quant-met 0.0.22__py3-none-any.whl → 0.0.24__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
quant_met/cli/_utils.py CHANGED
@@ -41,7 +41,11 @@ def _tbl_factory(h: BaseHamiltonian[GenericParameters]) -> TBLattice:
41
41
  0.5 * lattice_constant * np.array([1, np.sqrt(3), 0]),
42
42
  0.5 * lattice_constant * np.array([1, -np.sqrt(3), 0]),
43
43
  ]
44
- orbital_positions = [(0, 0.5, 0), (0, -0.5, 0), (0, -0.5, 0)]
44
+ orbital_positions = [
45
+ (0.5 * (np.sqrt(3) - 1), 0, 0),
46
+ (0.5 * (np.sqrt(3) + 1), 0, 0),
47
+ (0.5 * (np.sqrt(3) - 1), 0, 0),
48
+ ]
45
49
  hoppings = {
46
50
  (0, 0): [
47
51
  [0, h.hopping_gr, h.hopping_x_gr_a],
@@ -50,13 +54,13 @@ def _tbl_factory(h: BaseHamiltonian[GenericParameters]) -> TBLattice:
50
54
  ],
51
55
  (1, 0): [[0, 0, 0], [h.hopping_gr, 0, 0], [0, 0, 0]],
52
56
  (-1, 0): [[0, h.hopping_gr, 0], [0, 0, 0], [0, 0, 0]],
53
- (0, 1): [[0, 0, 0], [h.hopping_gr, 0, 0], [0, 0, 0]],
54
- (0, -1): [[0, h.hopping_gr, 0], [0, 0, 0], [0, 0, 0]],
57
+ (0, 1): [[0, h.hopping_gr, 0], [0, 0, 0], [0, 0, 0]],
58
+ (0, -1): [[0, 0, 0], [h.hopping_gr, 0, 0], [0, 0, 0]],
55
59
  }
56
60
 
57
61
  return TBLattice(
58
62
  units=basis_vectors,
59
63
  hoppings=hoppings,
60
64
  orbital_positions=orbital_positions,
61
- orbital_names=["C1", "C2", "X"],
65
+ orbital_names=["A", "B", "X"],
62
66
  )
quant_met/cli/dmft.py CHANGED
@@ -8,7 +8,8 @@ import logging
8
8
  from pathlib import Path
9
9
 
10
10
  from h5 import HDFArchive
11
- from triqs.gf import Gf, Idx
11
+ from mpi4py import MPI
12
+ from triqs.gf import Gf
12
13
 
13
14
  from quant_met.cli._utils import _hamiltonian_factory, _tbl_factory
14
15
  from quant_met.dmft.dmft_loop import dmft_loop
@@ -43,7 +44,13 @@ def dmft_scf(parameters: Parameters) -> None:
43
44
  h0_nambu_k[k][:n_orbitals, :n_orbitals] = enk(k)
44
45
  h0_nambu_k[k][n_orbitals:, n_orbitals:] = -enk(-k)
45
46
 
46
- xmu = h.hubbard_int_orbital_basis[0] / 2
47
+ ust = 0
48
+ jh = 0
49
+ xmu = (
50
+ h.hubbard_int_orbital_basis[0] / 2
51
+ + (tbl.n_orbitals - 1) * ust / 2
52
+ + (tbl.n_orbitals - 1) * (ust - jh) / 2
53
+ )
47
54
 
48
55
  solver = dmft_loop(
49
56
  tbl=tbl,
@@ -69,23 +76,21 @@ def dmft_scf(parameters: Parameters) -> None:
69
76
  g_iw, g_an_iw = get_gloc(s_iw, s_an_iw, h0_nambu_k, xmu, parameters.control.broadening, kmesh)
70
77
  g_w, g_an_w = get_gloc(s_w, s_an_w, h0_nambu_k, xmu, parameters.control.broadening, kmesh)
71
78
 
72
- n_iw0 = int(0.5 * len(s_iw.mesh))
73
- iw_0 = s_iw.mesh[n_iw0].value.imag
74
-
75
- gap = s_an_iw[Idx(0)][0, 0].real / (1 - (s_iw[Idx(0)][0, 0].imag / iw_0))
79
+ comm = MPI.COMM_WORLD
80
+ rank = comm.Get_rank()
76
81
 
77
- data_dir = Path("data/DressedGraphene/dmft/sweep_V/")
78
- data_dir.mkdir(parents=True, exist_ok=True)
82
+ if rank == 0:
83
+ data_dir = Path("data/DressedGraphene/dmft/sweep_V/")
84
+ data_dir.mkdir(parents=True, exist_ok=True)
79
85
 
80
- # Save calculation results
81
- result_file = result_path / f"{parameters.control.prefix}.hdf5"
82
- with HDFArchive(f"{result_file}", "w") as ar:
83
- ar["s_iw"] = s_iw
84
- ar["s_an_iw"] = s_an_iw
85
- ar["g_iw"] = g_iw
86
- ar["g_an_iw"] = g_an_iw
87
- ar["g_w"] = g_w
88
- ar["g_an_w"] = g_an_w
89
- ar["gap"] = gap
86
+ # Save calculation results
87
+ result_file = result_path / f"{parameters.control.prefix}.hdf5"
88
+ with HDFArchive(f"{result_file}", "w") as ar:
89
+ ar["s_iw"] = s_iw
90
+ ar["s_an_iw"] = s_an_iw
91
+ ar["g_iw"] = g_iw
92
+ ar["g_an_iw"] = g_an_iw
93
+ ar["g_w"] = g_w
94
+ ar["g_an_w"] = g_an_w
90
95
 
91
- logger.info("Results saved to %s", result_file)
96
+ logger.info("Results saved to %s", result_file)
@@ -9,16 +9,16 @@ from itertools import product
9
9
 
10
10
  import numpy as np
11
11
  import numpy.typing as npt
12
+ from edipack2triqs.fit import BathFittingParams
13
+ from edipack2triqs.solver import EDIpackSolver
12
14
  from triqs.gf import BlockGf, Gf, MeshBrZone
13
15
  from triqs.lattice.tight_binding import TBLattice
14
16
  from triqs.operators import c, c_dag, dagger, n
15
17
 
16
- from edipack2triqs.fit import BathFittingParams
17
- from edipack2triqs.solver import EDIpackSolver
18
18
  from quant_met.mean_field.hamiltonians import BaseHamiltonian
19
19
  from quant_met.parameters import GenericParameters
20
20
 
21
- from .utils import _dmft_weiss_field, get_gloc
21
+ from .utils import _check_convergence, _dmft_weiss_field, get_gloc
22
22
 
23
23
  logger = logging.getLogger(__name__)
24
24
 
@@ -80,8 +80,27 @@ def dmft_loop(
80
80
  h_loc[o1, o2] * c_dag(spin, o1) * c(spin, o2) for spin, o1, o2 in product(spins, orbs, orbs)
81
81
  )
82
82
 
83
+ ust = 0
84
+ jh = 0
85
+ jx = 0
86
+ jp = 0
87
+
83
88
  # Interaction part
84
- hamiltonian += -h.hubbard_int_orbital_basis[0] * sum(n("up", o) * n("dn", o) for o in orbs)
89
+ hamiltonian += h.hubbard_int_orbital_basis[0] * sum(n("up", o) * n("dn", o) for o in orbs)
90
+ hamiltonian += ust * sum(
91
+ int(o1 != o2) * n("up", o1) * n("dn", o2) for o1, o2 in product(orbs, orbs)
92
+ )
93
+ hamiltonian += (ust - jh) * sum(
94
+ int(o1 < o2) * n(s, o1) * n(s, o2) for s, o1, o2 in product(spins, orbs, orbs)
95
+ )
96
+ hamiltonian -= jx * sum(
97
+ int(o1 != o2) * c_dag("up", o1) * c("dn", o1) * c_dag("dn", o2) * c("up", o2)
98
+ for o1, o2 in product(orbs, orbs)
99
+ )
100
+ hamiltonian += jp * sum(
101
+ int(o1 != o2) * c_dag("up", o1) * c_dag("dn", o1) * c("dn", o2) * c("up", o2)
102
+ for o1, o2 in product(orbs, orbs)
103
+ )
85
104
 
86
105
  # Matrix dimensions of eps and V: 3 orbitals x 2 bath states
87
106
  eps = np.array([[-1.0, -0.5, 0.5, 1.0] for _ in range(tbl.n_orbitals)])
@@ -119,8 +138,6 @@ def dmft_loop(
119
138
  bath_fitting_params=fit_params,
120
139
  )
121
140
 
122
- gooditer = 0
123
- g0_prev = np.zeros((2, 2 * n_iw, tbl.n_orbitals, tbl.n_orbitals), dtype=complex)
124
141
  for iloop in range(max_iter):
125
142
  print(f"\nLoop {iloop + 1} of {max_iter}")
126
143
 
@@ -151,39 +168,11 @@ def dmft_loop(
151
168
 
152
169
  # Check convergence of the Weiss field
153
170
  g0 = np.asarray([g0_iw.data, g0_an_iw.data])
154
- errvec = np.real(np.sum(abs(g0 - g0_prev), axis=1) / np.sum(abs(g0), axis=1))
155
- # First iteration
156
- if iloop == 0:
157
- errvec = np.ones_like(errvec)
158
- errmin, err, errmax = np.min(errvec), np.average(errvec), np.max(errvec)
159
-
160
- g0_prev = np.copy(g0)
161
-
162
- if err < epsilon:
163
- gooditer += 1 # Increase good iterations count
164
- else:
165
- gooditer = 0 # Reset good iterations count
166
-
167
- conv_bool = ((err < epsilon) and (gooditer > n_success) and (iloop < max_iter)) or (
168
- iloop >= max_iter
169
- )
171
+ # Check convergence of the Weiss field
172
+ g0 = np.asarray([g0_iw.data, g0_an_iw.data])
173
+ err, converged = _check_convergence(g0, epsilon, n_success, max_iter)
170
174
 
171
- # Print convergence message
172
- if iloop < max_iter:
173
- if errvec.size > 1:
174
- print(f"max error={errmax:.6e}")
175
- print(" " * (errvec.size > 1) + f"error={err:.6e}")
176
- if errvec.size > 1:
177
- print(f"min error={errmin:.6e}")
178
- else:
179
- if errvec.size > 1:
180
- print(f"max error={errmax:.6e}")
181
- print(" " * (errvec.size > 1) + f"error={err:.6e}")
182
- if errvec.size > 1:
183
- print(f"min error={errmin:.6e}")
184
- print(f"Not converged after {max_iter} iterations.")
185
-
186
- if conv_bool:
175
+ if converged:
187
176
  break
188
177
 
189
178
  return solver
quant_met/dmft/utils.py CHANGED
@@ -4,11 +4,120 @@
4
4
 
5
5
  """Utility functions used in DMFT."""
6
6
 
7
+ import sys
8
+ from pathlib import Path
9
+
7
10
  import numpy as np
8
11
  import numpy.typing as npt
12
+ from mpi4py import MPI
9
13
  from triqs.gf import Gf, MeshBrZone, MeshImFreq, MeshProduct, conjugate, dyson, inverse, iOmega_n
10
14
 
11
15
 
16
+ def _check_convergence(
17
+ func: npt.NDArray[np.complex128], threshold: float = 1e-6, nsuccess: int = 1, nloop: int = 100
18
+ ) -> tuple[float, bool]:
19
+ comm = MPI.COMM_WORLD
20
+ rank = comm.Get_rank()
21
+
22
+ func = np.asarray(func)
23
+ err = 1.0
24
+ conv_bool = False
25
+ outfile = "error.err"
26
+
27
+ if globals().get("_whichiter") is None:
28
+ global _whichiter
29
+ global _gooditer
30
+ global _oldfunc
31
+
32
+ _whichiter = 0
33
+ _gooditer = 0
34
+ _oldfunc = np.zeros_like(func)
35
+
36
+ green = "\033[92m"
37
+ yellow = "\033[93m"
38
+ red = "\033[91m"
39
+ bold = "\033[1m"
40
+ colorend = "\033[0m"
41
+
42
+ # only the master does the calculation
43
+ if rank == 0:
44
+ errvec = np.real(np.sum(abs(func - _oldfunc), axis=-1) / np.sum(abs(func), axis=-1))
45
+ # first iteration
46
+ if _whichiter == 0:
47
+ errvec = np.ones_like(errvec)
48
+ # remove nan compoments, if some component is divided by zero
49
+ if np.prod(np.shape(errvec)) > 1:
50
+ errvec = errvec[~np.isnan(errvec)]
51
+ errmax = np.max(errvec)
52
+ errmin = np.min(errvec)
53
+ err = np.average(errvec)
54
+ _oldfunc = np.copy(func)
55
+ if err < threshold:
56
+ _gooditer += 1 # increase good iterations count
57
+ else:
58
+ _gooditer = 0 # reset good iterations count
59
+ _whichiter += 1
60
+ conv_bool = ((err < threshold) and (_gooditer > nsuccess) and (_whichiter < nloop)) or (
61
+ _whichiter >= nloop
62
+ )
63
+
64
+ # write out
65
+ with Path(outfile).open("a") as file:
66
+ file.write(f"{_whichiter} {err:.6e}\n")
67
+ if np.prod(np.shape(errvec)) > 1:
68
+ with Path(outfile + ".max").open("a") as file:
69
+ file.write(f"{_whichiter} {errmax:.6e}\n")
70
+ with Path(outfile + ".min").open("a") as file:
71
+ file.write(f"{_whichiter} {errmin:.6e}\n")
72
+ with Path(outfile + ".distribution").open("a") as file:
73
+ file.write(
74
+ f"{_whichiter}" + " ".join([f"{x:.6e}" for x in errvec.flatten()]) + "\n"
75
+ )
76
+
77
+ # print convergence message:
78
+ if conv_bool:
79
+ colorprefix = bold + green
80
+ elif (err < threshold) and (_gooditer <= nsuccess):
81
+ colorprefix = bold + yellow
82
+ else:
83
+ colorprefix = bold + red
84
+
85
+ if _whichiter < nloop:
86
+ if np.prod(np.shape(errvec)) > 1:
87
+ print(colorprefix + "max error=" + colorend + f"{errmax:.6e}")
88
+ print(
89
+ colorprefix
90
+ + " " * (np.prod(np.shape(errvec)) > 1)
91
+ + "error="
92
+ + colorend
93
+ + f"{err:.6e}"
94
+ )
95
+ if np.prod(np.shape(errvec)) > 1:
96
+ print(colorprefix + "min error=" + colorend + f"{errmin:.6e}")
97
+ else:
98
+ if np.prod(np.shape(errvec)) > 1:
99
+ print(colorprefix + "max error=" + colorend + f"{errmax:.6e}")
100
+ print(
101
+ colorprefix
102
+ + " " * (np.prod(np.shape(errvec)) > 1)
103
+ + "error="
104
+ + colorend
105
+ + f"{err:.6e}"
106
+ )
107
+ if np.prod(np.shape(errvec)) > 1:
108
+ print(colorprefix + "min error=" + colorend + f"{errmin:.6e}")
109
+ print("Not converged after " + str(nloop) + " iterations.")
110
+ with Path("ERROR.README").open("a") as file:
111
+ file.write("Not converged after " + str(nloop) + " iterations.")
112
+ print("\n")
113
+
114
+ # pass to other cores:
115
+ conv_bool = comm.bcast(conv_bool, root=0)
116
+ err = comm.bcast(err, root=0)
117
+ sys.stdout.flush()
118
+ return err, conv_bool
119
+
120
+
12
121
  def get_gloc(
13
122
  s: Gf,
14
123
  s_an: Gf,
@@ -359,7 +359,7 @@ class BaseHamiltonian(Generic[GenericParameters], ABC):
359
359
  def gap_equation_loop(
360
360
  bdg_energies: npt.NDArray[np.float64],
361
361
  bdg_wavefunctions: npt.NDArray[np.complex128],
362
- delta: npt.NDArray[np.float64],
362
+ delta: npt.NDArray[np.complex128],
363
363
  beta: float,
364
364
  hubbard_int_orbital_basis: npt.NDArray[np.float64],
365
365
  k: npt.NDArray[np.floating],
@@ -390,16 +390,18 @@ class BaseHamiltonian(Generic[GenericParameters], ABC):
390
390
  New pairing gap in orbital basis, adjusted to remove global phase.
391
391
  """
392
392
  number_of_bands = len(delta)
393
+
394
+ result_matrix = np.zeros((2 * number_of_bands, 2 * number_of_bands), dtype=np.complex128)
395
+ for k_index in range(len(k)):
396
+ nf = np.eye(2 * number_of_bands, 2 * number_of_bands, dtype=np.complex128) * (
397
+ fermi_dirac(bdg_energies[k_index], beta)
398
+ )
399
+ result_matrix += bdg_wavefunctions[k_index].conj().T @ nf @ bdg_wavefunctions[k_index]
400
+
393
401
  for i in range(number_of_bands):
394
- sum_tmp = 0
395
- for j in range(2 * number_of_bands):
396
- for k_index in range(len(k)):
397
- sum_tmp += (
398
- np.conjugate(bdg_wavefunctions[k_index, i, j])
399
- * bdg_wavefunctions[k_index, i + number_of_bands, j]
400
- * fermi_dirac(bdg_energies[k_index, j].item(), beta)
401
- )
402
- delta[i] = (-hubbard_int_orbital_basis[i] * sum_tmp / len(k)).conjugate()
402
+ delta[i] = (
403
+ -hubbard_int_orbital_basis[i] * result_matrix[i, i + number_of_bands] / len(k)
404
+ )
403
405
 
404
406
  delta_without_phase: npt.NDArray[np.complexfloating] = delta * np.exp(
405
407
  -1j * np.angle(delta[np.argmax(np.abs(delta))])
@@ -48,9 +48,13 @@ class DressedGraphene(BaseHamiltonian[DressedGrapheneParameters]):
48
48
 
49
49
  h = np.zeros((k.shape[0], self.number_of_bands, self.number_of_bands), dtype=np.complex128)
50
50
 
51
- h[:, 0, 1] = -t_gr * (
52
- np.exp(1j * k[:, 1] * a / np.sqrt(3))
53
- + 2 * np.exp(-0.5j * a / np.sqrt(3) * k[:, 1]) * (np.cos(0.5 * a * k[:, 0]))
51
+ h[:, 0, 1] = (
52
+ -t_gr
53
+ * np.exp(2j * k[:, 1] * a)
54
+ * (
55
+ np.exp(1j * k[:, 1] * a / np.sqrt(3))
56
+ + 2 * np.exp(-0.5j * a / np.sqrt(3) * k[:, 1]) * (np.cos(0.5 * a * k[:, 0]))
57
+ )
54
58
  )
55
59
 
56
60
  h[:, 1, 0] = h[:, 0, 1].conjugate()
@@ -20,12 +20,7 @@ Functions
20
20
  plot_superfluid_weight
21
21
  """ # noqa: D205, D400
22
22
 
23
- from .plotting import (
24
- format_plot,
25
- plot_bandstructure,
26
- plot_superfluid_weight,
27
- scatter_into_bz,
28
- )
23
+ from .plotting import format_plot, plot_bandstructure, plot_superfluid_weight, scatter_into_bz
29
24
 
30
25
  __all__ = [
31
26
  "format_plot",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: quant-met
3
- Version: 0.0.22
3
+ Version: 0.0.24
4
4
  Summary: Calculate superconductivity in flat-band systems.
5
5
  Author-email: Tjark Sievers <tsievers@physnet.uni-hamburg.de>
6
6
  License-File: LICENSE.txt
@@ -1,14 +1,14 @@
1
1
  quant_met/__init__.py,sha256=ZO1UFz1awUYTI7B9ZkBwucvDz7GMGXnLLUGnEwLBhkc,155
2
2
  quant_met/utils.py,sha256=J3kCbKg0tPEoGJExX04QwifHn4ch482J8IcmRQxIfP4,2067
3
3
  quant_met/cli/__init__.py,sha256=nGFXhK8zWyEKQtsQTyJWfEOLFOHTCjZnfEcrVb2dARc,254
4
- quant_met/cli/_utils.py,sha256=vGXWDXqs15F4MiU-gRk4lHdmP7FB8vQQXuvbx-sesyE,1952
4
+ quant_met/cli/_utils.py,sha256=MKHvkxudWH-px07lDz0_V1AWiCCvj_IsBYbocfL-r7Y,2036
5
5
  quant_met/cli/crit_temp.py,sha256=t9sPZKORl6dpa1UNAOMH2gDmeQxf80iFH7p_L3FI5q8,2027
6
- quant_met/cli/dmft.py,sha256=4sbTddeHhTxV0DBUNxcQDUBxQe1J9ntqnEQOLluHh1o,3016
6
+ quant_met/cli/dmft.py,sha256=ct6e1Wd8o7V3VP7DB7pqPxyF5pbrR2mb-J8pUkP9UPE,3101
7
7
  quant_met/cli/main.py,sha256=1D1-KhGkzibts9b7Cv3JsR5Q-PnkowBWKE1Owc8tdD8,2010
8
8
  quant_met/cli/scf.py,sha256=3_rwtQHwypFjAwjrsO2r2sqjJKpNiDLAj6svU52CCcU,2613
9
9
  quant_met/dmft/__init__.py,sha256=2H0bN40Tvn-VnZgix6MugN0Q6iNwD_9AQxUC_LVLh70,99
10
- quant_met/dmft/dmft_loop.py,sha256=R3lYIhUNtBVa_XyjUphZchTAeG3gWXbR1leLz0EhP2A,5738
11
- quant_met/dmft/utils.py,sha256=z9Y9EP_V8_Bj7NIvz_GSnaQ7tha7QwqtJsEYhKIEoxQ,2897
10
+ quant_met/dmft/dmft_loop.py,sha256=fH8v39I5yIY2iY5RaID43El1V0nxLewAfohNsq987_A,5272
11
+ quant_met/dmft/utils.py,sha256=JO66kuTXruYCwNoVL0aFS55D3tV7Ii3v7hC9OpuWfF8,6636
12
12
  quant_met/geometry/__init__.py,sha256=2N8l0-2-PhEOQxaUO7e8Dqy5oaxt2y9343XENDTCGPE,592
13
13
  quant_met/geometry/base_lattice.py,sha256=OJNDMyzJB-0hK1BLgF-SV4jUYfOSUksIv1XG1bH-zyY,2649
14
14
  quant_met/geometry/bz_path.py,sha256=vwN5RxyrgFkHTSqm_6cWuOigICgxa-FX5NZ7SkgKScw,2503
@@ -19,8 +19,8 @@ quant_met/mean_field/_utils.py,sha256=7hr0DDSdIqjft5Jjluvbw_HGoNLWgYJTxyuPJJvhBn
19
19
  quant_met/mean_field/search_crit_temp.py,sha256=Z9te3O7zsyBGLRrPjmNA85vxHOfBfIQ7svdDVFEJedg,8782
20
20
  quant_met/mean_field/self_consistency.py,sha256=YY_zhCurxOK3RLkK-Hglfkx33uhsvqpoAKOP4FuPdfo,3371
21
21
  quant_met/mean_field/hamiltonians/__init__.py,sha256=r-8TaLqRnRbAro-TMIyxzCCZHwVqyKrausODpQJb2tw,681
22
- quant_met/mean_field/hamiltonians/base_hamiltonian.py,sha256=xoSpPy5qUXN3jCB6M6mh9oshDPLFfw8kbWBo1VsGGUw,29371
23
- quant_met/mean_field/hamiltonians/dressed_graphene.py,sha256=Q5LiA3rgK88ZZV1V7JflgjlkEpve7uNZFzFCIoQND-w,4048
22
+ quant_met/mean_field/hamiltonians/base_hamiltonian.py,sha256=Qd1V5PAEPCxoKYRVfh11og6ZzrdMtH5hDn2GyRelFNE,29422
23
+ quant_met/mean_field/hamiltonians/dressed_graphene.py,sha256=iPQshQqvtWf-NbeSdn8VbtuSU1g7maKUjFPfoji8zwk,4135
24
24
  quant_met/mean_field/hamiltonians/graphene.py,sha256=sa3H8jVq9Fkc_qcz5gJTCMgN8YD3N18JWLRBImhLyxo,3276
25
25
  quant_met/mean_field/hamiltonians/one_band_tight_binding.py,sha256=DZXaD95yWv1VZSMqgxkqEZv3PGihNGy7PuqupnN75ew,2512
26
26
  quant_met/mean_field/hamiltonians/three_band_tight_binding.py,sha256=g8XNImzCn_6CRYKDYI6sy3q6_TBYUDxDmQZ-AqenXTE,3295
@@ -28,10 +28,10 @@ quant_met/mean_field/hamiltonians/two_band_tight_binding.py,sha256=DMySc94YQ1M2n
28
28
  quant_met/parameters/__init__.py,sha256=9yu7i0J-O3QxSicnLEh2ci7FSMwB8bPW0pbl8KWHJUs,1007
29
29
  quant_met/parameters/hamiltonians.py,sha256=PiWVV-miCdT4Z9GWloDVvIU_1QpRHHV-zVOga7DWwCw,6046
30
30
  quant_met/parameters/main.py,sha256=QP7Z24-QePMcy6txujqxbx5ztQTdC67m6elNsJtGtXQ,2325
31
- quant_met/plotting/__init__.py,sha256=VypHrLAGmCiQaQggGh5Cs4EF4YAjRiETddf_7mOX9MQ,544
31
+ quant_met/plotting/__init__.py,sha256=IDgV6juJ0VfcJHppD-vnPH6w8wVuAC35eSeLxKzqyBc,523
32
32
  quant_met/plotting/plotting.py,sha256=4ZYclWJH3hlE8S7b7bL_JJlP3CKaCGcVzdIsqolCAaM,6592
33
- quant_met-0.0.22.dist-info/METADATA,sha256=ELPjCoeSLhAy0iwhHCkW0cD3eMSFOQHuTB1J8UsuuJI,1978
34
- quant_met-0.0.22.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
35
- quant_met-0.0.22.dist-info/entry_points.txt,sha256=1Al3Kt-cMeQxwMp84ZSNL0qFwlbOVBu1o8A19MH8lEU,48
36
- quant_met-0.0.22.dist-info/licenses/LICENSE.txt,sha256=QO_duPQihSJlaxSLxPAXo52X3esROP5wBkhxqBd1Z4E,1104
37
- quant_met-0.0.22.dist-info/RECORD,,
33
+ quant_met-0.0.24.dist-info/METADATA,sha256=39K98j0y8EPTNQDt7unKVyD4ibrIeTkDQExEkVJvZCU,1978
34
+ quant_met-0.0.24.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
35
+ quant_met-0.0.24.dist-info/entry_points.txt,sha256=1Al3Kt-cMeQxwMp84ZSNL0qFwlbOVBu1o8A19MH8lEU,48
36
+ quant_met-0.0.24.dist-info/licenses/LICENSE.txt,sha256=QO_duPQihSJlaxSLxPAXo52X3esROP5wBkhxqBd1Z4E,1104
37
+ quant_met-0.0.24.dist-info/RECORD,,