+
5
+ """Functions to calculate the quantum metric."""
6
+
7
+ import numpy as np
8
+ import numpy.typing as npt
9
+
10
+ from .base_hamiltonian import BaseHamiltonian
11
+
12
+
13
+ def quantum_metric(
14
+ h: BaseHamiltonian, k_grid: npt.NDArray[np.float64], band: int
15
+ ) -> npt.NDArray[np.float64]:
16
+ """Calculate the quantum metric in the normal state.
17
+
18
+ Parameters
19
+ ----------
20
+ h : :class:`~quant_met.BaseHamiltonian`
21
+ Hamiltonian object.
22
+ k_grid : :class:`numpy.ndarray`
23
+ List of k points.
24
+ band : int
25
+ Index of band for which the quantum metric is calculated.
26
+
27
+ Returns
28
+ -------
29
+ :class:`numpy.ndarray`
30
+ Quantum metric in the normal state.
31
+
32
+ """
33
+ energies, bloch = h.diagonalize_nonint(k_grid)
34
+
35
+ number_k_points = len(k_grid)
36
+
37
+ quantum_geom_tensor = np.zeros(shape=(2, 2), dtype=np.complex64)
38
+
39
+ for i, direction_1 in enumerate(["x", "y"]):
40
+ h_derivative_direction_1 = h.hamiltonian_derivative(k=k_grid, direction=direction_1)
41
+ for j, direction_2 in enumerate(["x", "y"]):
42
+ h_derivative_direction_2 = h.hamiltonian_derivative(k=k_grid, direction=direction_2)
43
+ for k_index in range(len(k_grid)):
44
+ for n in [i for i in range(h.number_of_bands) if i != band]:
45
+ quantum_geom_tensor[i, j] += (
46
+ (
47
+ bloch[k_index][:, band].conjugate()
48
+ @ h_derivative_direction_1[k_index]
49
+ @ bloch[k_index][:, n]
50
+ )
51
+ * (
52
+ bloch[k_index][:, n].conjugate()
53
+ @ h_derivative_direction_2[k_index]
54
+ @ bloch[k_index][:, band]
55
+ )
56
+ / (energies[k_index][band] - energies[k_index][n]) ** 2
57
+ )
58
+
59
+ return np.real(quantum_geom_tensor) / number_k_points
60
+
61
+
62
+ def quantum_metric_bdg(
63
+ h: BaseHamiltonian, k_grid: npt.NDArray[np.float64], band: int
64
+ ) -> npt.NDArray[np.float64]:
65
+ """Calculate the quantum metric in the BdG state.
66
+
67
+ Parameters
68
+ ----------
69
+ h : :class:`~quant_met.BaseHamiltonian`
70
+ Hamiltonian object.
71
+ k_grid : :class:`numpy.ndarray`
72
+ List of k points.
73
+ band : int
74
+ Index of band for which the quantum metric is calculated.
75
+
76
+ Returns
77
+ -------
78
+ :class:`numpy.ndarray`
79
+ Quantum metric in the normal state.
80
+
81
+ """
82
+ energies, bdg_functions = h.diagonalize_bdg(k_grid)
83
+
84
+ number_k_points = len(k_grid)
85
+
86
+ quantum_geom_tensor = np.zeros(shape=(2, 2), dtype=np.complex64)
87
+
88
+ for i, direction_1 in enumerate(["x", "y"]):
89
+ h_derivative_direction_1 = h.bdg_hamiltonian_derivative(k=k_grid, direction=direction_1)
90
+ for j, direction_2 in enumerate(["x", "y"]):
91
+ h_derivative_direction_2 = h.bdg_hamiltonian_derivative(k=k_grid, direction=direction_2)
92
+ for k_index in range(len(k_grid)):
93
+ for n in [i for i in range(h.number_of_bands) if i != band]:
94
+ quantum_geom_tensor[i, j] += (
95
+ (
96
+ bdg_functions[k_index][:, band].conjugate()
97
+ @ h_derivative_direction_1[k_index]
98
+ @ bdg_functions[k_index][:, n]
99
+ )
100
+ * (
101
+ bdg_functions[k_index][:, n].conjugate()
102
+ @ h_derivative_direction_2[k_index]
103
+ @ bdg_functions[k_index][:, band]
104
+ )
105
+ / (energies[k_index][band] - energies[k_index][n]) ** 2
106
+ )
107
+
108
+ return np.real(quantum_geom_tensor) / number_k_points
@@ -0,0 +1,146 @@
1
+ # SPDX-FileCopyrightText: 2024 Tjark Sievers
2
+ #
3
+ # SPDX-License-Identifier: MIT
4
+
5
+ """Functions to calculate the superfluid weight."""
6
+
7
+ import numpy as np
8
+ import numpy.typing as npt
9
+
10
+ from .base_hamiltonian import BaseHamiltonian
11
+
12
+
13
+ def superfluid_weight(
14
+ h: BaseHamiltonian,
15
+ k_grid: npt.NDArray[np.float64],
16
+ ) -> tuple[npt.NDArray[np.complex64], npt.NDArray[np.complex64]]:
17
+ """Calculate the superfluid weight.
18
+
19
+ Parameters
20
+ ----------
21
+ h : :class:`~quant_met.mean_field.Hamiltonian`
22
+ Hamiltonian.
23
+ k_grid : :class:`numpy.ndarray`
24
+ List of k points.
25
+
26
+ Returns
27
+ -------
28
+ :class:`numpy.ndarray`
29
+ Conventional contribution to the superfluid weight.
30
+ :class:`numpy.ndarray`
31
+ Geometric contribution to the superfluid weight.
32
+
33
+ """
34
+ s_weight_conv = np.zeros(shape=(2, 2), dtype=np.complex64)
35
+ s_weight_geom = np.zeros(shape=(2, 2), dtype=np.complex64)
36
+
37
+ for i, direction_1 in enumerate(["x", "y"]):
38
+ for j, direction_2 in enumerate(["x", "y"]):
39
+ for k in k_grid:
40
+ c_mnpq = _c_factor(h, k)
41
+ j_up = _current_operator(h, direction_1, k)
42
+ j_down = _current_operator(h, direction_2, -k)
43
+ for m in range(h.number_of_bands):
44
+ for n in range(h.number_of_bands):
45
+ for p in range(h.number_of_bands):
46
+ for q in range(h.number_of_bands):
47
+ s_weight = c_mnpq[m, n, p, q] * j_up[m, n] * j_down[q, p]
48
+ if m == n and p == q:
49
+ s_weight_conv[i, j] += s_weight
50
+ else:
51
+ s_weight_geom[i, j] += s_weight
52
+
53
+ return s_weight_conv, s_weight_geom
54
+
55
+
56
+ def _current_operator(
57
+ h: BaseHamiltonian, direction: str, k: npt.NDArray[np.float64]
58
+ ) -> npt.NDArray[np.complex64]:
59
+ j = np.zeros(shape=(h.number_of_bands, h.number_of_bands), dtype=np.complex64)
60
+
61
+ _, bloch = h.diagonalize_nonint(k=k)
62
+
63
+ for m in range(h.number_of_bands):
64
+ for n in range(h.number_of_bands):
65
+ j[m, n] = (
66
+ bloch[:, m].conjugate()
67
+ @ h.hamiltonian_derivative(direction=direction, k=k)
68
+ @ bloch[:, n]
69
+ )
70
+
71
+ return j
72
+
73
+
74
+ def _w_matrix(
75
+ h: BaseHamiltonian, k: npt.NDArray[np.float64]
76
+ ) -> tuple[npt.NDArray[np.complex64], npt.NDArray[np.complex64]]:
77
+ _, bloch = h.diagonalize_nonint(k=k)
78
+ _, bdg_functions = h.diagonalize_bdg(k=k)
79
+
80
+ w_plus = np.zeros((2 * h.number_of_bands, h.number_of_bands), dtype=np.complex64)
81
+ for i in range(2 * h.number_of_bands):
82
+ for m in range(h.number_of_bands):
83
+ w_plus[i, m] = (
84
+ np.tensordot(bloch[:, m], np.array([1, 0]), axes=0).reshape(-1)
85
+ @ bdg_functions[:, i]
86
+ )
87
+
88
+ w_minus = np.zeros((2 * h.number_of_bands, h.number_of_bands), dtype=np.complex64)
89
+ for i in range(2 * h.number_of_bands):
90
+ for m in range(h.number_of_bands):
91
+ w_minus[i, m] = (
92
+ np.tensordot(bloch[:, m].conjugate(), np.array([0, 1]), axes=0).reshape(-1)
93
+ @ bdg_functions[:, i]
94
+ )
95
+
96
+ return w_plus, w_minus
97
+
98
+
99
+ def _c_factor(h: BaseHamiltonian, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]:
100
+ bdg_energies, _ = h.diagonalize_bdg(k)
101
+ w_plus, w_minus = _w_matrix(h, k)
102
+ c_mnpq = np.zeros(
103
+ shape=(
104
+ h.number_of_bands,
105
+ h.number_of_bands,
106
+ h.number_of_bands,
107
+ h.number_of_bands,
108
+ ),
109
+ dtype=np.complex64,
110
+ )
111
+
112
+ for m in range(h.number_of_bands):
113
+ for n in range(h.number_of_bands):
114
+ for p in range(h.number_of_bands):
115
+ for q in range(h.number_of_bands):
116
+ c_tmp: float = 0
117
+ for i in range(2 * h.number_of_bands):
118
+ for j in range(2 * h.number_of_bands):
119
+ if bdg_energies[i] != bdg_energies[j]:
120
+ c_tmp += (
121
+ _fermi_dirac(bdg_energies[i]) - _fermi_dirac(bdg_energies[j])
122
+ ) / (bdg_energies[j] - bdg_energies[i])
123
+ else:
124
+ c_tmp -= _fermi_dirac_derivative()
125
+
126
+ c_tmp *= (
127
+ w_minus[i, m].conjugate()
128
+ * w_plus[j, n]
129
+ * w_minus[j, p].conjugate()
130
+ * w_minus[i, q]
131
+ )
132
+
133
+ c_mnpq[m, n, p, q] = 2 * c_tmp
134
+
135
+ return c_mnpq
136
+
137
+
138
+ def _fermi_dirac_derivative() -> float:
139
+ return 0
140
+
141
+
142
+ def _fermi_dirac(energy: np.float64) -> np.float64:
143
+ if energy > 0:
144
+ return np.float64(0)
145
+
146
+ return np.float64(1)
@@ -1,4 +1,25 @@
1
- from ._plotting import generate_bz_path, plot_bandstructure, scatter_into_bz
1
+ # SPDX-FileCopyrightText: 2024 Tjark Sievers
2
+ #
3
+ # SPDX-License-Identifier: MIT
4
+
5
+ """
6
+ Plotting
7
+ ========
8
+
9
+ .. currentmodule:: quant_met.plotting
10
+
11
+ Functions
12
+ ---------
13
+
14
+ .. autosummary::
15
+ :toctree: generated/
16
+
17
+ scatter_into_bz
18
+ plot_bandstructure
19
+ generate_bz_path
20
+ """ # noqa: D205, D400
21
+
22
+ from .plotting import generate_bz_path, plot_bandstructure, scatter_into_bz
2
23
 
3
24
  __all__ = [
4
25
  "scatter_into_bz",
@@ -0,0 +1,230 @@
1
+ # SPDX-FileCopyrightText: 2024 Tjark Sievers
2
+ #
3
+ # SPDX-License-Identifier: MIT
4
+
5
+ """Methods for plotting data."""
6
+
7
+ from typing import Any
8
+
9
+ import matplotlib.axes
10
+ import matplotlib.colors
11
+ import matplotlib.figure
12
+ import matplotlib.pyplot as plt
13
+ import numpy as np
14
+ import numpy.typing as npt
15
+ from matplotlib.collections import Collection, LineCollection
16
+ from numpy import dtype, generic, ndarray
17
+
18
+
19
+ def scatter_into_bz(
20
+ bz_corners: list[npt.NDArray[np.float64]],
21
+ k_points: npt.NDArray[np.float64],
22
+ data: npt.NDArray[np.float64] | None = None,
23
+ data_label: str | None = None,
24
+ fig_in: matplotlib.figure.Figure | None = None,
25
+ ax_in: matplotlib.axes.Axes | None = None,
26
+ ) -> matplotlib.figure.Figure:
27
+ """Scatter a list of points into the brillouin zone.
28
+
29
+ Parameters
30
+ ----------
31
+ bz_corners : list[:class:`numpy.ndarray`]
32
+ Corner points defining the brillouin zone.
33
+ k_points : :class:`numpy.ndarray`
34
+ List of k points.
35
+ data : :class:`numpy.ndarray`, optional
36
+ Data to put on the k points.
37
+ data_label : :class:`str`, optional
38
+ Label for the data.
39
+ fig_in : :class:`matplotlib.figure.Figure`, optional
40
+ Figure that holds the axes. If not provided, a new figure and ax is created.
41
+ ax_in : :class:`matplotlib.axes.Axes`, optional
42
+ Ax to plot the data in. If not provided, a new figure and ax is created.
43
+
44
+ Returns
45
+ -------
46
+ :obj:`matplotlib.figure.Figure`
47
+ Figure with the data plotted onto the axis.
48
+
49
+ """
50
+ if fig_in is None or ax_in is None:
51
+ fig, ax = plt.subplots()
52
+ else:
53
+ fig, ax = fig_in, ax_in
54
+
55
+ if data is not None:
56
+ x_coords, y_coords = zip(*k_points, strict=True)
57
+ scatter = ax.scatter(x=x_coords, y=y_coords, c=data, cmap="viridis")
58
+ fig.colorbar(scatter, ax=ax, fraction=0.046, pad=0.04, label=data_label)
59
+ else:
60
+ x_coords, y_coords = zip(*k_points, strict=True)
61
+ ax.scatter(x=x_coords, y=y_coords)
62
+
63
+ bz_corner_x, bz_corners_y = zip(*bz_corners, strict=True)
64
+ ax.scatter(x=bz_corner_x, y=bz_corners_y, alpha=0.8)
65
+ ax.set_aspect("equal", adjustable="box")
66
+ ax.set_xlabel(r"$k_x\ [1/a_0]$")
67
+ ax.set_ylabel(r"$k_y\ [1/a_0]$")
68
+
69
+ return fig
70
+
71
+
72
+ def plot_bandstructure(
73
+ bands: npt.NDArray[np.float64],
74
+ k_point_list: npt.NDArray[np.float64],
75
+ ticks: list[float],
76
+ labels: list[str],
77
+ overlaps: npt.NDArray[np.float64] | None = None,
78
+ overlap_labels: list[str] | None = None,
79
+ fig_in: matplotlib.figure.Figure | None = None,
80
+ ax_in: matplotlib.axes.Axes | None = None,
81
+ ) -> matplotlib.figure.Figure:
82
+ """Plot bands along a k space path.
83
+
84
+ To have a plot that respects the distances in k space and generate everything that is needed for
85
+ plotting, use the function :func:`~quant_met.plotting.generate_bz_path`.
86
+
87
+ Parameters
88
+ ----------
89
+ bands : :class:`numpy.ndarray`
90
+ k_point_list : :class:`numpy.ndarray`
91
+ List of points to plot against. This is not a list of two-dimensional k-points!
92
+ ticks : list(float)
93
+ Position for ticks.
94
+ labels : list(str)
95
+ Labels on ticks.
96
+ overlaps : :class:`numpy.ndarray`, optional
97
+ Overlaps.
98
+ overlap_labels : list(str), optional
99
+ Labels to put on overlaps.
100
+ fig_in : :class:`matplotlib.figure.Figure`, optional
101
+ Figure that holds the axes. If not provided, a new figure and ax is created.
102
+ ax_in : :class:`matplotlib.axes.Axes`, optional
103
+ Ax to plot the data in. If not provided, a new figure and ax is created.
104
+
105
+ Returns
106
+ -------
107
+ :obj:`matplotlib.figure.Figure`
108
+ Figure with the data plotted onto the axis.
109
+
110
+
111
+ """
112
+ if fig_in is None or ax_in is None:
113
+ fig, ax = plt.subplots()
114
+ else:
115
+ fig, ax = fig_in, ax_in
116
+
117
+ ax.axhline(y=0, alpha=0.7, linestyle="--", color="black")
118
+
119
+ if overlaps is None:
120
+ for band in bands:
121
+ ax.plot(k_point_list, band)
122
+ else:
123
+ line = Collection()
124
+ for band, wx in zip(bands, overlaps, strict=True):
125
+ points = np.array([k_point_list, band]).T.reshape(-1, 1, 2)
126
+ segments = np.concatenate([points[:-1], points[1:]], axis=1)
127
+
128
+ norm = matplotlib.colors.Normalize(-1, 1)
129
+ lc = LineCollection(segments, cmap="seismic", norm=norm)
130
+ lc.set_array(wx)
131
+ lc.set_linewidth(2)
132
+ line = ax.add_collection(lc)
133
+
134
+ colorbar = fig.colorbar(line, fraction=0.046, pad=0.04, ax=ax)
135
+ color_ticks = [-1, 1]
136
+ colorbar.set_ticks(ticks=color_ticks, labels=overlap_labels)
137
+
138
+ ax.set_ylim(
139
+ top=float(np.max(bands) + 0.1 * np.max(bands)),
140
+ bottom=float(np.min(bands) - 0.1 * np.abs(np.min(bands))),
141
+ )
142
+ ax.set_box_aspect(1)
143
+ ax.set_xticks(ticks, labels)
144
+ ax.set_ylabel(r"$E\ [t]$")
145
+ ax.set_facecolor("lightgray")
146
+ ax.grid(visible=True)
147
+ ax.tick_params(axis="both", direction="in", bottom=True, top=True, left=True, right=True)
148
+
149
+ return fig
150
+
151
+
152
+ def _generate_part_of_path(
153
+ p_0: npt.NDArray[np.float64],
154
+ p_1: npt.NDArray[np.float64],
155
+ n: int,
156
+ length_whole_path: int,
157
+ ) -> npt.NDArray[np.float64]:
158
+ distance = np.linalg.norm(p_1 - p_0)
159
+ number_of_points = int(n * distance / length_whole_path) + 1
160
+
161
+ return np.vstack(
162
+ [
163
+ np.linspace(p_0[0], p_1[0], number_of_points),
164
+ np.linspace(p_0[1], p_1[1], number_of_points),
165
+ ]
166
+ ).T[:-1]
167
+
168
+
169
+ def generate_bz_path(
170
+ points: list[tuple[npt.NDArray[np.float64], str]], number_of_points: int = 1000
171
+ ) -> tuple[
172
+ ndarray[Any, dtype[generic | Any]],
173
+ ndarray[Any, dtype[generic | Any]],
174
+ list[int | Any],
175
+ list[str],
176
+ ]:
177
+ """Generate a path through high symmetry points.
178
+
179
+ Parameters
180
+ ----------
181
+ points : :class:`numpy.ndarray`
182
+ Test
183
+ number_of_points: int
184
+ Number of point in the whole path.
185
+
186
+ Returns
187
+ -------
188
+ :class:`numpy.ndarray`
189
+ List of two-dimensional k points.
190
+ :class:`numpy.ndarray`
191
+ Path for plotting purposes: points between 0 and 1, with appropiate spacing.
192
+ list[float]
193
+ A list of ticks for the plotting path.
194
+ list[str]
195
+ A list of labels for the plotting path.
196
+
197
+ """
198
+ n = number_of_points
199
+
200
+ cycle = [np.linalg.norm(points[i][0] - points[i + 1][0]) for i in range(len(points) - 1)]
201
+ cycle.append(np.linalg.norm(points[-1][0] - points[0][0]))
202
+
203
+ length_whole_path = np.sum(np.array([cycle]))
204
+
205
+ ticks = [0]
206
+ ticks.extend([np.sum(cycle[0 : i + 1]) / length_whole_path for i in range(len(cycle) - 1)])
207
+ ticks.append(1)
208
+ labels = [rf"${points[i][1]}$" for i in range(len(points))]
209
+ labels.append(rf"${points[0][1]}$")
210
+
211
+ whole_path_plot = np.concatenate(
212
+ [
213
+ np.linspace(
214
+ ticks[i],
215
+ ticks[i + 1],
216
+ num=int(n * cycle[i] / length_whole_path),
217
+ endpoint=False,
218
+ )
219
+ for i in range(len(ticks) - 1)
220
+ ]
221
+ )
222
+
223
+ points_path = [
224
+ _generate_part_of_path(points[i][0], points[i + 1][0], n, length_whole_path)
225
+ for i in range(len(points) - 1)
226
+ ]
227
+ points_path.append(_generate_part_of_path(points[-1][0], points[0][0], n, length_whole_path))
228
+ whole_path = np.concatenate(points_path)
229
+
230
+ return whole_path, whole_path_plot, ticks, labels