quant-met 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
quant_met/__init__.py CHANGED
@@ -1,3 +1,5 @@
1
- # SPDX-FileCopyrightText: 2024-present Tjark <tjarksievers@icloud.com>
1
+ # SPDX-FileCopyrightText: 2024 Tjark Sievers
2
2
  #
3
3
  # SPDX-License-Identifier: MIT
4
+
5
+ """quant-met, a package to treat superconductivity in flat-band systems."""
@@ -0,0 +1,60 @@
1
+ # SPDX-FileCopyrightText: 2024 Tjark Sievers
2
+ #
3
+ # SPDX-License-Identifier: MIT
4
+
5
+ """
6
+ Mean field treatment (:mod:`quant_met.mean_field`)
7
+ ==================================================
8
+
9
+ Hamiltonians
10
+ ------------
11
+
12
+ Base
13
+
14
+ .. autosummary::
15
+ :toctree: generated/
16
+
17
+ BaseHamiltonian
18
+
19
+ .. autosummary::
20
+ :toctree: generated/
21
+
22
+ GrapheneHamiltonian
23
+ EGXHamiltonian
24
+
25
+
26
+ Functions
27
+ ---------
28
+
29
+ .. autosummary::
30
+ :toctree: generated/
31
+
32
+ superfluid_weight
33
+ quantum_metric
34
+ free_energy
35
+ free_energy_uniform_pairing
36
+ """ # noqa: D205, D400
37
+
38
+ from .base_hamiltonian import BaseHamiltonian
39
+ from .eg_x import EGXHamiltonian
40
+ from .free_energy import (
41
+ free_energy,
42
+ free_energy_complex_gap,
43
+ free_energy_real_gap,
44
+ free_energy_uniform_pairing,
45
+ )
46
+ from .graphene import GrapheneHamiltonian
47
+ from .quantum_metric import quantum_metric
48
+ from .superfluid_weight import superfluid_weight
49
+
50
+ __all__ = [
51
+ "superfluid_weight",
52
+ "quantum_metric",
53
+ "free_energy",
54
+ "free_energy_complex_gap",
55
+ "free_energy_real_gap",
56
+ "free_energy_uniform_pairing",
57
+ "BaseHamiltonian",
58
+ "GrapheneHamiltonian",
59
+ "EGXHamiltonian",
60
+ ]
@@ -0,0 +1,27 @@
1
+ # SPDX-FileCopyrightText: 2024 Tjark Sievers
2
+ #
3
+ # SPDX-License-Identifier: MIT
4
+
5
+ from typing import Any
6
+
7
+ import numpy as np
8
+ import numpy.typing as npt
9
+
10
+
11
+ def _check_valid_array(array_in: npt.NDArray[Any]) -> bool:
12
+ if np.isnan(array_in).any() or np.isinf(array_in).any():
13
+ msg = "k is NaN or Infinity"
14
+ raise ValueError(msg)
15
+
16
+ return True
17
+
18
+
19
+ def _validate_float(float_in: float, parameter_name: str) -> float:
20
+ if np.isinf(float_in):
21
+ msg = f"{parameter_name} must not be Infinity"
22
+ raise ValueError(msg)
23
+ if np.isnan(float_in):
24
+ msg = f"{parameter_name} must not be NaN"
25
+ raise ValueError(msg)
26
+
27
+ return float_in
@@ -0,0 +1,296 @@
1
+ # SPDX-FileCopyrightText: 2024 Tjark Sievers
2
+ #
3
+ # SPDX-License-Identifier: MIT
4
+
5
+ """Provides the base class for Hamiltonians."""
6
+
7
+ import pathlib
8
+ from abc import ABC, abstractmethod
9
+
10
+ import h5py
11
+ import numpy as np
12
+ import numpy.typing as npt
13
+ import pandas as pd
14
+
15
+ from ._utils import _check_valid_array
16
+
17
+
18
+ class BaseHamiltonian(ABC):
19
+ """Base class for Hamiltonians."""
20
+
21
+ @property
22
+ @abstractmethod
23
+ def number_of_bands(self) -> int:
24
+ """Number of bands in the model."""
25
+ raise NotImplementedError
26
+
27
+ @property
28
+ def coloumb_orbital_basis(self) -> npt.NDArray[np.float64]:
29
+ """
30
+ Coloumb interaction split up in orbitals.
31
+
32
+ Returns
33
+ -------
34
+ :class:`numpy.ndarray`
35
+
36
+ """
37
+ raise NotImplementedError
38
+
39
+ @property
40
+ def delta_orbital_basis(self) -> npt.NDArray[np.complex64]:
41
+ """
42
+ Order parameter in orbital basis.
43
+
44
+ Returns
45
+ -------
46
+ :class:`numpy.ndarray`
47
+
48
+ """
49
+ raise NotImplementedError
50
+
51
+ @delta_orbital_basis.setter
52
+ @abstractmethod
53
+ def delta_orbital_basis(self, new_delta: npt.NDArray[np.complex64]) -> None:
54
+ raise NotImplementedError
55
+
56
+ @abstractmethod
57
+ def _hamiltonian_one_point(self, k_point: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]:
58
+ raise NotImplementedError
59
+
60
+ @abstractmethod
61
+ def _hamiltonian_derivative_one_point(
62
+ self, k_point: npt.NDArray[np.float64], directions: str
63
+ ) -> npt.NDArray[np.complex64]:
64
+ raise NotImplementedError
65
+
66
+ def _bdg_hamiltonian_one_point(
67
+ self, k_point: npt.NDArray[np.float64]
68
+ ) -> npt.NDArray[np.complex64]:
69
+ delta_matrix: npt.NDArray[np.complex64] = np.zeros(
70
+ shape=(self.number_of_bands, self.number_of_bands), dtype=np.complex64
71
+ )
72
+ np.fill_diagonal(delta_matrix, self.delta_orbital_basis)
73
+
74
+ return np.block(
75
+ [
76
+ [self.hamiltonian(k_point), delta_matrix],
77
+ [np.conjugate(delta_matrix), -np.conjugate(self.hamiltonian(-k_point))],
78
+ ]
79
+ )
80
+
81
+ def save(self, filename: pathlib.Path) -> None:
82
+ """
83
+ Save the Hamiltonian as a HDF5 file.
84
+
85
+ Parameters
86
+ ----------
87
+ filename : :class:`pathlib.Path`
88
+ Filename to save the Hamiltonian to, should end in .hdf5
89
+
90
+ """
91
+ with h5py.File(f"{filename}", "a") as f:
92
+ f.create_dataset("delta", data=self.delta_orbital_basis)
93
+ for key, value in vars(self).items():
94
+ if not key.startswith("_"):
95
+ f.attrs[key] = value
96
+
97
+ @classmethod
98
+ def from_file(cls, filename: pathlib.Path) -> "BaseHamiltonian":
99
+ """
100
+ Initialise a Hamiltonian from a HDF5 file.
101
+
102
+ Parameters
103
+ ----------
104
+ filename : :class:`pathlib.Path`
105
+ File to load the Hamiltonian from.
106
+
107
+ """
108
+ with h5py.File(f"{filename}", "r") as f:
109
+ config_dict = dict(f.attrs.items())
110
+ config_dict["delta"] = f["delta"][()]
111
+
112
+ return cls(**config_dict)
113
+
114
+ def bdg_hamiltonian(self, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]:
115
+ """
116
+ Bogoliuobov de Genne Hamiltonian.
117
+
118
+ Parameters
119
+ ----------
120
+ k : :class:`numpy.ndarray`
121
+ List of k points.
122
+
123
+ Returns
124
+ -------
125
+ :class:`numpy.ndarray`
126
+ BdG Hamiltonian.
127
+
128
+ """
129
+ if np.isnan(k).any() or np.isinf(k).any():
130
+ msg = "k is NaN or Infinity"
131
+ raise ValueError(msg)
132
+ if k.ndim == 1:
133
+ h = self._bdg_hamiltonian_one_point(k)
134
+ else:
135
+ h = np.array([self._bdg_hamiltonian_one_point(k) for k in k])
136
+ return h
137
+
138
+ def hamiltonian(self, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]:
139
+ """
140
+ Return the normal state Hamiltonian in orbital basis.
141
+
142
+ Parameters
143
+ ----------
144
+ k : :class:`numpy.ndarray`
145
+ List of k points.
146
+
147
+ Returns
148
+ -------
149
+ :class:`numpy.ndarray`
150
+ Hamiltonian in matrix form.
151
+
152
+ """
153
+ assert _check_valid_array(k)
154
+ if k.ndim == 1:
155
+ h = self._hamiltonian_one_point(k)
156
+ else:
157
+ h = np.array([self._hamiltonian_one_point(k) for k in k])
158
+ return h
159
+
160
+ def hamiltonian_derivative(
161
+ self, k: npt.NDArray[np.float64], direction: str
162
+ ) -> npt.NDArray[np.complex64]:
163
+ """
164
+ Deriative of the Hamiltonian.
165
+
166
+ Parameters
167
+ ----------
168
+ k: :class:`numpy.ndarray`
169
+ List of k points.
170
+ direction: str
171
+ Direction for derivative, either 'x' oder 'y'.
172
+
173
+ Returns
174
+ -------
175
+ :class:`numpy.ndarray`
176
+ Derivative of Hamiltonian.
177
+
178
+ """
179
+ assert _check_valid_array(k)
180
+ if k.ndim == 1:
181
+ h = self._hamiltonian_derivative_one_point(k, direction)
182
+ else:
183
+ h = np.array([self._hamiltonian_derivative_one_point(k, direction) for k in k])
184
+ return h
185
+
186
+ def diagonalize_nonint(
187
+ self, k: npt.NDArray[np.float64]
188
+ ) -> tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]:
189
+ """
190
+ Diagonalize the normal state Hamiltonian.
191
+
192
+ Parameters
193
+ ----------
194
+ k : :class:`numpy.ndarray`
195
+ List of k points.
196
+
197
+ Returns
198
+ -------
199
+ :class:`numpy.ndarray`
200
+ Eigenvalues of the normal state Hamiltonian.
201
+ :class:`numpy.ndarray`
202
+ Diagonalising matrix of the normal state Hamiltonian.
203
+
204
+ """
205
+ k_point_matrix = self.hamiltonian(k)
206
+
207
+ if k.ndim == 1:
208
+ band_energies, bloch_wavefunctions = np.linalg.eigh(k_point_matrix)
209
+ else:
210
+ bloch_wavefunctions = np.zeros(
211
+ (len(k), self.number_of_bands, self.number_of_bands),
212
+ dtype=complex,
213
+ )
214
+ band_energies = np.zeros((len(k), self.number_of_bands))
215
+
216
+ for i in range(len(k)):
217
+ band_energies[i], bloch_wavefunctions[i] = np.linalg.eigh(k_point_matrix[i])
218
+
219
+ return band_energies, bloch_wavefunctions
220
+
221
+ def diagonalize_bdg(
222
+ self, k: npt.NDArray[np.float64]
223
+ ) -> tuple[npt.NDArray[np.float64], npt.NDArray[np.complex64]]:
224
+ """
225
+ Diagonalize the BdG Hamiltonian.
226
+
227
+ Parameters
228
+ ----------
229
+ k : :class:`numpy.ndarray`
230
+ List of k points.
231
+
232
+ Returns
233
+ -------
234
+ :class:`numpy.ndarray`
235
+ Eigenvalues of the BdG Hamiltonian.
236
+ :class:`numpy.ndarray`
237
+ Diagonalising matrix of the BdG Hamiltonian.
238
+
239
+ """
240
+ bdg_matrix = self.bdg_hamiltonian(k)
241
+
242
+ if k.ndim == 1:
243
+ bdg_energies, bdg_wavefunctions = np.linalg.eigh(bdg_matrix)
244
+ else:
245
+ bdg_wavefunctions = np.zeros(
246
+ (len(k), 2 * self.number_of_bands, 2 * self.number_of_bands),
247
+ dtype=np.complex64,
248
+ )
249
+ bdg_energies = np.zeros((len(k), 2 * self.number_of_bands))
250
+
251
+ for i in range(len(k)):
252
+ bdg_energies[i], bdg_wavefunctions[i] = np.linalg.eigh(bdg_matrix[i])
253
+
254
+ return bdg_energies, bdg_wavefunctions
255
+
256
+ def calculate_bandstructure(
257
+ self,
258
+ k: npt.NDArray[np.float64],
259
+ overlaps: tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]] | None = None,
260
+ ) -> pd.DataFrame:
261
+ """
262
+ Calculate the band structure.
263
+
264
+ Parameters
265
+ ----------
266
+ k : :class:`numpy.ndarray`
267
+ List of k points.
268
+ overlaps : tuple(:class:`numpy.ndarray`, :class:`numpy.ndarray`), optional
269
+ Overlaps.
270
+
271
+ Returns
272
+ -------
273
+ `pandas.DataFrame`
274
+ Band structure.
275
+
276
+ """
277
+ k_point_matrix = self.hamiltonian(k)
278
+
279
+ results = pd.DataFrame(
280
+ index=range(len(k)),
281
+ dtype=float,
282
+ )
283
+
284
+ for i in range(len(k)):
285
+ energies, eigenvectors = np.linalg.eigh(k_point_matrix[i])
286
+
287
+ for band_index in range(self.number_of_bands):
288
+ results.loc[i, f"band_{band_index}"] = energies[band_index]
289
+
290
+ if overlaps is not None:
291
+ results.loc[i, f"wx_{band_index}"] = (
292
+ np.abs(np.dot(eigenvectors[:, band_index], overlaps[0])) ** 2
293
+ - np.abs(np.dot(eigenvectors[:, band_index], overlaps[1])) ** 2
294
+ )
295
+
296
+ return results
@@ -0,0 +1,120 @@
1
+ # SPDX-FileCopyrightText: 2024 Tjark Sievers
2
+ #
3
+ # SPDX-License-Identifier: MIT
4
+
5
+ """Provides the implementation for the EG-X model."""
6
+
7
+ import numpy as np
8
+ import numpy.typing as npt
9
+
10
+ from ._utils import _validate_float
11
+ from .base_hamiltonian import BaseHamiltonian
12
+
13
+
14
+ class EGXHamiltonian(BaseHamiltonian):
15
+ """Hamiltonian for the EG-X model."""
16
+
17
+ def __init__(
18
+ self,
19
+ hopping_gr: float,
20
+ hopping_x: float,
21
+ hopping_x_gr_a: float,
22
+ lattice_constant: float,
23
+ mu: float,
24
+ coloumb_gr: float,
25
+ coloumb_x: float,
26
+ delta: npt.NDArray[np.complex64] | None = None,
27
+ ) -> None:
28
+ self.hopping_gr = _validate_float(hopping_gr, "Hopping graphene")
29
+ self.hopping_x = _validate_float(hopping_x, "Hopping impurity")
30
+ self.hopping_x_gr_a = _validate_float(hopping_x_gr_a, "Hybridisation")
31
+ self.lattice_constant = _validate_float(lattice_constant, "Lattice constant")
32
+ self.mu = _validate_float(mu, "Chemical potential")
33
+ self.coloumb_gr = _validate_float(coloumb_gr, "Coloumb interaction graphene")
34
+ self.coloumb_x = _validate_float(coloumb_x, "Coloumb interaction impurity")
35
+ self._coloumb_orbital_basis = np.array([self.coloumb_gr, self.coloumb_gr, self.coloumb_x])
36
+ self._number_of_bands = 3
37
+ if delta is None:
38
+ self._delta_orbital_basis = np.zeros(3, dtype=np.complex64)
39
+ else:
40
+ self._delta_orbital_basis = delta
41
+
42
+ @property
43
+ def coloumb_orbital_basis(self) -> npt.NDArray[np.float64]: # noqa: D102
44
+ return self._coloumb_orbital_basis
45
+
46
+ @property
47
+ def delta_orbital_basis(self) -> npt.NDArray[np.complex64]: # noqa: D102
48
+ return self._delta_orbital_basis
49
+
50
+ @delta_orbital_basis.setter
51
+ def delta_orbital_basis(self, new_delta: npt.NDArray[np.complex64]) -> None:
52
+ self._delta_orbital_basis = new_delta
53
+
54
+ @property
55
+ def number_of_bands(self) -> int: # noqa: D102
56
+ return self._number_of_bands
57
+
58
+ def _hamiltonian_derivative_one_point(
59
+ self, k: npt.NDArray[np.float64], direction: str
60
+ ) -> npt.NDArray[np.complex64]:
61
+ assert direction in ["x", "y"]
62
+
63
+ t_gr = self.hopping_gr
64
+ t_x = self.hopping_x
65
+ a = self.lattice_constant
66
+
67
+ h = np.zeros((self.number_of_bands, self.number_of_bands), dtype=np.complex64)
68
+
69
+ if direction == "x":
70
+ h[0, 1] = t_gr * a * np.exp(-0.5j * a / np.sqrt(3) * k[1]) * np.sin(0.5 * a * k[0])
71
+ h[1, 0] = h[0, 1].conjugate()
72
+ h[2, 2] = (
73
+ 2
74
+ * a
75
+ * t_x
76
+ * (np.sin(a * k[0]) + np.sin(0.5 * a * k[0]) * np.cos(0.5 * np.sqrt(3) * a * k[1]))
77
+ )
78
+ else:
79
+ h[0, 1] = (
80
+ -t_gr
81
+ * 1j
82
+ * a
83
+ / np.sqrt(3)
84
+ * (
85
+ np.exp(1j * a / np.sqrt(3) * k[1])
86
+ - np.exp(-0.5j * a / np.sqrt(3) * k[1]) * np.cos(0.5 * a * k[0])
87
+ )
88
+ )
89
+ h[1, 0] = h[0, 1].conjugate()
90
+ h[2, 2] = np.sqrt(3) * a * t_x * np.cos(0.5 * np.sqrt(3) * a * k[1])
91
+
92
+ return h
93
+
94
+ def _hamiltonian_one_point(self, k: npt.NDArray[np.float64]) -> npt.NDArray[np.complex64]:
95
+ t_gr = self.hopping_gr
96
+ t_x = self.hopping_x
97
+ a = self.lattice_constant
98
+ v = self.hopping_x_gr_a
99
+ mu = self.mu
100
+
101
+ h = np.zeros((self.number_of_bands, self.number_of_bands), dtype=np.complex64)
102
+
103
+ h[0, 1] = -t_gr * (
104
+ np.exp(1j * k[1] * a / np.sqrt(3))
105
+ + 2 * np.exp(-0.5j * a / np.sqrt(3) * k[1]) * (np.cos(0.5 * a * k[0]))
106
+ )
107
+
108
+ h[1, 0] = h[0, 1].conjugate()
109
+
110
+ h[2, 0] = v
111
+ h[0, 2] = v
112
+
113
+ h[2, 2] = (
114
+ -2
115
+ * t_x
116
+ * (np.cos(a * k[0]) + 2 * np.cos(0.5 * a * k[0]) * np.cos(0.5 * np.sqrt(3) * a * k[1]))
117
+ )
118
+ h -= mu * np.eye(3, dtype=np.complex64)
119
+
120
+ return h
@@ -0,0 +1,130 @@
1
+ # SPDX-FileCopyrightText: 2024 Tjark Sievers
2
+ #
3
+ # SPDX-License-Identifier: MIT
4
+
5
+ """Functions to calculate the free energy of a BdG Hamiltonian."""
6
+
7
+ import numpy as np
8
+ import numpy.typing as npt
9
+
10
+ from .base_hamiltonian import BaseHamiltonian
11
+
12
+
13
+ def free_energy(
14
+ hamiltonian: BaseHamiltonian,
15
+ k_points: npt.NDArray[np.float64],
16
+ ) -> float:
17
+ """Calculate the free energy of a BdG Hamiltonian.
18
+
19
+ Parameters
20
+ ----------
21
+ hamiltonian : :class:`BaseHamiltonian`
22
+ Hamiltonian to be evaluated.
23
+ k_points : :class:`numpy.ndarray`
24
+ List of k points
25
+
26
+ Returns
27
+ -------
28
+ float
29
+ Free energy from the BdG Hamiltonian.
30
+
31
+ """
32
+ number_k_points = len(k_points)
33
+ bdg_energies, _ = hamiltonian.diagonalize_bdg(k_points)
34
+
35
+ k_array = np.array(
36
+ [
37
+ np.sum(np.abs(bdg_energies[k_index][0 : hamiltonian.number_of_bands]))
38
+ for k_index in range(number_k_points)
39
+ ]
40
+ )
41
+
42
+ integral: float = -np.sum(k_array, axis=-1) / number_k_points + np.sum(
43
+ np.power(np.abs(hamiltonian.delta_orbital_basis), 2) / hamiltonian.coloumb_orbital_basis
44
+ )
45
+
46
+ return integral
47
+
48
+
49
+ def free_energy_complex_gap(
50
+ delta_vector: npt.NDArray[np.float64],
51
+ hamiltonian: BaseHamiltonian,
52
+ k_points: npt.NDArray[np.float64],
53
+ ) -> float:
54
+ """Calculate the free energy of a BdG Hamiltonian, with a complex order parameter.
55
+
56
+ Parameters
57
+ ----------
58
+ delta_vector : :class:`numpy.ndarray`
59
+ Delta in orbital basis, with consecutive floats getting converted into one complex number,
60
+ so [a, b, c, d] -> [a+b*j, c+d*j].
61
+ hamiltonian : :class:`BaseHamiltonian`
62
+ Hamiltonian to be evaluated.
63
+ k_points : :class:`numpy.ndarray`
64
+ List of k points
65
+
66
+ Returns
67
+ -------
68
+ float
69
+ Free energy from the BdG Hamiltonian.
70
+
71
+ """
72
+ hamiltonian.delta_orbital_basis = delta_vector[0::2] + 1j * delta_vector[1::2]
73
+
74
+ return free_energy(hamiltonian=hamiltonian, k_points=k_points)
75
+
76
+
77
+ def free_energy_real_gap(
78
+ delta_vector: npt.NDArray[np.float64],
79
+ hamiltonian: BaseHamiltonian,
80
+ k_points: npt.NDArray[np.float64],
81
+ ) -> float:
82
+ """Calculate the free energy of a BdG Hamiltonian, with a real order parameter.
83
+
84
+ Parameters
85
+ ----------
86
+ delta_vector : :class:`numpy.ndarray`
87
+ Delta in orbital basis.
88
+ hamiltonian : :class:`BaseHamiltonian`
89
+ Hamiltonian to be evaluated.
90
+ k_points : :class:`numpy.ndarray`
91
+ List of k points
92
+
93
+ Returns
94
+ -------
95
+ float
96
+ Free energy from the BdG Hamiltonian.
97
+
98
+ """
99
+ hamiltonian.delta_orbital_basis = delta_vector.astype(np.complex64)
100
+
101
+ return free_energy(hamiltonian=hamiltonian, k_points=k_points)
102
+
103
+
104
+ def free_energy_uniform_pairing(
105
+ delta: float,
106
+ hamiltonian: BaseHamiltonian,
107
+ k_points: npt.NDArray[np.float64],
108
+ ) -> float:
109
+ """Calculate the free energy of a BdG Hamiltonian, with uniform pairing constraint.
110
+
111
+ Parameters
112
+ ----------
113
+ delta : float
114
+ Delta.
115
+ hamiltonian : :class:`BaseHamiltonian`
116
+ Hamiltonian to be evaluated.
117
+ k_points : :class:`numpy.ndarray`
118
+ List of k points
119
+
120
+ Returns
121
+ -------
122
+ float
123
+ Free energy from the BdG Hamiltonian.
124
+
125
+ """
126
+ hamiltonian.delta_orbital_basis = np.full(
127
+ hamiltonian.number_of_bands, fill_value=delta, dtype=np.float64
128
+ ).astype(np.complex64)
129
+
130
+ return free_energy(hamiltonian=hamiltonian, k_points=k_points)