quant-met 0.0.23__py3-none-any.whl → 0.0.24__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- quant_met/cli/_utils.py +8 -4
- quant_met/cli/dmft.py +24 -19
- quant_met/dmft/dmft_loop.py +25 -36
- quant_met/dmft/utils.py +109 -0
- quant_met/mean_field/hamiltonians/base_hamiltonian.py +12 -10
- quant_met/mean_field/hamiltonians/dressed_graphene.py +7 -3
- {quant_met-0.0.23.dist-info → quant_met-0.0.24.dist-info}/METADATA +1 -1
- {quant_met-0.0.23.dist-info → quant_met-0.0.24.dist-info}/RECORD +11 -11
- {quant_met-0.0.23.dist-info → quant_met-0.0.24.dist-info}/WHEEL +0 -0
- {quant_met-0.0.23.dist-info → quant_met-0.0.24.dist-info}/entry_points.txt +0 -0
- {quant_met-0.0.23.dist-info → quant_met-0.0.24.dist-info}/licenses/LICENSE.txt +0 -0
quant_met/cli/_utils.py
CHANGED
@@ -41,7 +41,11 @@ def _tbl_factory(h: BaseHamiltonian[GenericParameters]) -> TBLattice:
|
|
41
41
|
0.5 * lattice_constant * np.array([1, np.sqrt(3), 0]),
|
42
42
|
0.5 * lattice_constant * np.array([1, -np.sqrt(3), 0]),
|
43
43
|
]
|
44
|
-
orbital_positions = [
|
44
|
+
orbital_positions = [
|
45
|
+
(0.5 * (np.sqrt(3) - 1), 0, 0),
|
46
|
+
(0.5 * (np.sqrt(3) + 1), 0, 0),
|
47
|
+
(0.5 * (np.sqrt(3) - 1), 0, 0),
|
48
|
+
]
|
45
49
|
hoppings = {
|
46
50
|
(0, 0): [
|
47
51
|
[0, h.hopping_gr, h.hopping_x_gr_a],
|
@@ -50,13 +54,13 @@ def _tbl_factory(h: BaseHamiltonian[GenericParameters]) -> TBLattice:
|
|
50
54
|
],
|
51
55
|
(1, 0): [[0, 0, 0], [h.hopping_gr, 0, 0], [0, 0, 0]],
|
52
56
|
(-1, 0): [[0, h.hopping_gr, 0], [0, 0, 0], [0, 0, 0]],
|
53
|
-
(0, 1): [[0,
|
54
|
-
(0, -1): [[0,
|
57
|
+
(0, 1): [[0, h.hopping_gr, 0], [0, 0, 0], [0, 0, 0]],
|
58
|
+
(0, -1): [[0, 0, 0], [h.hopping_gr, 0, 0], [0, 0, 0]],
|
55
59
|
}
|
56
60
|
|
57
61
|
return TBLattice(
|
58
62
|
units=basis_vectors,
|
59
63
|
hoppings=hoppings,
|
60
64
|
orbital_positions=orbital_positions,
|
61
|
-
orbital_names=["
|
65
|
+
orbital_names=["A", "B", "X"],
|
62
66
|
)
|
quant_met/cli/dmft.py
CHANGED
@@ -8,7 +8,8 @@ import logging
|
|
8
8
|
from pathlib import Path
|
9
9
|
|
10
10
|
from h5 import HDFArchive
|
11
|
-
from
|
11
|
+
from mpi4py import MPI
|
12
|
+
from triqs.gf import Gf
|
12
13
|
|
13
14
|
from quant_met.cli._utils import _hamiltonian_factory, _tbl_factory
|
14
15
|
from quant_met.dmft.dmft_loop import dmft_loop
|
@@ -43,7 +44,13 @@ def dmft_scf(parameters: Parameters) -> None:
|
|
43
44
|
h0_nambu_k[k][:n_orbitals, :n_orbitals] = enk(k)
|
44
45
|
h0_nambu_k[k][n_orbitals:, n_orbitals:] = -enk(-k)
|
45
46
|
|
46
|
-
|
47
|
+
ust = 0
|
48
|
+
jh = 0
|
49
|
+
xmu = (
|
50
|
+
h.hubbard_int_orbital_basis[0] / 2
|
51
|
+
+ (tbl.n_orbitals - 1) * ust / 2
|
52
|
+
+ (tbl.n_orbitals - 1) * (ust - jh) / 2
|
53
|
+
)
|
47
54
|
|
48
55
|
solver = dmft_loop(
|
49
56
|
tbl=tbl,
|
@@ -69,23 +76,21 @@ def dmft_scf(parameters: Parameters) -> None:
|
|
69
76
|
g_iw, g_an_iw = get_gloc(s_iw, s_an_iw, h0_nambu_k, xmu, parameters.control.broadening, kmesh)
|
70
77
|
g_w, g_an_w = get_gloc(s_w, s_an_w, h0_nambu_k, xmu, parameters.control.broadening, kmesh)
|
71
78
|
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
gap = s_an_iw[Idx(0)][0, 0].real / (1 - (s_iw[Idx(0)][0, 0].imag / iw_0))
|
79
|
+
comm = MPI.COMM_WORLD
|
80
|
+
rank = comm.Get_rank()
|
76
81
|
|
77
|
-
|
78
|
-
|
82
|
+
if rank == 0:
|
83
|
+
data_dir = Path("data/DressedGraphene/dmft/sweep_V/")
|
84
|
+
data_dir.mkdir(parents=True, exist_ok=True)
|
79
85
|
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
ar["gap"] = gap
|
86
|
+
# Save calculation results
|
87
|
+
result_file = result_path / f"{parameters.control.prefix}.hdf5"
|
88
|
+
with HDFArchive(f"{result_file}", "w") as ar:
|
89
|
+
ar["s_iw"] = s_iw
|
90
|
+
ar["s_an_iw"] = s_an_iw
|
91
|
+
ar["g_iw"] = g_iw
|
92
|
+
ar["g_an_iw"] = g_an_iw
|
93
|
+
ar["g_w"] = g_w
|
94
|
+
ar["g_an_w"] = g_an_w
|
90
95
|
|
91
|
-
|
96
|
+
logger.info("Results saved to %s", result_file)
|
quant_met/dmft/dmft_loop.py
CHANGED
@@ -18,7 +18,7 @@ from triqs.operators import c, c_dag, dagger, n
|
|
18
18
|
from quant_met.mean_field.hamiltonians import BaseHamiltonian
|
19
19
|
from quant_met.parameters import GenericParameters
|
20
20
|
|
21
|
-
from .utils import _dmft_weiss_field, get_gloc
|
21
|
+
from .utils import _check_convergence, _dmft_weiss_field, get_gloc
|
22
22
|
|
23
23
|
logger = logging.getLogger(__name__)
|
24
24
|
|
@@ -80,8 +80,27 @@ def dmft_loop(
|
|
80
80
|
h_loc[o1, o2] * c_dag(spin, o1) * c(spin, o2) for spin, o1, o2 in product(spins, orbs, orbs)
|
81
81
|
)
|
82
82
|
|
83
|
+
ust = 0
|
84
|
+
jh = 0
|
85
|
+
jx = 0
|
86
|
+
jp = 0
|
87
|
+
|
83
88
|
# Interaction part
|
84
|
-
hamiltonian +=
|
89
|
+
hamiltonian += h.hubbard_int_orbital_basis[0] * sum(n("up", o) * n("dn", o) for o in orbs)
|
90
|
+
hamiltonian += ust * sum(
|
91
|
+
int(o1 != o2) * n("up", o1) * n("dn", o2) for o1, o2 in product(orbs, orbs)
|
92
|
+
)
|
93
|
+
hamiltonian += (ust - jh) * sum(
|
94
|
+
int(o1 < o2) * n(s, o1) * n(s, o2) for s, o1, o2 in product(spins, orbs, orbs)
|
95
|
+
)
|
96
|
+
hamiltonian -= jx * sum(
|
97
|
+
int(o1 != o2) * c_dag("up", o1) * c("dn", o1) * c_dag("dn", o2) * c("up", o2)
|
98
|
+
for o1, o2 in product(orbs, orbs)
|
99
|
+
)
|
100
|
+
hamiltonian += jp * sum(
|
101
|
+
int(o1 != o2) * c_dag("up", o1) * c_dag("dn", o1) * c("dn", o2) * c("up", o2)
|
102
|
+
for o1, o2 in product(orbs, orbs)
|
103
|
+
)
|
85
104
|
|
86
105
|
# Matrix dimensions of eps and V: 3 orbitals x 2 bath states
|
87
106
|
eps = np.array([[-1.0, -0.5, 0.5, 1.0] for _ in range(tbl.n_orbitals)])
|
@@ -119,8 +138,6 @@ def dmft_loop(
|
|
119
138
|
bath_fitting_params=fit_params,
|
120
139
|
)
|
121
140
|
|
122
|
-
gooditer = 0
|
123
|
-
g0_prev = np.zeros((2, 2 * n_iw, tbl.n_orbitals, tbl.n_orbitals), dtype=complex)
|
124
141
|
for iloop in range(max_iter):
|
125
142
|
print(f"\nLoop {iloop + 1} of {max_iter}")
|
126
143
|
|
@@ -151,39 +168,11 @@ def dmft_loop(
|
|
151
168
|
|
152
169
|
# Check convergence of the Weiss field
|
153
170
|
g0 = np.asarray([g0_iw.data, g0_an_iw.data])
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
errvec = np.ones_like(errvec)
|
158
|
-
errmin, err, errmax = np.min(errvec), np.average(errvec), np.max(errvec)
|
159
|
-
|
160
|
-
g0_prev = np.copy(g0)
|
161
|
-
|
162
|
-
if err < epsilon:
|
163
|
-
gooditer += 1 # Increase good iterations count
|
164
|
-
else:
|
165
|
-
gooditer = 0 # Reset good iterations count
|
166
|
-
|
167
|
-
conv_bool = ((err < epsilon) and (gooditer > n_success) and (iloop < max_iter)) or (
|
168
|
-
iloop >= max_iter
|
169
|
-
)
|
171
|
+
# Check convergence of the Weiss field
|
172
|
+
g0 = np.asarray([g0_iw.data, g0_an_iw.data])
|
173
|
+
err, converged = _check_convergence(g0, epsilon, n_success, max_iter)
|
170
174
|
|
171
|
-
|
172
|
-
if iloop < max_iter:
|
173
|
-
if errvec.size > 1:
|
174
|
-
print(f"max error={errmax:.6e}")
|
175
|
-
print(" " * (errvec.size > 1) + f"error={err:.6e}")
|
176
|
-
if errvec.size > 1:
|
177
|
-
print(f"min error={errmin:.6e}")
|
178
|
-
else:
|
179
|
-
if errvec.size > 1:
|
180
|
-
print(f"max error={errmax:.6e}")
|
181
|
-
print(" " * (errvec.size > 1) + f"error={err:.6e}")
|
182
|
-
if errvec.size > 1:
|
183
|
-
print(f"min error={errmin:.6e}")
|
184
|
-
print(f"Not converged after {max_iter} iterations.")
|
185
|
-
|
186
|
-
if conv_bool:
|
175
|
+
if converged:
|
187
176
|
break
|
188
177
|
|
189
178
|
return solver
|
quant_met/dmft/utils.py
CHANGED
@@ -4,11 +4,120 @@
|
|
4
4
|
|
5
5
|
"""Utility functions used in DMFT."""
|
6
6
|
|
7
|
+
import sys
|
8
|
+
from pathlib import Path
|
9
|
+
|
7
10
|
import numpy as np
|
8
11
|
import numpy.typing as npt
|
12
|
+
from mpi4py import MPI
|
9
13
|
from triqs.gf import Gf, MeshBrZone, MeshImFreq, MeshProduct, conjugate, dyson, inverse, iOmega_n
|
10
14
|
|
11
15
|
|
16
|
+
def _check_convergence(
|
17
|
+
func: npt.NDArray[np.complex128], threshold: float = 1e-6, nsuccess: int = 1, nloop: int = 100
|
18
|
+
) -> tuple[float, bool]:
|
19
|
+
comm = MPI.COMM_WORLD
|
20
|
+
rank = comm.Get_rank()
|
21
|
+
|
22
|
+
func = np.asarray(func)
|
23
|
+
err = 1.0
|
24
|
+
conv_bool = False
|
25
|
+
outfile = "error.err"
|
26
|
+
|
27
|
+
if globals().get("_whichiter") is None:
|
28
|
+
global _whichiter
|
29
|
+
global _gooditer
|
30
|
+
global _oldfunc
|
31
|
+
|
32
|
+
_whichiter = 0
|
33
|
+
_gooditer = 0
|
34
|
+
_oldfunc = np.zeros_like(func)
|
35
|
+
|
36
|
+
green = "\033[92m"
|
37
|
+
yellow = "\033[93m"
|
38
|
+
red = "\033[91m"
|
39
|
+
bold = "\033[1m"
|
40
|
+
colorend = "\033[0m"
|
41
|
+
|
42
|
+
# only the master does the calculation
|
43
|
+
if rank == 0:
|
44
|
+
errvec = np.real(np.sum(abs(func - _oldfunc), axis=-1) / np.sum(abs(func), axis=-1))
|
45
|
+
# first iteration
|
46
|
+
if _whichiter == 0:
|
47
|
+
errvec = np.ones_like(errvec)
|
48
|
+
# remove nan compoments, if some component is divided by zero
|
49
|
+
if np.prod(np.shape(errvec)) > 1:
|
50
|
+
errvec = errvec[~np.isnan(errvec)]
|
51
|
+
errmax = np.max(errvec)
|
52
|
+
errmin = np.min(errvec)
|
53
|
+
err = np.average(errvec)
|
54
|
+
_oldfunc = np.copy(func)
|
55
|
+
if err < threshold:
|
56
|
+
_gooditer += 1 # increase good iterations count
|
57
|
+
else:
|
58
|
+
_gooditer = 0 # reset good iterations count
|
59
|
+
_whichiter += 1
|
60
|
+
conv_bool = ((err < threshold) and (_gooditer > nsuccess) and (_whichiter < nloop)) or (
|
61
|
+
_whichiter >= nloop
|
62
|
+
)
|
63
|
+
|
64
|
+
# write out
|
65
|
+
with Path(outfile).open("a") as file:
|
66
|
+
file.write(f"{_whichiter} {err:.6e}\n")
|
67
|
+
if np.prod(np.shape(errvec)) > 1:
|
68
|
+
with Path(outfile + ".max").open("a") as file:
|
69
|
+
file.write(f"{_whichiter} {errmax:.6e}\n")
|
70
|
+
with Path(outfile + ".min").open("a") as file:
|
71
|
+
file.write(f"{_whichiter} {errmin:.6e}\n")
|
72
|
+
with Path(outfile + ".distribution").open("a") as file:
|
73
|
+
file.write(
|
74
|
+
f"{_whichiter}" + " ".join([f"{x:.6e}" for x in errvec.flatten()]) + "\n"
|
75
|
+
)
|
76
|
+
|
77
|
+
# print convergence message:
|
78
|
+
if conv_bool:
|
79
|
+
colorprefix = bold + green
|
80
|
+
elif (err < threshold) and (_gooditer <= nsuccess):
|
81
|
+
colorprefix = bold + yellow
|
82
|
+
else:
|
83
|
+
colorprefix = bold + red
|
84
|
+
|
85
|
+
if _whichiter < nloop:
|
86
|
+
if np.prod(np.shape(errvec)) > 1:
|
87
|
+
print(colorprefix + "max error=" + colorend + f"{errmax:.6e}")
|
88
|
+
print(
|
89
|
+
colorprefix
|
90
|
+
+ " " * (np.prod(np.shape(errvec)) > 1)
|
91
|
+
+ "error="
|
92
|
+
+ colorend
|
93
|
+
+ f"{err:.6e}"
|
94
|
+
)
|
95
|
+
if np.prod(np.shape(errvec)) > 1:
|
96
|
+
print(colorprefix + "min error=" + colorend + f"{errmin:.6e}")
|
97
|
+
else:
|
98
|
+
if np.prod(np.shape(errvec)) > 1:
|
99
|
+
print(colorprefix + "max error=" + colorend + f"{errmax:.6e}")
|
100
|
+
print(
|
101
|
+
colorprefix
|
102
|
+
+ " " * (np.prod(np.shape(errvec)) > 1)
|
103
|
+
+ "error="
|
104
|
+
+ colorend
|
105
|
+
+ f"{err:.6e}"
|
106
|
+
)
|
107
|
+
if np.prod(np.shape(errvec)) > 1:
|
108
|
+
print(colorprefix + "min error=" + colorend + f"{errmin:.6e}")
|
109
|
+
print("Not converged after " + str(nloop) + " iterations.")
|
110
|
+
with Path("ERROR.README").open("a") as file:
|
111
|
+
file.write("Not converged after " + str(nloop) + " iterations.")
|
112
|
+
print("\n")
|
113
|
+
|
114
|
+
# pass to other cores:
|
115
|
+
conv_bool = comm.bcast(conv_bool, root=0)
|
116
|
+
err = comm.bcast(err, root=0)
|
117
|
+
sys.stdout.flush()
|
118
|
+
return err, conv_bool
|
119
|
+
|
120
|
+
|
12
121
|
def get_gloc(
|
13
122
|
s: Gf,
|
14
123
|
s_an: Gf,
|
@@ -359,7 +359,7 @@ class BaseHamiltonian(Generic[GenericParameters], ABC):
|
|
359
359
|
def gap_equation_loop(
|
360
360
|
bdg_energies: npt.NDArray[np.float64],
|
361
361
|
bdg_wavefunctions: npt.NDArray[np.complex128],
|
362
|
-
delta: npt.NDArray[np.
|
362
|
+
delta: npt.NDArray[np.complex128],
|
363
363
|
beta: float,
|
364
364
|
hubbard_int_orbital_basis: npt.NDArray[np.float64],
|
365
365
|
k: npt.NDArray[np.floating],
|
@@ -390,16 +390,18 @@ class BaseHamiltonian(Generic[GenericParameters], ABC):
|
|
390
390
|
New pairing gap in orbital basis, adjusted to remove global phase.
|
391
391
|
"""
|
392
392
|
number_of_bands = len(delta)
|
393
|
+
|
394
|
+
result_matrix = np.zeros((2 * number_of_bands, 2 * number_of_bands), dtype=np.complex128)
|
395
|
+
for k_index in range(len(k)):
|
396
|
+
nf = np.eye(2 * number_of_bands, 2 * number_of_bands, dtype=np.complex128) * (
|
397
|
+
fermi_dirac(bdg_energies[k_index], beta)
|
398
|
+
)
|
399
|
+
result_matrix += bdg_wavefunctions[k_index].conj().T @ nf @ bdg_wavefunctions[k_index]
|
400
|
+
|
393
401
|
for i in range(number_of_bands):
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
sum_tmp += (
|
398
|
-
np.conjugate(bdg_wavefunctions[k_index, i, j])
|
399
|
-
* bdg_wavefunctions[k_index, i + number_of_bands, j]
|
400
|
-
* fermi_dirac(bdg_energies[k_index, j].item(), beta)
|
401
|
-
)
|
402
|
-
delta[i] = (-hubbard_int_orbital_basis[i] * sum_tmp / len(k)).conjugate()
|
402
|
+
delta[i] = (
|
403
|
+
-hubbard_int_orbital_basis[i] * result_matrix[i, i + number_of_bands] / len(k)
|
404
|
+
)
|
403
405
|
|
404
406
|
delta_without_phase: npt.NDArray[np.complexfloating] = delta * np.exp(
|
405
407
|
-1j * np.angle(delta[np.argmax(np.abs(delta))])
|
@@ -48,9 +48,13 @@ class DressedGraphene(BaseHamiltonian[DressedGrapheneParameters]):
|
|
48
48
|
|
49
49
|
h = np.zeros((k.shape[0], self.number_of_bands, self.number_of_bands), dtype=np.complex128)
|
50
50
|
|
51
|
-
h[:, 0, 1] =
|
52
|
-
|
53
|
-
|
51
|
+
h[:, 0, 1] = (
|
52
|
+
-t_gr
|
53
|
+
* np.exp(2j * k[:, 1] * a)
|
54
|
+
* (
|
55
|
+
np.exp(1j * k[:, 1] * a / np.sqrt(3))
|
56
|
+
+ 2 * np.exp(-0.5j * a / np.sqrt(3) * k[:, 1]) * (np.cos(0.5 * a * k[:, 0]))
|
57
|
+
)
|
54
58
|
)
|
55
59
|
|
56
60
|
h[:, 1, 0] = h[:, 0, 1].conjugate()
|
@@ -1,14 +1,14 @@
|
|
1
1
|
quant_met/__init__.py,sha256=ZO1UFz1awUYTI7B9ZkBwucvDz7GMGXnLLUGnEwLBhkc,155
|
2
2
|
quant_met/utils.py,sha256=J3kCbKg0tPEoGJExX04QwifHn4ch482J8IcmRQxIfP4,2067
|
3
3
|
quant_met/cli/__init__.py,sha256=nGFXhK8zWyEKQtsQTyJWfEOLFOHTCjZnfEcrVb2dARc,254
|
4
|
-
quant_met/cli/_utils.py,sha256=
|
4
|
+
quant_met/cli/_utils.py,sha256=MKHvkxudWH-px07lDz0_V1AWiCCvj_IsBYbocfL-r7Y,2036
|
5
5
|
quant_met/cli/crit_temp.py,sha256=t9sPZKORl6dpa1UNAOMH2gDmeQxf80iFH7p_L3FI5q8,2027
|
6
|
-
quant_met/cli/dmft.py,sha256=
|
6
|
+
quant_met/cli/dmft.py,sha256=ct6e1Wd8o7V3VP7DB7pqPxyF5pbrR2mb-J8pUkP9UPE,3101
|
7
7
|
quant_met/cli/main.py,sha256=1D1-KhGkzibts9b7Cv3JsR5Q-PnkowBWKE1Owc8tdD8,2010
|
8
8
|
quant_met/cli/scf.py,sha256=3_rwtQHwypFjAwjrsO2r2sqjJKpNiDLAj6svU52CCcU,2613
|
9
9
|
quant_met/dmft/__init__.py,sha256=2H0bN40Tvn-VnZgix6MugN0Q6iNwD_9AQxUC_LVLh70,99
|
10
|
-
quant_met/dmft/dmft_loop.py,sha256=
|
11
|
-
quant_met/dmft/utils.py,sha256=
|
10
|
+
quant_met/dmft/dmft_loop.py,sha256=fH8v39I5yIY2iY5RaID43El1V0nxLewAfohNsq987_A,5272
|
11
|
+
quant_met/dmft/utils.py,sha256=JO66kuTXruYCwNoVL0aFS55D3tV7Ii3v7hC9OpuWfF8,6636
|
12
12
|
quant_met/geometry/__init__.py,sha256=2N8l0-2-PhEOQxaUO7e8Dqy5oaxt2y9343XENDTCGPE,592
|
13
13
|
quant_met/geometry/base_lattice.py,sha256=OJNDMyzJB-0hK1BLgF-SV4jUYfOSUksIv1XG1bH-zyY,2649
|
14
14
|
quant_met/geometry/bz_path.py,sha256=vwN5RxyrgFkHTSqm_6cWuOigICgxa-FX5NZ7SkgKScw,2503
|
@@ -19,8 +19,8 @@ quant_met/mean_field/_utils.py,sha256=7hr0DDSdIqjft5Jjluvbw_HGoNLWgYJTxyuPJJvhBn
|
|
19
19
|
quant_met/mean_field/search_crit_temp.py,sha256=Z9te3O7zsyBGLRrPjmNA85vxHOfBfIQ7svdDVFEJedg,8782
|
20
20
|
quant_met/mean_field/self_consistency.py,sha256=YY_zhCurxOK3RLkK-Hglfkx33uhsvqpoAKOP4FuPdfo,3371
|
21
21
|
quant_met/mean_field/hamiltonians/__init__.py,sha256=r-8TaLqRnRbAro-TMIyxzCCZHwVqyKrausODpQJb2tw,681
|
22
|
-
quant_met/mean_field/hamiltonians/base_hamiltonian.py,sha256=
|
23
|
-
quant_met/mean_field/hamiltonians/dressed_graphene.py,sha256=
|
22
|
+
quant_met/mean_field/hamiltonians/base_hamiltonian.py,sha256=Qd1V5PAEPCxoKYRVfh11og6ZzrdMtH5hDn2GyRelFNE,29422
|
23
|
+
quant_met/mean_field/hamiltonians/dressed_graphene.py,sha256=iPQshQqvtWf-NbeSdn8VbtuSU1g7maKUjFPfoji8zwk,4135
|
24
24
|
quant_met/mean_field/hamiltonians/graphene.py,sha256=sa3H8jVq9Fkc_qcz5gJTCMgN8YD3N18JWLRBImhLyxo,3276
|
25
25
|
quant_met/mean_field/hamiltonians/one_band_tight_binding.py,sha256=DZXaD95yWv1VZSMqgxkqEZv3PGihNGy7PuqupnN75ew,2512
|
26
26
|
quant_met/mean_field/hamiltonians/three_band_tight_binding.py,sha256=g8XNImzCn_6CRYKDYI6sy3q6_TBYUDxDmQZ-AqenXTE,3295
|
@@ -30,8 +30,8 @@ quant_met/parameters/hamiltonians.py,sha256=PiWVV-miCdT4Z9GWloDVvIU_1QpRHHV-zVOg
|
|
30
30
|
quant_met/parameters/main.py,sha256=QP7Z24-QePMcy6txujqxbx5ztQTdC67m6elNsJtGtXQ,2325
|
31
31
|
quant_met/plotting/__init__.py,sha256=IDgV6juJ0VfcJHppD-vnPH6w8wVuAC35eSeLxKzqyBc,523
|
32
32
|
quant_met/plotting/plotting.py,sha256=4ZYclWJH3hlE8S7b7bL_JJlP3CKaCGcVzdIsqolCAaM,6592
|
33
|
-
quant_met-0.0.
|
34
|
-
quant_met-0.0.
|
35
|
-
quant_met-0.0.
|
36
|
-
quant_met-0.0.
|
37
|
-
quant_met-0.0.
|
33
|
+
quant_met-0.0.24.dist-info/METADATA,sha256=39K98j0y8EPTNQDt7unKVyD4ibrIeTkDQExEkVJvZCU,1978
|
34
|
+
quant_met-0.0.24.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
35
|
+
quant_met-0.0.24.dist-info/entry_points.txt,sha256=1Al3Kt-cMeQxwMp84ZSNL0qFwlbOVBu1o8A19MH8lEU,48
|
36
|
+
quant_met-0.0.24.dist-info/licenses/LICENSE.txt,sha256=QO_duPQihSJlaxSLxPAXo52X3esROP5wBkhxqBd1Z4E,1104
|
37
|
+
quant_met-0.0.24.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|