quack-kernels 0.1.9__py3-none-any.whl → 0.1.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- quack/__init__.py +1 -1
- quack/cross_entropy.py +2 -5
- quack/dense_gemm_sm90.py +1430 -0
- quack/utils.py +1 -1
- {quack_kernels-0.1.9.dist-info → quack_kernels-0.1.10.dist-info}/METADATA +3 -3
- quack_kernels-0.1.10.dist-info/RECORD +13 -0
- quack_kernels-0.1.9.dist-info/RECORD +0 -12
- {quack_kernels-0.1.9.dist-info → quack_kernels-0.1.10.dist-info}/WHEEL +0 -0
- {quack_kernels-0.1.9.dist-info → quack_kernels-0.1.10.dist-info}/licenses/LICENSE +0 -0
- {quack_kernels-0.1.9.dist-info → quack_kernels-0.1.10.dist-info}/top_level.txt +0 -0
quack/dense_gemm_sm90.py
ADDED
|
@@ -0,0 +1,1430 @@
|
|
|
1
|
+
# Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: BSD-3-Clause
|
|
3
|
+
|
|
4
|
+
# Redistribution and use in source and binary forms, with or without
|
|
5
|
+
# modification, are permitted provided that the following conditions are met:
|
|
6
|
+
|
|
7
|
+
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
8
|
+
# list of conditions and the following disclaimer.
|
|
9
|
+
|
|
10
|
+
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
11
|
+
# this list of conditions and the following disclaimer in the documentation
|
|
12
|
+
# and/or other materials provided with the distribution.
|
|
13
|
+
|
|
14
|
+
# 3. Neither the name of the copyright holder nor the names of its
|
|
15
|
+
# contributors may be used to endorse or promote products derived from
|
|
16
|
+
# this software without specific prior written permission.
|
|
17
|
+
|
|
18
|
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
19
|
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
20
|
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
21
|
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
22
|
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
23
|
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
24
|
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
25
|
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
26
|
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
27
|
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
28
|
+
|
|
29
|
+
import argparse
|
|
30
|
+
from typing import Tuple, Type
|
|
31
|
+
import math
|
|
32
|
+
import cuda.bindings.driver as cuda
|
|
33
|
+
|
|
34
|
+
import torch
|
|
35
|
+
|
|
36
|
+
import cutlass
|
|
37
|
+
import cutlass.cute as cute
|
|
38
|
+
import cutlass.cute.testing as testing
|
|
39
|
+
import cutlass.utils as utils
|
|
40
|
+
import cutlass.pipeline as pipeline
|
|
41
|
+
import cutlass.torch as cutlass_torch
|
|
42
|
+
from cutlass.cute.runtime import from_dlpack
|
|
43
|
+
from cutlass.cute.nvgpu import cpasync, warp, warpgroup
|
|
44
|
+
import cutlass.utils.hopper_helpers as sm90_utils
|
|
45
|
+
|
|
46
|
+
"""
|
|
47
|
+
A high-performance batched dense GEMM (C = A * B) example for the NVIDIA Hopper architecture
|
|
48
|
+
using CUTE DSL.
|
|
49
|
+
- Matrix A is MxKxL, L is batch dimension, A can be row-major("K") or column-major("M")
|
|
50
|
+
- Matrix B is NxKxL, L is batch dimension, B can be row-major("N") or column-major("K")
|
|
51
|
+
- Matrix C is MxNxL, L is batch dimension, C can be row-major("N") or column-major("M")
|
|
52
|
+
|
|
53
|
+
This GEMM kernel supports the following features:
|
|
54
|
+
- Utilizes Tensor Memory Access (TMA) for efficient memory operations
|
|
55
|
+
- Utilizes Hopper's WGMMA for matrix multiply-accumulate (MMA) operations
|
|
56
|
+
- Implements TMA multicast with cluster to reduce L2 memory traffic
|
|
57
|
+
- Supports multi-stage pipeline to overlap computation and memory access
|
|
58
|
+
|
|
59
|
+
This GEMM works as follows:
|
|
60
|
+
1. Load A and B matrices from global memory (GMEM) to shared memory (SMEM) using TMA operations.
|
|
61
|
+
2. Perform matrix multiply-accumulate (MMA) operations using WGMMA instruction.
|
|
62
|
+
3. Store results from registers (RMEM) to shared memory (SMEM), then to global memory (GMEM) with TMA operations.
|
|
63
|
+
|
|
64
|
+
Hopper WGMMA instructions operate as follows:
|
|
65
|
+
- Read matrix A from SMEM
|
|
66
|
+
- Read matrix B from SMEM
|
|
67
|
+
- Perform MMA operation and store the result in Accumulator(register)
|
|
68
|
+
|
|
69
|
+
To run this example:
|
|
70
|
+
|
|
71
|
+
.. code-block:: bash
|
|
72
|
+
|
|
73
|
+
python examples/hopper/dense_gemm.py \
|
|
74
|
+
--mnkl 8192,8192,8192,1 --tile_shape_mnk 128,256,64 \
|
|
75
|
+
--cluster_shape_mn 1,1 --a_dtype Float16 --b_dtype Float16 \
|
|
76
|
+
--d_dtype Float16 --acc_dtype Float32 \
|
|
77
|
+
--a_major k --b_major k --d_major n
|
|
78
|
+
|
|
79
|
+
The above example command compute batched gemm with M=8192, N=8192, K=8192,
|
|
80
|
+
batch_count=1. The Hopper WGMMA tile shape is 128x256x64 and the cluster shape
|
|
81
|
+
is (1,1). The input, mma accumulator and output data type are set as fp16, fp32
|
|
82
|
+
and fp16, respectively.
|
|
83
|
+
|
|
84
|
+
To collect performance with NCU profiler:
|
|
85
|
+
|
|
86
|
+
.. code-block:: bash
|
|
87
|
+
|
|
88
|
+
ncu python examples/hopper/dense_gemm.py \
|
|
89
|
+
--mnkl 8192,8192,8192,1 --tile_shape_mnk 128,256,64 \
|
|
90
|
+
--cluster_shape_mn 1,1 --a_dtype Float16 --b_dtype Float16 \
|
|
91
|
+
--d_dtype Float16 --acc_dtype Float32 \
|
|
92
|
+
--a_major k --b_major k --d_major n
|
|
93
|
+
|
|
94
|
+
Constraints:
|
|
95
|
+
* Supported input data types: fp16, fp8 (e4m3fn, e5m2)
|
|
96
|
+
* For fp16 types, A and B must have the same data type
|
|
97
|
+
* For fp8 types, A and B can have different types (e4m3fn or e5m2) but both must be 8-bit
|
|
98
|
+
* Fp8 types only support k-major layout
|
|
99
|
+
* Only fp32 accumulation is supported in this example
|
|
100
|
+
* CTA tile shape M must be 64/128
|
|
101
|
+
* CTA tile shape N must be 64/128/256
|
|
102
|
+
* CTA tile shape K must be 64
|
|
103
|
+
* Cluster shape M/N must be positive and power of 2, total cluster size <= 4
|
|
104
|
+
* The contiguous dimension of A/B/C tensors must be at least 16 bytes aligned,
|
|
105
|
+
i.e, number of elements is a multiple of 8, 16 for Float16, and Float8, respectively.
|
|
106
|
+
* OOB tiles are not allowed when TMA store is disabled
|
|
107
|
+
"""
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
111
|
+
# Helpers to parse args
|
|
112
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
113
|
+
def parse_comma_separated_ints(s: str):
|
|
114
|
+
try:
|
|
115
|
+
return tuple([int(x.strip()) for x in s.split(",")])
|
|
116
|
+
except ValueError:
|
|
117
|
+
raise argparse.ArgumentTypeError("Invalid format. Expected comma-separated integers.")
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
def parse_arguments() -> argparse.Namespace:
|
|
121
|
+
parser = argparse.ArgumentParser(description="Example of MxNxKxL GEMM on Hopper.")
|
|
122
|
+
|
|
123
|
+
parser.add_argument(
|
|
124
|
+
"--mnkl",
|
|
125
|
+
type=parse_comma_separated_ints,
|
|
126
|
+
default=(4096, 4096, 4096, 1),
|
|
127
|
+
help="mnkl dimensions (comma-separated)",
|
|
128
|
+
)
|
|
129
|
+
parser.add_argument(
|
|
130
|
+
"--tile_shape_mnk",
|
|
131
|
+
type=parse_comma_separated_ints,
|
|
132
|
+
default=(128, 256, 64),
|
|
133
|
+
help="Cta tile shape (comma-separated)",
|
|
134
|
+
)
|
|
135
|
+
parser.add_argument(
|
|
136
|
+
"--cluster_shape_mn",
|
|
137
|
+
type=parse_comma_separated_ints,
|
|
138
|
+
choices=[(1, 1), (2, 1), (1, 2), (2, 2)],
|
|
139
|
+
default=(1, 1),
|
|
140
|
+
help="Cluster shape (comma-separated)",
|
|
141
|
+
)
|
|
142
|
+
parser.add_argument(
|
|
143
|
+
"--a_dtype",
|
|
144
|
+
type=cutlass.dtype,
|
|
145
|
+
default=cutlass.BFloat16,
|
|
146
|
+
)
|
|
147
|
+
parser.add_argument(
|
|
148
|
+
"--b_dtype",
|
|
149
|
+
type=cutlass.dtype,
|
|
150
|
+
default=cutlass.BFloat16,
|
|
151
|
+
)
|
|
152
|
+
parser.add_argument(
|
|
153
|
+
"--d_dtype",
|
|
154
|
+
type=cutlass.dtype,
|
|
155
|
+
default=cutlass.BFloat16,
|
|
156
|
+
)
|
|
157
|
+
parser.add_argument(
|
|
158
|
+
"--acc_dtype",
|
|
159
|
+
type=cutlass.dtype,
|
|
160
|
+
default=cutlass.Float32,
|
|
161
|
+
)
|
|
162
|
+
parser.add_argument("--a_major", choices=["k", "m"], type=str, default="k")
|
|
163
|
+
parser.add_argument("--b_major", choices=["k", "n"], type=str, default="k")
|
|
164
|
+
parser.add_argument("--d_major", choices=["n", "m"], type=str, default="n")
|
|
165
|
+
parser.add_argument("--tolerance", type=float, default=1e-01, help="Tolerance for validation")
|
|
166
|
+
parser.add_argument("--warmup_iterations", type=int, default=0, help="Warmup iterations")
|
|
167
|
+
parser.add_argument(
|
|
168
|
+
"--iterations",
|
|
169
|
+
type=int,
|
|
170
|
+
default=1,
|
|
171
|
+
help="Number of iterations to run the kernel",
|
|
172
|
+
)
|
|
173
|
+
parser.add_argument("--skip_ref_check", action="store_true", help="Skip reference checking")
|
|
174
|
+
parser.add_argument(
|
|
175
|
+
"--use_cold_l2",
|
|
176
|
+
action="store_true",
|
|
177
|
+
default=False,
|
|
178
|
+
help="Use circular buffer tensor sets to ensure L2 cold cache",
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
args = parser.parse_args()
|
|
182
|
+
|
|
183
|
+
if len(args.mnkl) != 4:
|
|
184
|
+
parser.error("--mnkl must contain exactly 4 values")
|
|
185
|
+
if len(args.tile_shape_mnk) != 3:
|
|
186
|
+
parser.error("--tile_shape_mnk must contain exactly 3 values")
|
|
187
|
+
if len(args.cluster_shape_mn) != 2:
|
|
188
|
+
parser.error("--cluster_shape_mn must contain exactly 2 values")
|
|
189
|
+
|
|
190
|
+
return args
|
|
191
|
+
|
|
192
|
+
|
|
193
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
194
|
+
# Host setup and device kernel launch
|
|
195
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
class HopperWgmmaGemmKernel:
|
|
199
|
+
"""
|
|
200
|
+
This class implements batched matrix multiplication (C = A x B) with support for various data types
|
|
201
|
+
and architectural features specific to Hopper GPUs.
|
|
202
|
+
|
|
203
|
+
:param acc_dtype: Data type for accumulation during computation
|
|
204
|
+
:type acc_dtype: type[cutlass.Numeric]
|
|
205
|
+
:param tile_shape_mnk: Shape of the CTA tile (M,N,K)
|
|
206
|
+
:type tile_shape_mnk: Tuple[int, int, int]
|
|
207
|
+
:param cluster_shape_mnk: Cluster dimensions (M,N,K) for parallel processing
|
|
208
|
+
:type cluster_shape_mnk: Tuple[int, int, int]
|
|
209
|
+
|
|
210
|
+
:note: Data type requirements:
|
|
211
|
+
- For 16-bit types: A and B must have the same data type
|
|
212
|
+
- For 8-bit types: A and B can have different types (Float8E4M3FN/Float8E5M2) as long as both are 8-bit
|
|
213
|
+
- Float8 types only support k-major layout
|
|
214
|
+
|
|
215
|
+
:note: Supported data types:
|
|
216
|
+
- Float16
|
|
217
|
+
- BFloat16
|
|
218
|
+
- Float8E4M3FN/Float8E5M2
|
|
219
|
+
|
|
220
|
+
:note: Supported accumulation types:
|
|
221
|
+
- Float32 (for all floating point inputs)
|
|
222
|
+
|
|
223
|
+
:note: Constraints:
|
|
224
|
+
- CTA tile M must be 64/128
|
|
225
|
+
- CTA tile N must be 64/128/256
|
|
226
|
+
- CTA tile K must be 64
|
|
227
|
+
- Cluster shape M/N must be positive and power of 2, total cluster size <= 4
|
|
228
|
+
|
|
229
|
+
Example:
|
|
230
|
+
>>> gemm = HopperWgmmaGemmKernel(
|
|
231
|
+
... acc_dtype=cutlass.Float32,
|
|
232
|
+
... tile_shape_mnk=(128, 256, 64),
|
|
233
|
+
... cluster_shape_mnk=(1, 1, 1)
|
|
234
|
+
... )
|
|
235
|
+
>>> gemm(a_tensor, b_tensor, c_tensor, stream)
|
|
236
|
+
"""
|
|
237
|
+
|
|
238
|
+
def __init__(
|
|
239
|
+
self,
|
|
240
|
+
acc_dtype: Type[cutlass.Numeric],
|
|
241
|
+
tile_shape_mnk: Tuple[int, int, int],
|
|
242
|
+
cluster_shape_mnk: Tuple[int, int, int],
|
|
243
|
+
):
|
|
244
|
+
"""
|
|
245
|
+
Initializes the configuration for a Hopper dense GEMM kernel.
|
|
246
|
+
|
|
247
|
+
This configuration includes data types for operands, tile shape, cluster configuration,
|
|
248
|
+
and thread layout.
|
|
249
|
+
|
|
250
|
+
:param acc_dtype: Data type for accumulation during computation
|
|
251
|
+
:type acc_dtype: type[cutlass.Numeric]
|
|
252
|
+
:param tile_shape_mnk: Shape of the CTA tile (M,N,K)
|
|
253
|
+
:type tile_shape_mnk: Tuple[int, int, int]
|
|
254
|
+
:param cluster_shape_mnk: Cluster dimensions (M,N,K) for parallel processing
|
|
255
|
+
:type cluster_shape_mnk: Tuple[int, int, int]
|
|
256
|
+
"""
|
|
257
|
+
|
|
258
|
+
self.acc_dtype = acc_dtype
|
|
259
|
+
|
|
260
|
+
self.cluster_shape_mnk = cluster_shape_mnk
|
|
261
|
+
self.tile_shape_mnk = tuple(tile_shape_mnk)
|
|
262
|
+
tile_M, tile_N = tile_shape_mnk[0], tile_shape_mnk[1]
|
|
263
|
+
# check the cta tile shape
|
|
264
|
+
# if tile_M not in [64, 128, 192, 256]:
|
|
265
|
+
# TODO: M=192 currently doesn't work
|
|
266
|
+
if tile_M not in [64, 128, 256]:
|
|
267
|
+
raise ValueError("CTA tile shape M must be 64/128/192/256")
|
|
268
|
+
if tile_M == 192: # special case
|
|
269
|
+
if not (tile_N % 32 == 0 and tile_N <= 288):
|
|
270
|
+
raise ValueError(
|
|
271
|
+
"If tile_m == 192, CTA tile shape N must be divisible by 32 and <= 288"
|
|
272
|
+
)
|
|
273
|
+
else:
|
|
274
|
+
if not ((tile_N % 16 == 0 and tile_N <= 256) or (tile_N % 32 == 0 and tile_N <= 512)):
|
|
275
|
+
raise ValueError(
|
|
276
|
+
"CTA tile shape N must be divisible by 16 and <= 256, or divisible by 32 and <= 512"
|
|
277
|
+
)
|
|
278
|
+
if not self.tile_shape_mnk[2] % 16 == 0:
|
|
279
|
+
raise ValueError("CTA tile shape K must be divisible by 16")
|
|
280
|
+
|
|
281
|
+
if tile_M == 192: # Special case
|
|
282
|
+
atom_layout_m, atom_layout_n = 1, 2
|
|
283
|
+
else:
|
|
284
|
+
atom_layout_m = tile_shape_mnk[0] // 64 if tile_shape_mnk[0] < 256 else 2
|
|
285
|
+
atom_layout_n = 1
|
|
286
|
+
assert atom_layout_m in [1, 2] and atom_layout_n in [1, 2]
|
|
287
|
+
self.atom_layout_mnk = (atom_layout_m, atom_layout_n, 1)
|
|
288
|
+
|
|
289
|
+
self.num_mcast_ctas_a = self.cluster_shape_mnk[1]
|
|
290
|
+
self.num_mcast_ctas_b = self.cluster_shape_mnk[0]
|
|
291
|
+
self.is_a_mcast = self.num_mcast_ctas_a > 1
|
|
292
|
+
self.is_b_mcast = self.num_mcast_ctas_b > 1
|
|
293
|
+
|
|
294
|
+
self.occupancy = 1
|
|
295
|
+
self.mma_warp_groups = math.prod(self.atom_layout_mnk)
|
|
296
|
+
self.num_threads_per_warp_group = 128
|
|
297
|
+
self.threads_per_cta = (self.mma_warp_groups + 1) * self.num_threads_per_warp_group
|
|
298
|
+
self.smem_capacity = utils.get_smem_capacity_in_bytes("sm_90")
|
|
299
|
+
self.num_mma_threads = self.mma_warp_groups * self.num_threads_per_warp_group
|
|
300
|
+
|
|
301
|
+
regs_per_thread = math.prod(self.tile_shape_mnk) // self.num_mma_threads
|
|
302
|
+
heavy_register_pressure = regs_per_thread >= 208
|
|
303
|
+
self.num_regs_load = 40 if not heavy_register_pressure else 24
|
|
304
|
+
self.num_regs_mma = 232 if not heavy_register_pressure else 240
|
|
305
|
+
|
|
306
|
+
self.ab_stage = None
|
|
307
|
+
self.epi_stage = None
|
|
308
|
+
|
|
309
|
+
self.a_smem_layout_staged = None
|
|
310
|
+
self.b_smem_layout_staged = None
|
|
311
|
+
self.epi_smem_layout_staged = None
|
|
312
|
+
self.epi_tile = None
|
|
313
|
+
|
|
314
|
+
self.shared_storage = None
|
|
315
|
+
self.buffer_align_bytes = 1024
|
|
316
|
+
|
|
317
|
+
def _setup_attributes(self):
|
|
318
|
+
"""Set up configurations that are dependent on GEMM inputs
|
|
319
|
+
|
|
320
|
+
This method configures various attributes based on the input tensor properties
|
|
321
|
+
(data types, leading dimensions) and kernel settings:
|
|
322
|
+
- Configuring tiled MMA
|
|
323
|
+
- Computing MMA/cluster/tile shapes
|
|
324
|
+
- Computing cluster layout
|
|
325
|
+
- Computing multicast CTAs for A/B
|
|
326
|
+
- Computing epilogue subtile
|
|
327
|
+
- Setting up A/B/C stage counts in shared memory
|
|
328
|
+
- Computing A/B/C shared memory layout
|
|
329
|
+
"""
|
|
330
|
+
|
|
331
|
+
self.cta_layout_mnk = cute.make_layout(self.cluster_shape_mnk)
|
|
332
|
+
|
|
333
|
+
is_cooperative = math.prod(self.atom_layout_mnk) > 1
|
|
334
|
+
self.epi_tile = self._sm90_compute_tile_shape_or_override(
|
|
335
|
+
self.tile_shape_mnk, self.d_dtype, is_cooperative=is_cooperative
|
|
336
|
+
)
|
|
337
|
+
|
|
338
|
+
# Compute stage before compute smem layout
|
|
339
|
+
self.ab_stage, self.epi_stage = self._compute_stages(
|
|
340
|
+
self.tile_shape_mnk,
|
|
341
|
+
self.a_dtype,
|
|
342
|
+
self.b_dtype,
|
|
343
|
+
self.smem_capacity,
|
|
344
|
+
self.occupancy,
|
|
345
|
+
)
|
|
346
|
+
|
|
347
|
+
(
|
|
348
|
+
self.a_smem_layout_staged,
|
|
349
|
+
self.b_smem_layout_staged,
|
|
350
|
+
self.epi_smem_layout_staged,
|
|
351
|
+
) = self._make_smem_layouts(
|
|
352
|
+
self.tile_shape_mnk,
|
|
353
|
+
self.epi_tile,
|
|
354
|
+
self.a_dtype,
|
|
355
|
+
self.a_layout,
|
|
356
|
+
self.b_dtype,
|
|
357
|
+
self.b_layout,
|
|
358
|
+
self.ab_stage,
|
|
359
|
+
self.d_dtype,
|
|
360
|
+
self.d_layout,
|
|
361
|
+
self.epi_stage,
|
|
362
|
+
)
|
|
363
|
+
|
|
364
|
+
@cute.jit
|
|
365
|
+
def __call__(
|
|
366
|
+
self,
|
|
367
|
+
mA: cute.Tensor,
|
|
368
|
+
mB: cute.Tensor,
|
|
369
|
+
mD: cute.Tensor,
|
|
370
|
+
stream: cuda.CUstream,
|
|
371
|
+
):
|
|
372
|
+
"""Execute the GEMM operation in steps:
|
|
373
|
+
- Setup static attributes
|
|
374
|
+
- Setup TMA load/store atoms and tensors
|
|
375
|
+
- Compute grid size
|
|
376
|
+
- Define shared storage for kernel
|
|
377
|
+
- Launch the kernel synchronously
|
|
378
|
+
|
|
379
|
+
:param mA: Input tensor A
|
|
380
|
+
:type mA: cute.Tensor
|
|
381
|
+
:param mB: Input tensor B
|
|
382
|
+
:type mB: cute.Tensor
|
|
383
|
+
:param mD: Output tensor D
|
|
384
|
+
:type mD: cute.Tensor
|
|
385
|
+
:param stream: CUDA stream for asynchronous execution
|
|
386
|
+
:type stream: cuda.CUstream
|
|
387
|
+
"""
|
|
388
|
+
|
|
389
|
+
# setup static attributes before smem/grid/tma computation
|
|
390
|
+
self.a_dtype = mA.element_type
|
|
391
|
+
self.b_dtype = mB.element_type
|
|
392
|
+
self.d_dtype = mD.element_type
|
|
393
|
+
self.a_layout = utils.LayoutEnum.from_tensor(mA)
|
|
394
|
+
self.b_layout = utils.LayoutEnum.from_tensor(mB)
|
|
395
|
+
self.d_layout = utils.LayoutEnum.from_tensor(mD)
|
|
396
|
+
|
|
397
|
+
if cutlass.const_expr(self.a_dtype.width == 16 and self.a_dtype != self.b_dtype):
|
|
398
|
+
raise TypeError(f"Type mismatch: {self.a_dtype} != {self.b_dtype}")
|
|
399
|
+
if cutlass.const_expr(self.a_dtype.width != self.b_dtype.width):
|
|
400
|
+
raise TypeError(f"Type width mismatch: {self.a_dtype.width} != {self.b_dtype.width}")
|
|
401
|
+
if cutlass.const_expr(self.a_dtype.width != 16 and self.a_dtype.width != 8):
|
|
402
|
+
raise TypeError("a_dtype should be float16 or float8")
|
|
403
|
+
|
|
404
|
+
self._setup_attributes()
|
|
405
|
+
|
|
406
|
+
tiled_mma = sm90_utils.make_trivial_tiled_mma(
|
|
407
|
+
self.a_dtype,
|
|
408
|
+
self.b_dtype,
|
|
409
|
+
self.a_layout.sm90_mma_major_mode(),
|
|
410
|
+
self.b_layout.sm90_mma_major_mode(),
|
|
411
|
+
self.acc_dtype,
|
|
412
|
+
self.atom_layout_mnk,
|
|
413
|
+
tiler_mn=(64, self.tile_shape_mnk[1] // self.atom_layout_mnk[1]),
|
|
414
|
+
)
|
|
415
|
+
|
|
416
|
+
tma_atom_a, tma_tensor_a = self._make_tma_atoms_and_tensors(
|
|
417
|
+
mA,
|
|
418
|
+
self.a_smem_layout_staged,
|
|
419
|
+
(self.tile_shape_mnk[0], self.tile_shape_mnk[2]),
|
|
420
|
+
self.cluster_shape_mnk[1],
|
|
421
|
+
)
|
|
422
|
+
|
|
423
|
+
tma_atom_b, tma_tensor_b = self._make_tma_atoms_and_tensors(
|
|
424
|
+
mB,
|
|
425
|
+
self.b_smem_layout_staged,
|
|
426
|
+
(self.tile_shape_mnk[1], self.tile_shape_mnk[2]),
|
|
427
|
+
self.cluster_shape_mnk[0],
|
|
428
|
+
)
|
|
429
|
+
|
|
430
|
+
tma_atom_d, tma_tensor_d = self._make_tma_store_atoms_and_tensors(
|
|
431
|
+
mD,
|
|
432
|
+
self.epi_smem_layout_staged,
|
|
433
|
+
self.epi_tile,
|
|
434
|
+
)
|
|
435
|
+
|
|
436
|
+
grid = self._compute_grid(mD, self.tile_shape_mnk, self.cluster_shape_mnk)
|
|
437
|
+
|
|
438
|
+
@cute.struct
|
|
439
|
+
class SharedStorage:
|
|
440
|
+
mainloop_pipeline_array_ptr: cute.struct.MemRange[cutlass.Int64, self.ab_stage * 2]
|
|
441
|
+
sA: cute.struct.Align[
|
|
442
|
+
cute.struct.MemRange[self.a_dtype, cute.cosize(self.a_smem_layout_staged)],
|
|
443
|
+
self.buffer_align_bytes,
|
|
444
|
+
]
|
|
445
|
+
sB: cute.struct.Align[
|
|
446
|
+
cute.struct.MemRange[self.b_dtype, cute.cosize(self.b_smem_layout_staged)],
|
|
447
|
+
self.buffer_align_bytes,
|
|
448
|
+
]
|
|
449
|
+
|
|
450
|
+
self.shared_storage = SharedStorage
|
|
451
|
+
|
|
452
|
+
# Launch the kernel synchronously
|
|
453
|
+
self.kernel(
|
|
454
|
+
tma_atom_a,
|
|
455
|
+
tma_tensor_a,
|
|
456
|
+
tma_atom_b,
|
|
457
|
+
tma_tensor_b,
|
|
458
|
+
tma_atom_d,
|
|
459
|
+
tma_tensor_d,
|
|
460
|
+
tiled_mma,
|
|
461
|
+
self.cta_layout_mnk,
|
|
462
|
+
self.a_smem_layout_staged,
|
|
463
|
+
self.b_smem_layout_staged,
|
|
464
|
+
self.epi_smem_layout_staged,
|
|
465
|
+
).launch(
|
|
466
|
+
grid=grid,
|
|
467
|
+
block=[self.threads_per_cta, 1, 1],
|
|
468
|
+
cluster=self.cluster_shape_mnk,
|
|
469
|
+
smem=self.shared_storage.size_in_bytes(),
|
|
470
|
+
stream=stream,
|
|
471
|
+
min_blocks_per_mp=1,
|
|
472
|
+
)
|
|
473
|
+
return
|
|
474
|
+
|
|
475
|
+
# GPU device kernel
|
|
476
|
+
@cute.kernel
|
|
477
|
+
def kernel(
|
|
478
|
+
self,
|
|
479
|
+
tma_atom_a: cute.CopyAtom,
|
|
480
|
+
mA_mkl: cute.Tensor,
|
|
481
|
+
tma_atom_b: cute.CopyAtom,
|
|
482
|
+
mB_nkl: cute.Tensor,
|
|
483
|
+
tma_atom_d: cute.CopyAtom,
|
|
484
|
+
mD_mnl: cute.Tensor,
|
|
485
|
+
tiled_mma: cute.TiledMma,
|
|
486
|
+
cta_layout_mnk: cute.Layout,
|
|
487
|
+
a_smem_layout_staged: cute.ComposedLayout,
|
|
488
|
+
b_smem_layout_staged: cute.ComposedLayout,
|
|
489
|
+
epi_smem_layout_staged: cute.ComposedLayout,
|
|
490
|
+
):
|
|
491
|
+
"""
|
|
492
|
+
GPU device kernel performing the batched GEMM computation.
|
|
493
|
+
|
|
494
|
+
:param tma_atom_a: TMA copy atom for A tensor
|
|
495
|
+
:type tma_atom_a: cute.CopyAtom
|
|
496
|
+
:param mA_mkl: Input tensor A
|
|
497
|
+
:type mA_mkl: cute.Tensor
|
|
498
|
+
:param tma_atom_b: TMA copy atom for B tensor
|
|
499
|
+
:type tma_atom_b: cute.CopyAtom
|
|
500
|
+
:param mB_nkl: Input tensor B
|
|
501
|
+
:type mB_nkl: cute.Tensor
|
|
502
|
+
:param tma_atom_d: TMA copy atom for D tensor
|
|
503
|
+
:type tma_atom_d: cute.CopyAtom
|
|
504
|
+
:param mD_mnl: Output tensor D
|
|
505
|
+
:type mD_mnl: cute.Tensor
|
|
506
|
+
:param tiled_mma: Tiled MMA object
|
|
507
|
+
:type tiled_mma: cute.TiledMma
|
|
508
|
+
:param cta_layout_mnk: CTA layout
|
|
509
|
+
:type cta_layout_mnk: cute.Layout
|
|
510
|
+
:param a_smem_layout_staged: Shared memory layout for A
|
|
511
|
+
:type a_smem_layout_staged: cute.ComposedLayout
|
|
512
|
+
:param b_smem_layout_staged: Shared memory layout for B
|
|
513
|
+
:type b_smem_layout_staged: cute.ComposedLayout
|
|
514
|
+
:param epi_smem_layout_staged: Shared memory layout for epilogue
|
|
515
|
+
:type epi_smem_layout_staged: cute.ComposedLayout
|
|
516
|
+
"""
|
|
517
|
+
|
|
518
|
+
warp_idx = cute.arch.make_warp_uniform(cute.arch.warp_idx())
|
|
519
|
+
|
|
520
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
521
|
+
# Prefetch Tma desc
|
|
522
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
523
|
+
# if warp_idx == 0:
|
|
524
|
+
if warp_idx == self.mma_warp_groups * 4:
|
|
525
|
+
cpasync.prefetch_descriptor(tma_atom_a)
|
|
526
|
+
cpasync.prefetch_descriptor(tma_atom_b)
|
|
527
|
+
cpasync.prefetch_descriptor(tma_atom_d)
|
|
528
|
+
|
|
529
|
+
a_smem_layout = cute.slice_(a_smem_layout_staged, (None, None, 0))
|
|
530
|
+
b_smem_layout = cute.slice_(b_smem_layout_staged, (None, None, 0))
|
|
531
|
+
tma_copy_bytes = cute.size_in_bytes(self.a_dtype, a_smem_layout) + cute.size_in_bytes(
|
|
532
|
+
self.b_dtype, b_smem_layout
|
|
533
|
+
)
|
|
534
|
+
|
|
535
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
536
|
+
# Alloc and init AB full/empty + ACC full mbar (pipeline)
|
|
537
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
538
|
+
smem = cutlass.utils.SmemAllocator()
|
|
539
|
+
storage = smem.allocate(self.shared_storage)
|
|
540
|
+
|
|
541
|
+
# Threads/warps participating in this pipeline
|
|
542
|
+
mainloop_pipeline_producer_group = pipeline.CooperativeGroup(pipeline.Agent.Thread)
|
|
543
|
+
# Each warp will constribute to the arrive count with the number of mcast size
|
|
544
|
+
mcast_size = self.num_mcast_ctas_a + self.num_mcast_ctas_b - 1
|
|
545
|
+
consumer_arrive_cnt = mcast_size * (self.num_mma_threads // cute.arch.WARP_SIZE)
|
|
546
|
+
mainloop_pipeline_consumer_group = pipeline.CooperativeGroup(
|
|
547
|
+
pipeline.Agent.Thread, consumer_arrive_cnt
|
|
548
|
+
)
|
|
549
|
+
|
|
550
|
+
cta_layout_vmnk = cute.make_layout((1, *cta_layout_mnk.shape))
|
|
551
|
+
mainloop_pipeline = pipeline.PipelineTmaAsync.create(
|
|
552
|
+
barrier_storage=storage.mainloop_pipeline_array_ptr.data_ptr(),
|
|
553
|
+
num_stages=self.ab_stage,
|
|
554
|
+
producer_group=mainloop_pipeline_producer_group,
|
|
555
|
+
consumer_group=mainloop_pipeline_consumer_group,
|
|
556
|
+
tx_count=tma_copy_bytes,
|
|
557
|
+
cta_layout_vmnk=cta_layout_vmnk,
|
|
558
|
+
)
|
|
559
|
+
|
|
560
|
+
# ///////////////////////////////////////////////////////////////////////////////
|
|
561
|
+
# Generate smem tensor A/B
|
|
562
|
+
# ///////////////////////////////////////////////////////////////////////////////
|
|
563
|
+
sA = storage.sA.get_tensor(a_smem_layout_staged.outer, swizzle=a_smem_layout_staged.inner)
|
|
564
|
+
sB = storage.sB.get_tensor(b_smem_layout_staged.outer, swizzle=b_smem_layout_staged.inner)
|
|
565
|
+
sD_ptr = cute.recast_ptr(sA.iterator, epi_smem_layout_staged.inner, dtype=self.d_dtype)
|
|
566
|
+
sD = cute.make_tensor(sD_ptr, epi_smem_layout_staged.outer)
|
|
567
|
+
|
|
568
|
+
# ///////////////////////////////////////////////////////////////////////////////
|
|
569
|
+
# Get cta/warp/thread idx
|
|
570
|
+
# ///////////////////////////////////////////////////////////////////////////////
|
|
571
|
+
|
|
572
|
+
cidx, cidy, _ = cute.arch.cluster_idx()
|
|
573
|
+
cdimx, cdimy, _ = cute.arch.cluster_dim()
|
|
574
|
+
cluster_id = cidx + cdimx * cidy
|
|
575
|
+
|
|
576
|
+
# CTA Swizzle to promote L2 data reuse
|
|
577
|
+
group_size_m = 8
|
|
578
|
+
s_shape = (
|
|
579
|
+
(group_size_m, cdimx // group_size_m),
|
|
580
|
+
cdimy,
|
|
581
|
+
)
|
|
582
|
+
s_stride = ((1, cdimy * group_size_m), group_size_m)
|
|
583
|
+
s_layout = cute.make_layout(s_shape, stride=s_stride)
|
|
584
|
+
num_reg_cids = cute.size(s_shape)
|
|
585
|
+
cid_m, cid_n = s_layout.get_flat_coord(cluster_id % num_reg_cids)
|
|
586
|
+
|
|
587
|
+
# Deal with the tail part
|
|
588
|
+
if cluster_id >= num_reg_cids:
|
|
589
|
+
tail_size_m = cdimx % group_size_m
|
|
590
|
+
tail_layout = cute.make_layout((tail_size_m, cdimy), stride=(1, tail_size_m))
|
|
591
|
+
tail_cid = cluster_id - num_reg_cids
|
|
592
|
+
tail_cid_m, tail_cid_n = tail_layout.get_flat_coord(tail_cid)
|
|
593
|
+
cid_m = cute.size(s_shape, mode=[0]) + tail_cid_m
|
|
594
|
+
cid_n = tail_cid_n
|
|
595
|
+
|
|
596
|
+
# Get the pid from cluster id
|
|
597
|
+
bidx_in_cluster = cute.arch.block_in_cluster_idx()
|
|
598
|
+
pid_m = cid_m * self.cluster_shape_mnk[0] + bidx_in_cluster[0]
|
|
599
|
+
pid_n = cid_n * self.cluster_shape_mnk[1] + bidx_in_cluster[1]
|
|
600
|
+
|
|
601
|
+
_, _, bidz = cute.arch.block_idx()
|
|
602
|
+
tile_coord_mnkl = (pid_m, pid_n, None, bidz)
|
|
603
|
+
cta_rank_in_cluster = cute.arch.make_warp_uniform(cute.arch.block_idx_in_cluster())
|
|
604
|
+
cluster_coord_mnk = cta_layout_mnk.get_flat_coord(cta_rank_in_cluster)
|
|
605
|
+
|
|
606
|
+
k_tile_cnt = cute.ceil_div(cute.size(mA_mkl.shape[1]), self.tile_shape_mnk[2])
|
|
607
|
+
|
|
608
|
+
if warp_idx >= self.mma_warp_groups * 4:
|
|
609
|
+
cute.arch.warpgroup_reg_dealloc(self.num_regs_load)
|
|
610
|
+
if warp_idx == self.mma_warp_groups * 4:
|
|
611
|
+
# ///////////////////////////////////////////////////////////////////////////////
|
|
612
|
+
# Get mcast mask
|
|
613
|
+
# ///////////////////////////////////////////////////////////////////////////////
|
|
614
|
+
a_mcast_mask = cute.make_layout_image_mask(
|
|
615
|
+
cta_layout_mnk, cluster_coord_mnk, mode=1
|
|
616
|
+
)
|
|
617
|
+
b_mcast_mask = cute.make_layout_image_mask(
|
|
618
|
+
cta_layout_mnk, cluster_coord_mnk, mode=0
|
|
619
|
+
)
|
|
620
|
+
a_mcast_mask = a_mcast_mask if self.is_a_mcast else 0
|
|
621
|
+
b_mcast_mask = b_mcast_mask if self.is_b_mcast else 0
|
|
622
|
+
mainloop_producer_state = pipeline.make_pipeline_state(
|
|
623
|
+
pipeline.PipelineUserType.Producer, self.ab_stage
|
|
624
|
+
)
|
|
625
|
+
# ///////////////////////////////////////////////////////////////////////////////
|
|
626
|
+
# Local_tile partition global tensors
|
|
627
|
+
# ///////////////////////////////////////////////////////////////////////////////
|
|
628
|
+
# (bM, bK, RestK)
|
|
629
|
+
gA_mkl = cute.local_tile(
|
|
630
|
+
mA_mkl, self.tile_shape_mnk, tile_coord_mnkl, proj=(1, None, 1)
|
|
631
|
+
)
|
|
632
|
+
# (bN, bK, RestK)
|
|
633
|
+
gB_nkl = cute.local_tile(
|
|
634
|
+
mB_nkl, self.tile_shape_mnk, tile_coord_mnkl, proj=(None, 1, 1)
|
|
635
|
+
)
|
|
636
|
+
# //////////////////////////////////////////////////////////////////////////////
|
|
637
|
+
# Partition shared tensor for TMA load A/B
|
|
638
|
+
# //////////////////////////////////////////////////////////////////////////////
|
|
639
|
+
# TMA load A partition_S/D
|
|
640
|
+
a_cta_layout = cute.make_layout(cute.slice_(cta_layout_mnk, (0, None, 0)).shape)
|
|
641
|
+
a_cta_crd = cluster_coord_mnk[1]
|
|
642
|
+
tAsA, tAgA_mkl = cpasync.tma_partition(
|
|
643
|
+
tma_atom_a,
|
|
644
|
+
a_cta_crd,
|
|
645
|
+
a_cta_layout,
|
|
646
|
+
cute.group_modes(sA, 0, 2),
|
|
647
|
+
cute.group_modes(gA_mkl, 0, 2),
|
|
648
|
+
)
|
|
649
|
+
# TMA load B partition_S/D
|
|
650
|
+
b_cta_layout = cute.make_layout(cute.slice_(cta_layout_mnk, (None, 0, 0)).shape)
|
|
651
|
+
b_cta_crd = cluster_coord_mnk[0]
|
|
652
|
+
tBsB, tBgB_nkl = cpasync.tma_partition(
|
|
653
|
+
tma_atom_b,
|
|
654
|
+
b_cta_crd,
|
|
655
|
+
b_cta_layout,
|
|
656
|
+
cute.group_modes(sB, 0, 2),
|
|
657
|
+
cute.group_modes(gB_nkl, 0, 2),
|
|
658
|
+
)
|
|
659
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
660
|
+
# TMA load
|
|
661
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
662
|
+
for k_tile in cutlass.range(k_tile_cnt, unroll=1):
|
|
663
|
+
# Wait for A/B buffers to be empty before loading into them
|
|
664
|
+
# Also sets the transaction barrier for the A/B buffers
|
|
665
|
+
mainloop_pipeline.producer_acquire(mainloop_producer_state)
|
|
666
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
667
|
+
# TMA load A/B
|
|
668
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
669
|
+
cute.copy(
|
|
670
|
+
tma_atom_a,
|
|
671
|
+
tAgA_mkl[None, k_tile],
|
|
672
|
+
tAsA[None, mainloop_producer_state.index],
|
|
673
|
+
tma_bar_ptr=mainloop_pipeline.producer_get_barrier(mainloop_producer_state),
|
|
674
|
+
mcast_mask=a_mcast_mask,
|
|
675
|
+
)
|
|
676
|
+
cute.copy(
|
|
677
|
+
tma_atom_b,
|
|
678
|
+
tBgB_nkl[None, k_tile],
|
|
679
|
+
tBsB[None, mainloop_producer_state.index],
|
|
680
|
+
tma_bar_ptr=mainloop_pipeline.producer_get_barrier(mainloop_producer_state),
|
|
681
|
+
mcast_mask=b_mcast_mask,
|
|
682
|
+
)
|
|
683
|
+
# Mainloop pipeline's producer commit is a NOP
|
|
684
|
+
mainloop_pipeline.producer_commit(mainloop_producer_state)
|
|
685
|
+
mainloop_producer_state.advance()
|
|
686
|
+
mainloop_pipeline.producer_tail(mainloop_producer_state)
|
|
687
|
+
|
|
688
|
+
if warp_idx < self.mma_warp_groups * 4:
|
|
689
|
+
cute.arch.warpgroup_reg_alloc(self.num_regs_mma)
|
|
690
|
+
# //////////////////////////////////////////////////////////////////////////////
|
|
691
|
+
# Partition global tensor for TiledMMA_A/B/C
|
|
692
|
+
# //////////////////////////////////////////////////////////////////////////////
|
|
693
|
+
tidx, _, _ = cute.arch.thread_idx()
|
|
694
|
+
warp_group_idx = cute.arch.make_warp_uniform(tidx // self.num_threads_per_warp_group)
|
|
695
|
+
warp_group_thread_layout = cute.make_layout(
|
|
696
|
+
self.mma_warp_groups, stride=self.num_threads_per_warp_group
|
|
697
|
+
)
|
|
698
|
+
thr_mma = tiled_mma.get_slice(warp_group_thread_layout(warp_group_idx))
|
|
699
|
+
|
|
700
|
+
# //////////////////////////////////////////////////////////////////////////////
|
|
701
|
+
# Make fragments
|
|
702
|
+
# //////////////////////////////////////////////////////////////////////////////
|
|
703
|
+
tCrA = tiled_mma.make_fragment_A(thr_mma.partition_A(sA))
|
|
704
|
+
tCrB = tiled_mma.make_fragment_B(thr_mma.partition_B(sB))
|
|
705
|
+
|
|
706
|
+
acc_shape = tiled_mma.partition_shape_C(cute.select(self.tile_shape_mnk, mode=[0, 1]))
|
|
707
|
+
acc = cute.make_fragment(acc_shape, self.acc_dtype)
|
|
708
|
+
|
|
709
|
+
mainloop_consumer_read_state = pipeline.make_pipeline_state(
|
|
710
|
+
pipeline.PipelineUserType.Consumer, self.ab_stage
|
|
711
|
+
)
|
|
712
|
+
mainloop_consumer_release_state = pipeline.make_pipeline_state(
|
|
713
|
+
pipeline.PipelineUserType.Consumer, self.ab_stage
|
|
714
|
+
)
|
|
715
|
+
|
|
716
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
717
|
+
# Prologue MMAs
|
|
718
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
719
|
+
k_pipe_mmas = 1
|
|
720
|
+
peek_ab_full_status = cutlass.Boolean(1)
|
|
721
|
+
if mainloop_consumer_read_state.count < k_tile_cnt:
|
|
722
|
+
peek_ab_full_status = mainloop_pipeline.consumer_try_wait(
|
|
723
|
+
mainloop_consumer_read_state
|
|
724
|
+
)
|
|
725
|
+
tiled_mma.set(warpgroup.Field.ACCUMULATE, False)
|
|
726
|
+
num_k_blocks = cute.size(tCrA, mode=[2])
|
|
727
|
+
for k_tile in cutlass.range_constexpr(k_pipe_mmas):
|
|
728
|
+
# Wait for A/B buffer to be ready
|
|
729
|
+
mainloop_pipeline.consumer_wait(mainloop_consumer_read_state, peek_ab_full_status)
|
|
730
|
+
warpgroup.fence()
|
|
731
|
+
for k_block_idx in cutlass.range(num_k_blocks, unroll_full=True):
|
|
732
|
+
k_block_coord = (None, None, k_block_idx, mainloop_consumer_read_state.index)
|
|
733
|
+
cute.gemm(tiled_mma, acc, tCrA[k_block_coord], tCrB[k_block_coord], acc)
|
|
734
|
+
tiled_mma.set(warpgroup.Field.ACCUMULATE, True)
|
|
735
|
+
warpgroup.commit_group()
|
|
736
|
+
mainloop_consumer_read_state.advance()
|
|
737
|
+
peek_ab_full_status = cutlass.Boolean(1)
|
|
738
|
+
if mainloop_consumer_read_state.count < k_tile_cnt:
|
|
739
|
+
peek_ab_full_status = mainloop_pipeline.consumer_try_wait(
|
|
740
|
+
mainloop_consumer_read_state
|
|
741
|
+
)
|
|
742
|
+
|
|
743
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
744
|
+
# MAINLOOP
|
|
745
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
746
|
+
for k_tile in cutlass.range(k_pipe_mmas, k_tile_cnt, unroll=1):
|
|
747
|
+
# Wait for TMA copies to complete
|
|
748
|
+
mainloop_pipeline.consumer_wait(mainloop_consumer_read_state, peek_ab_full_status)
|
|
749
|
+
# WGMMA
|
|
750
|
+
warpgroup.fence()
|
|
751
|
+
for k_block_idx in cutlass.range(num_k_blocks, unroll_full=True):
|
|
752
|
+
k_block_coord = (None, None, k_block_idx, mainloop_consumer_read_state.index)
|
|
753
|
+
cute.gemm(tiled_mma, acc, tCrA[k_block_coord], tCrB[k_block_coord], acc)
|
|
754
|
+
warpgroup.commit_group()
|
|
755
|
+
# Wait on the wgmma barrier for previous k_pipe_mmas wgmmas to complete
|
|
756
|
+
warpgroup.wait_group(k_pipe_mmas)
|
|
757
|
+
mainloop_pipeline.consumer_release(mainloop_consumer_release_state)
|
|
758
|
+
mainloop_consumer_read_state.advance()
|
|
759
|
+
mainloop_consumer_release_state.advance()
|
|
760
|
+
peek_ab_full_status = cutlass.Boolean(1)
|
|
761
|
+
if mainloop_consumer_read_state.count < k_tile_cnt:
|
|
762
|
+
peek_ab_full_status = mainloop_pipeline.consumer_try_wait(
|
|
763
|
+
mainloop_consumer_read_state
|
|
764
|
+
)
|
|
765
|
+
warpgroup.wait_group(0)
|
|
766
|
+
for k_tile in cutlass.range(k_pipe_mmas, unroll=1):
|
|
767
|
+
mainloop_pipeline.consumer_release(mainloop_consumer_release_state)
|
|
768
|
+
mainloop_consumer_release_state.advance()
|
|
769
|
+
|
|
770
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
771
|
+
# EPILOGUE
|
|
772
|
+
# /////////////////////////////////////////////////////////////////////////////
|
|
773
|
+
|
|
774
|
+
# Wait for all warp groups in the thread block to finish, because smem for tensor A in
|
|
775
|
+
# the mainloop is reused in the epilogue.
|
|
776
|
+
cute.arch.barrier(barrier_id=1, number_of_threads=self.num_mma_threads)
|
|
777
|
+
|
|
778
|
+
copy_atom_r2s = sm90_utils.sm90_get_smem_store_op(
|
|
779
|
+
self.d_layout,
|
|
780
|
+
elem_ty_d=self.d_dtype,
|
|
781
|
+
elem_ty_acc=self.acc_dtype,
|
|
782
|
+
)
|
|
783
|
+
copy_atom_D = cute.make_copy_atom(
|
|
784
|
+
warp.StMatrix8x8x16bOp(self.d_layout.is_m_major_c(), 4),
|
|
785
|
+
self.d_dtype,
|
|
786
|
+
)
|
|
787
|
+
tiled_copy_D_Atom = cute.make_tiled_copy_C_atom(copy_atom_D, tiled_mma)
|
|
788
|
+
tiled_copy_r2s = cute.make_tiled_copy_S(copy_atom_r2s, tiled_copy_D_Atom)
|
|
789
|
+
# (R2S, R2S_M, R2S_N, PIPE_D)
|
|
790
|
+
tRS_sD = tiled_copy_r2s.get_slice(tidx).partition_D(sD)
|
|
791
|
+
# (R2S, R2S_M, R2S_N)
|
|
792
|
+
tRS_rAcc = tiled_copy_r2s.retile(acc)
|
|
793
|
+
|
|
794
|
+
# (bM, bN)
|
|
795
|
+
gD_mnl = cute.local_tile(
|
|
796
|
+
mD_mnl, self.tile_shape_mnk, tile_coord_mnkl, proj=(1, 1, None)
|
|
797
|
+
)
|
|
798
|
+
tcgc_for_tma_partition = cute.zipped_divide(gD_mnl, self.epi_tile)
|
|
799
|
+
bSG_sD, bSG_gD = cpasync.tma_partition(
|
|
800
|
+
tma_atom_d,
|
|
801
|
+
0,
|
|
802
|
+
cute.make_layout(1),
|
|
803
|
+
cute.group_modes(sD, 0, 2),
|
|
804
|
+
tcgc_for_tma_partition,
|
|
805
|
+
)
|
|
806
|
+
|
|
807
|
+
epi_tile_num = cutlass.const_expr(cute.size(tcgc_for_tma_partition, mode=[1]))
|
|
808
|
+
epi_tile_shape = tcgc_for_tma_partition.shape[1]
|
|
809
|
+
|
|
810
|
+
for epi_idx in cutlass.range_constexpr(epi_tile_num):
|
|
811
|
+
# Copy from acc to D registers
|
|
812
|
+
tRS_rD = cute.make_fragment_like(tRS_sD[None, None, None, 0], self.acc_dtype)
|
|
813
|
+
for epi_v in cutlass.range_constexpr(cute.size(tRS_rD)):
|
|
814
|
+
tRS_rD[epi_v] = tRS_rAcc[epi_idx * cute.size(tRS_rD) + epi_v]
|
|
815
|
+
# Type conversion
|
|
816
|
+
tRS_rD_out = cute.make_fragment_like(tRS_rD, self.d_dtype)
|
|
817
|
+
tRS_rD_out.store(tRS_rD.load().to(self.d_dtype))
|
|
818
|
+
# Copy from D registers to shared memory
|
|
819
|
+
epi_buffer = epi_idx % cute.size(tRS_sD, mode=[3])
|
|
820
|
+
# cute.arch.barrier(barrier_id=1, number_of_threads=self.num_mma_threads)
|
|
821
|
+
cute.copy(tiled_copy_r2s, tRS_rD_out, tRS_sD[(None, None, None, epi_buffer)])
|
|
822
|
+
cute.arch.fence_proxy(
|
|
823
|
+
cute.arch.ProxyKind.async_shared, space=cute.arch.SharedSpace.shared_cta
|
|
824
|
+
)
|
|
825
|
+
# barrier for sync
|
|
826
|
+
cute.arch.barrier(barrier_id=1, number_of_threads=self.num_mma_threads)
|
|
827
|
+
# Get the global memory coordinate for the current epi tile.
|
|
828
|
+
epi_tile_layout = cute.make_layout(epi_tile_shape, stride=(epi_tile_shape[1], 1))
|
|
829
|
+
gmem_coord = epi_tile_layout.get_hier_coord(epi_idx)
|
|
830
|
+
# Copy from shared memory to global memory
|
|
831
|
+
if warp_idx == 0:
|
|
832
|
+
cute.copy(tma_atom_d, bSG_sD[(None, epi_buffer)], bSG_gD[(None, gmem_coord)])
|
|
833
|
+
cute.arch.cp_async_bulk_commit_group()
|
|
834
|
+
# TODO: when moving to persistent maybe we always need this wait_group
|
|
835
|
+
if epi_idx >= self.epi_stage - 1:
|
|
836
|
+
cute.arch.cp_async_bulk_wait_group(self.epi_stage - 1, read=True)
|
|
837
|
+
if epi_idx >= self.epi_stage - 1:
|
|
838
|
+
cute.arch.barrier(barrier_id=1, number_of_threads=self.num_mma_threads)
|
|
839
|
+
|
|
840
|
+
if warp_idx == 0:
|
|
841
|
+
cute.arch.cp_async_bulk_wait_group(0, read=True)
|
|
842
|
+
|
|
843
|
+
@staticmethod
|
|
844
|
+
def _compute_stages(
|
|
845
|
+
tile_shape_mnk: Tuple[int, int, int],
|
|
846
|
+
a_dtype: Type[cutlass.Numeric],
|
|
847
|
+
b_dtype: Type[cutlass.Numeric],
|
|
848
|
+
smem_capacity: int,
|
|
849
|
+
occupancy: int,
|
|
850
|
+
) -> Tuple[int, int]:
|
|
851
|
+
"""Computes the number of stages for A/B/C operands based on heuristics.
|
|
852
|
+
|
|
853
|
+
:param tile_shape_mnk: The shape (M, N, K) of the CTA tile.
|
|
854
|
+
:type tile_shape_mnk: Tuple[int, int, int]
|
|
855
|
+
:param a_dtype: Data type of operand A.
|
|
856
|
+
:type a_dtype: type[cutlass.Numeric]
|
|
857
|
+
:param b_dtype: Data type of operand B.
|
|
858
|
+
:type b_dtype: type[cutlass.Numeric]
|
|
859
|
+
:param smem_capacity: Total available shared memory capacity in bytes.
|
|
860
|
+
:type smem_capacity: int
|
|
861
|
+
:param occupancy: Target number of CTAs per SM (occupancy).
|
|
862
|
+
:type occupancy: int
|
|
863
|
+
|
|
864
|
+
:return: A tuple containing the computed number of stages for:
|
|
865
|
+
(A/B operand stages, epilogue stages)
|
|
866
|
+
:rtype: Tuple[int, int]
|
|
867
|
+
"""
|
|
868
|
+
|
|
869
|
+
# epi_stage = 4 if tile_shape_mnk[1] % 32 == 0 else 8
|
|
870
|
+
epi_stage = 4
|
|
871
|
+
# epi_smem will reuse smem ab.
|
|
872
|
+
epi_bytes = 0
|
|
873
|
+
|
|
874
|
+
a_shape = cute.slice_(tile_shape_mnk, (None, 0, None))
|
|
875
|
+
b_shape = cute.slice_(tile_shape_mnk, (0, None, None))
|
|
876
|
+
ab_bytes_per_stage = (
|
|
877
|
+
cute.size(a_shape) * a_dtype.width // 8 + cute.size(b_shape) * b_dtype.width // 8
|
|
878
|
+
)
|
|
879
|
+
mbar_helpers_bytes = 1024
|
|
880
|
+
|
|
881
|
+
ab_stage = (
|
|
882
|
+
(smem_capacity - occupancy * 1024) // occupancy - mbar_helpers_bytes - epi_bytes
|
|
883
|
+
) // ab_bytes_per_stage
|
|
884
|
+
return ab_stage, epi_stage
|
|
885
|
+
|
|
886
|
+
@staticmethod
|
|
887
|
+
def _sm90_compute_tile_shape_or_override(
|
|
888
|
+
tile_shape_mnk: Tuple[int, int, int],
|
|
889
|
+
element_type: Type[cutlass.Numeric],
|
|
890
|
+
is_cooperative: bool = False,
|
|
891
|
+
epi_tile_override: Tuple[int, int] | None = None,
|
|
892
|
+
) -> Tuple[int, int]:
|
|
893
|
+
"""Compute the epilogue tile shape or use override if provided.
|
|
894
|
+
|
|
895
|
+
:param tile_shape_mnk: CTA tile shape (M,N,K)
|
|
896
|
+
:type tile_shape_mnk: Tuple[int, int, int]
|
|
897
|
+
:param element_type: Data type of elements
|
|
898
|
+
:type element_type: type[cutlass.Numeric]
|
|
899
|
+
:param is_cooperative: Whether to use cooperative approach
|
|
900
|
+
:type is_cooperative: bool
|
|
901
|
+
:param epi_tile_override: Optional override for epilogue tile shape
|
|
902
|
+
:type epi_tile_override: Tuple[int, int] or None
|
|
903
|
+
|
|
904
|
+
:return: Computed epilogue tile shape
|
|
905
|
+
:rtype: Tuple[int, int]
|
|
906
|
+
"""
|
|
907
|
+
if epi_tile_override is not None:
|
|
908
|
+
return epi_tile_override
|
|
909
|
+
if is_cooperative:
|
|
910
|
+
if cute.size(tile_shape_mnk, mode=[0]) == 192:
|
|
911
|
+
tile_m = 192
|
|
912
|
+
tile_n = math.gcd(32, cute.size(tile_shape_mnk, mode=[1]) // 2)
|
|
913
|
+
else:
|
|
914
|
+
tile_m = math.gcd(128, cute.size(tile_shape_mnk, mode=[0]))
|
|
915
|
+
tile_n = math.gcd(32, cute.size(tile_shape_mnk, mode=[1]))
|
|
916
|
+
return (tile_m, tile_n)
|
|
917
|
+
else:
|
|
918
|
+
n_perf = 64 if element_type.width == 8 else 32
|
|
919
|
+
tile_m = math.gcd(64, cute.size(tile_shape_mnk, mode=[0]))
|
|
920
|
+
tile_n = math.gcd(n_perf, cute.size(tile_shape_mnk, mode=[1]))
|
|
921
|
+
return (tile_m, tile_n)
|
|
922
|
+
|
|
923
|
+
@staticmethod
|
|
924
|
+
def _make_smem_layouts(
|
|
925
|
+
tile_shape_mnk: Tuple[int, int, int],
|
|
926
|
+
epi_tile: Tuple[int, int],
|
|
927
|
+
a_dtype: Type[cutlass.Numeric],
|
|
928
|
+
a_layout: utils.LayoutEnum,
|
|
929
|
+
b_dtype: Type[cutlass.Numeric],
|
|
930
|
+
b_layout: utils.LayoutEnum,
|
|
931
|
+
ab_stage: int,
|
|
932
|
+
d_dtype: Type[cutlass.Numeric],
|
|
933
|
+
d_layout: utils.LayoutEnum,
|
|
934
|
+
epi_stage: int,
|
|
935
|
+
) -> Tuple[cute.ComposedLayout, cute.ComposedLayout, cute.ComposedLayout]:
|
|
936
|
+
"""Create shared memory layouts for A, B, and C tensors.
|
|
937
|
+
|
|
938
|
+
:param tile_shape_mnk: CTA tile shape (M,N,K)
|
|
939
|
+
:type tile_shape_mnk: Tuple[int, int, int]
|
|
940
|
+
:param epi_tile: Epilogue tile shape
|
|
941
|
+
:type epi_tile: Tuple[int, int]
|
|
942
|
+
:param a_dtype: Data type for matrix A
|
|
943
|
+
:type a_dtype: type[cutlass.Numeric]
|
|
944
|
+
:param a_layout: Layout enum for matrix A
|
|
945
|
+
:type a_layout: utils.LayoutEnum
|
|
946
|
+
:param b_dtype: Data type for matrix B
|
|
947
|
+
:type b_dtype: type[cutlass.Numeric]
|
|
948
|
+
:param b_layout: Layout enum for matrix B
|
|
949
|
+
:type b_layout: utils.LayoutEnum
|
|
950
|
+
:param ab_stage: Number of stages for A/B tensors
|
|
951
|
+
:type ab_stage: int
|
|
952
|
+
:param d_dtype: Data type for output matrix C
|
|
953
|
+
:type d_dtype: type[cutlass.Numeric]
|
|
954
|
+
:param d_layout: Layout enum for the output matrix C
|
|
955
|
+
:type d_layout: utils.LayoutEnum
|
|
956
|
+
:param epi_stage: Number of epilogue stages
|
|
957
|
+
:type epi_stage: int
|
|
958
|
+
|
|
959
|
+
:return: Tuple of shared memory layouts for A, B, and C
|
|
960
|
+
:rtype: Tuple[cute.ComposedLayout, cute.ComposedLayout, cute.ComposedLayout]
|
|
961
|
+
"""
|
|
962
|
+
a_smem_shape = cute.slice_(tile_shape_mnk, (None, 0, None))
|
|
963
|
+
|
|
964
|
+
a_is_k_major = a_layout.sm90_mma_major_mode() == warpgroup.OperandMajorMode.K
|
|
965
|
+
b_is_k_major = b_layout.sm90_mma_major_mode() == warpgroup.OperandMajorMode.K
|
|
966
|
+
a_major_mode_size = tile_shape_mnk[2 if a_is_k_major else 0]
|
|
967
|
+
a_smem_layout_atom = warpgroup.make_smem_layout_atom(
|
|
968
|
+
sm90_utils.get_smem_layout_atom(
|
|
969
|
+
a_layout,
|
|
970
|
+
a_dtype,
|
|
971
|
+
a_major_mode_size,
|
|
972
|
+
),
|
|
973
|
+
a_dtype,
|
|
974
|
+
)
|
|
975
|
+
a_smem_layout_staged = cute.tile_to_shape(
|
|
976
|
+
a_smem_layout_atom,
|
|
977
|
+
cute.append(a_smem_shape, ab_stage),
|
|
978
|
+
order=(0, 1, 2) if a_is_k_major else (1, 0, 2),
|
|
979
|
+
)
|
|
980
|
+
|
|
981
|
+
b_smem_shape = cute.slice_(tile_shape_mnk, (0, None, None))
|
|
982
|
+
|
|
983
|
+
b_major_mode_size = tile_shape_mnk[2 if b_is_k_major else 1]
|
|
984
|
+
b_smem_layout_atom = warpgroup.make_smem_layout_atom(
|
|
985
|
+
sm90_utils.get_smem_layout_atom(
|
|
986
|
+
b_layout,
|
|
987
|
+
b_dtype,
|
|
988
|
+
b_major_mode_size,
|
|
989
|
+
),
|
|
990
|
+
b_dtype,
|
|
991
|
+
)
|
|
992
|
+
b_smem_layout_staged = cute.tile_to_shape(
|
|
993
|
+
b_smem_layout_atom,
|
|
994
|
+
cute.append(b_smem_shape, ab_stage),
|
|
995
|
+
order=(0, 1, 2) if b_is_k_major else (1, 0, 2),
|
|
996
|
+
)
|
|
997
|
+
|
|
998
|
+
d_smem_shape = epi_tile
|
|
999
|
+
d_major_mode_size = epi_tile[1] if d_layout.is_n_major_c() else epi_tile[0]
|
|
1000
|
+
d_smem_layout_atom = warpgroup.make_smem_layout_atom(
|
|
1001
|
+
sm90_utils.get_smem_layout_atom(
|
|
1002
|
+
d_layout,
|
|
1003
|
+
d_dtype,
|
|
1004
|
+
d_major_mode_size,
|
|
1005
|
+
),
|
|
1006
|
+
d_dtype,
|
|
1007
|
+
)
|
|
1008
|
+
epi_smem_layout_staged = cute.tile_to_shape(
|
|
1009
|
+
d_smem_layout_atom,
|
|
1010
|
+
cute.append(d_smem_shape, epi_stage),
|
|
1011
|
+
order=(1, 0, 2) if d_layout.is_m_major_c() else (0, 1, 2),
|
|
1012
|
+
)
|
|
1013
|
+
|
|
1014
|
+
return a_smem_layout_staged, b_smem_layout_staged, epi_smem_layout_staged
|
|
1015
|
+
|
|
1016
|
+
@staticmethod
|
|
1017
|
+
def _compute_grid(
|
|
1018
|
+
d: cute.Tensor,
|
|
1019
|
+
tile_shape_mnk: Tuple[int, int, int],
|
|
1020
|
+
cluster_shape_mnk: Tuple[int, int, int],
|
|
1021
|
+
) -> Tuple[int, int, int]:
|
|
1022
|
+
"""Compute grid shape for the output tensor C.
|
|
1023
|
+
|
|
1024
|
+
:param d: The output tensor C
|
|
1025
|
+
:type d: cute.Tensor
|
|
1026
|
+
:param tile_shape_mnk: The shape (M, N, K) of the CTA tile.
|
|
1027
|
+
:type tile_shape_mnk: Tuple[int, int, int]
|
|
1028
|
+
:param cluster_shape_mnk: Shape of each cluster in M, N, K dimensions.
|
|
1029
|
+
:type cluster_shape_mnk: Tuple[int, int, int]
|
|
1030
|
+
|
|
1031
|
+
:return: Grid shape for kernel launch.
|
|
1032
|
+
:rtype: Tuple[int, int, int]
|
|
1033
|
+
"""
|
|
1034
|
+
|
|
1035
|
+
c_shape = (tile_shape_mnk[0], tile_shape_mnk[1])
|
|
1036
|
+
gc = cute.zipped_divide(d, tiler=c_shape)
|
|
1037
|
+
clusters = cute.ceil_div(cute.get(gc.layout, mode=[1]).shape, cluster_shape_mnk)
|
|
1038
|
+
grid = tuple(x * y for x, y in zip(clusters, cluster_shape_mnk))
|
|
1039
|
+
return grid
|
|
1040
|
+
|
|
1041
|
+
@staticmethod
|
|
1042
|
+
def _make_tma_store_atoms_and_tensors(
|
|
1043
|
+
tensor_d: cute.Tensor,
|
|
1044
|
+
epi_smem_layout_staged: cute.ComposedLayout,
|
|
1045
|
+
epi_tile: Tuple[int, int],
|
|
1046
|
+
) -> Tuple[cute.CopyAtom, cute.Tensor]:
|
|
1047
|
+
"""Create TMA atoms and tensors for C tensor storage.
|
|
1048
|
+
|
|
1049
|
+
:param tensor_d: Output tensor D
|
|
1050
|
+
:type tensor_d: cute.Tensor
|
|
1051
|
+
:param epi_smem_layout_staged: Shared memory layout for epilogue
|
|
1052
|
+
:type epi_smem_layout_staged: cute.ComposedLayout
|
|
1053
|
+
:param epi_tile: Epilogue tile shape
|
|
1054
|
+
:type epi_tile: Tuple[int, int]
|
|
1055
|
+
|
|
1056
|
+
:return: TMA atom and tensor for C
|
|
1057
|
+
:rtype: Tuple[cute.CopyAtom, cute.Tensor]
|
|
1058
|
+
"""
|
|
1059
|
+
epi_smem_layout = cute.slice_(epi_smem_layout_staged, (None, None, 0))
|
|
1060
|
+
c_cta_v_layout = cute.composition(cute.make_identity_layout(tensor_d.shape), epi_tile)
|
|
1061
|
+
tma_atom_d, tma_tensor_d = cpasync.make_tiled_tma_atom(
|
|
1062
|
+
cpasync.CopyBulkTensorTileS2GOp(),
|
|
1063
|
+
tensor_d,
|
|
1064
|
+
epi_smem_layout,
|
|
1065
|
+
c_cta_v_layout,
|
|
1066
|
+
)
|
|
1067
|
+
|
|
1068
|
+
return tma_atom_d, tma_tensor_d
|
|
1069
|
+
|
|
1070
|
+
@staticmethod
|
|
1071
|
+
def _make_tma_atoms_and_tensors(
|
|
1072
|
+
tensor: cute.Tensor,
|
|
1073
|
+
smem_layout_staged: cute.ComposedLayout,
|
|
1074
|
+
smem_tile: Tuple[int, int],
|
|
1075
|
+
mcast_dim: int,
|
|
1076
|
+
) -> Tuple[cute.CopyAtom, cute.Tensor]:
|
|
1077
|
+
"""Create TMA atoms and tensors for input tensors.
|
|
1078
|
+
|
|
1079
|
+
:param tensor: Input tensor (A or B)
|
|
1080
|
+
:type tensor: cute.Tensor
|
|
1081
|
+
:param smem_layout_staged: Shared memory layout for the tensor
|
|
1082
|
+
:type smem_layout_staged: cute.ComposedLayout
|
|
1083
|
+
:param smem_tile: Shared memory tile shape
|
|
1084
|
+
:type smem_tile: Tuple[int, int]
|
|
1085
|
+
:param mcast_dim: Multicast dimension
|
|
1086
|
+
:type mcast_dim: int
|
|
1087
|
+
|
|
1088
|
+
:return: TMA atom and tensor
|
|
1089
|
+
:rtype: Tuple[cute.CopyAtom, cute.Tensor]
|
|
1090
|
+
"""
|
|
1091
|
+
op = (
|
|
1092
|
+
cpasync.CopyBulkTensorTileG2SOp()
|
|
1093
|
+
if mcast_dim == 1
|
|
1094
|
+
else cpasync.CopyBulkTensorTileG2SMulticastOp()
|
|
1095
|
+
)
|
|
1096
|
+
|
|
1097
|
+
smem_layout = cute.slice_(smem_layout_staged, (None, None, 0))
|
|
1098
|
+
tma_atom, tma_tensor = cpasync.make_tiled_tma_atom(
|
|
1099
|
+
op,
|
|
1100
|
+
tensor,
|
|
1101
|
+
smem_layout,
|
|
1102
|
+
smem_tile,
|
|
1103
|
+
num_multicast=mcast_dim,
|
|
1104
|
+
)
|
|
1105
|
+
return tma_atom, tma_tensor
|
|
1106
|
+
|
|
1107
|
+
@staticmethod
|
|
1108
|
+
def is_valid_dtypes(
|
|
1109
|
+
a_dtype: Type[cutlass.Numeric],
|
|
1110
|
+
b_dtype: Type[cutlass.Numeric],
|
|
1111
|
+
acc_dtype: Type[cutlass.Numeric],
|
|
1112
|
+
d_dtype: Type[cutlass.Numeric],
|
|
1113
|
+
a_major: str,
|
|
1114
|
+
b_major: str,
|
|
1115
|
+
) -> bool:
|
|
1116
|
+
"""
|
|
1117
|
+
Check if the dtypes are valid
|
|
1118
|
+
|
|
1119
|
+
:param a_dtype: The data type of tensor A
|
|
1120
|
+
:type a_dtype: Type[cutlass.Numeric]
|
|
1121
|
+
:param b_dtype: The data type of tensor B
|
|
1122
|
+
:type b_dtype: Type[cutlass.Numeric]
|
|
1123
|
+
:param acc_dtype: The data type of the accumulator
|
|
1124
|
+
:type acc_dtype: Type[cutlass.Numeric]
|
|
1125
|
+
:param d_dtype: The data type of the output tensor
|
|
1126
|
+
:type d_dtype: Type[cutlass.Numeric]
|
|
1127
|
+
:param a_major: major mode of tensor A
|
|
1128
|
+
:type a_major: str
|
|
1129
|
+
:param b_major: major mode of tensor B
|
|
1130
|
+
:type b_major: str
|
|
1131
|
+
|
|
1132
|
+
:return: True if the dtypes are valid, False otherwise
|
|
1133
|
+
:rtype: bool
|
|
1134
|
+
"""
|
|
1135
|
+
is_valid = True
|
|
1136
|
+
# tested a_dtype
|
|
1137
|
+
if a_dtype not in {
|
|
1138
|
+
cutlass.Float16,
|
|
1139
|
+
cutlass.BFloat16,
|
|
1140
|
+
cutlass.Float8E4M3FN,
|
|
1141
|
+
cutlass.Float8E5M2,
|
|
1142
|
+
}:
|
|
1143
|
+
is_valid = False
|
|
1144
|
+
# tested b_dtype
|
|
1145
|
+
if b_dtype not in {
|
|
1146
|
+
cutlass.Float16,
|
|
1147
|
+
cutlass.BFloat16,
|
|
1148
|
+
cutlass.Float8E4M3FN,
|
|
1149
|
+
cutlass.Float8E5M2,
|
|
1150
|
+
}:
|
|
1151
|
+
is_valid = False
|
|
1152
|
+
# tested acc_dtype
|
|
1153
|
+
if acc_dtype not in {cutlass.Float32, cutlass.Float16}:
|
|
1154
|
+
is_valid = False
|
|
1155
|
+
# tested d_dtype
|
|
1156
|
+
if d_dtype not in {
|
|
1157
|
+
cutlass.Float32,
|
|
1158
|
+
cutlass.Float16,
|
|
1159
|
+
cutlass.BFloat16,
|
|
1160
|
+
cutlass.Float8E4M3FN,
|
|
1161
|
+
cutlass.Float8E5M2,
|
|
1162
|
+
}:
|
|
1163
|
+
is_valid = False
|
|
1164
|
+
# make sure a_dtype == b_dtype for Float16
|
|
1165
|
+
if a_dtype.width == 16 and a_dtype != b_dtype:
|
|
1166
|
+
is_valid = False
|
|
1167
|
+
# make sure a_dtype.width == b_dtype.width (i.e, Float8E4M3FN or Float8E5M2)
|
|
1168
|
+
if a_dtype.width != b_dtype.width:
|
|
1169
|
+
is_valid = False
|
|
1170
|
+
|
|
1171
|
+
# for Float8 types, this implementation only supports k-major layout
|
|
1172
|
+
if (a_dtype.width == 8 and a_major != "k") or (b_dtype.width == 8 and b_major != "k"):
|
|
1173
|
+
is_valid = False
|
|
1174
|
+
|
|
1175
|
+
return is_valid
|
|
1176
|
+
|
|
1177
|
+
|
|
1178
|
+
def run(
|
|
1179
|
+
mnkl: Tuple[int, int, int, int],
|
|
1180
|
+
a_dtype: Type[cutlass.Numeric],
|
|
1181
|
+
b_dtype: Type[cutlass.Numeric],
|
|
1182
|
+
d_dtype: Type[cutlass.Numeric],
|
|
1183
|
+
acc_dtype: Type[cutlass.Numeric],
|
|
1184
|
+
a_major: str,
|
|
1185
|
+
b_major: str,
|
|
1186
|
+
d_major: str,
|
|
1187
|
+
tile_shape_mnk: Tuple[int, int, int],
|
|
1188
|
+
cluster_shape_mn: Tuple[int, int],
|
|
1189
|
+
tolerance: float,
|
|
1190
|
+
warmup_iterations: int,
|
|
1191
|
+
iterations: int,
|
|
1192
|
+
skip_ref_check: bool,
|
|
1193
|
+
use_cold_l2: bool = False,
|
|
1194
|
+
**kwargs,
|
|
1195
|
+
):
|
|
1196
|
+
"""
|
|
1197
|
+
Prepare A/B/C tensors, launch GPU kernel, and reference checking.
|
|
1198
|
+
|
|
1199
|
+
:param mnkl: Problem size (M, N, K, L)
|
|
1200
|
+
:type mnkl: Tuple[int, int, int, int]
|
|
1201
|
+
:param a_dtype: Data type for input tensor A
|
|
1202
|
+
:type a_dtype: Type[cutlass.Numeric]
|
|
1203
|
+
:param b_dtype: Data type for input tensor B
|
|
1204
|
+
:type b_dtype: Type[cutlass.Numeric]
|
|
1205
|
+
:param d_dtype: Data type for output tensor C
|
|
1206
|
+
:type d_dtype: Type[cutlass.Numeric]
|
|
1207
|
+
:param acc_dtype: Data type for accumulation during matrix multiplication
|
|
1208
|
+
:type acc_dtype: Type[cutlass.Numeric]
|
|
1209
|
+
:param a_major/b_major/d_major: Memory layout of tensor A/B/C
|
|
1210
|
+
:type a_major/b_major/d_major: str
|
|
1211
|
+
:param tile_shape_mnk: CTA tile shape (M, N, K)
|
|
1212
|
+
:type tile_shape_mnk: Tuple[int, int, int]
|
|
1213
|
+
:param cluster_shape_mn: Cluster shape (M, N)
|
|
1214
|
+
:type cluster_shape_mn: Tuple[int, int]
|
|
1215
|
+
:param tolerance: Tolerance value for reference validation comparison
|
|
1216
|
+
:type tolerance: float
|
|
1217
|
+
:param warmup_iterations: Number of warmup iterations before benchmarking, defaults to 0
|
|
1218
|
+
:type warmup_iterations: int, optional
|
|
1219
|
+
:param iterations: Number of benchmark iterations to run, defaults to 1
|
|
1220
|
+
:type iterations: int, optional
|
|
1221
|
+
:param skip_ref_check: Whether to skip reference result validation, defaults to False
|
|
1222
|
+
:type skip_ref_check: bool, optional
|
|
1223
|
+
:param use_cold_l2: Whether to use circular buffer strategy to ensure cold L2 cache, defaults to False
|
|
1224
|
+
:type use_cold_l2: bool, optional
|
|
1225
|
+
:return: Execution time of the GEMM kernel in microseconds
|
|
1226
|
+
:rtype: float
|
|
1227
|
+
"""
|
|
1228
|
+
|
|
1229
|
+
print("Running Hopper Dense GEMM with:")
|
|
1230
|
+
print(f"mnkl: {mnkl}")
|
|
1231
|
+
print(f"A dtype: {a_dtype}, B dtype: {b_dtype}, C dtype: {d_dtype}, Acc dtype: {acc_dtype}")
|
|
1232
|
+
print(f"Matrix majors - A: {a_major}, B: {b_major}, C: {d_major}")
|
|
1233
|
+
print(f"Tile Shape: {tile_shape_mnk}, Cluster Shape: {cluster_shape_mn}")
|
|
1234
|
+
print(f"Tolerance: {tolerance}")
|
|
1235
|
+
print(f"Warmup iterations: {warmup_iterations}")
|
|
1236
|
+
print(f"Iterations: {iterations}")
|
|
1237
|
+
print(f"Skip reference checking: {skip_ref_check}")
|
|
1238
|
+
print(f"Use cold L2: {use_cold_l2}")
|
|
1239
|
+
|
|
1240
|
+
# Unpack parameters
|
|
1241
|
+
m, n, k, l = mnkl
|
|
1242
|
+
cluster_shape_mnk = (*cluster_shape_mn, 1)
|
|
1243
|
+
|
|
1244
|
+
# Skip unsupported types
|
|
1245
|
+
if not HopperWgmmaGemmKernel.is_valid_dtypes(
|
|
1246
|
+
a_dtype, b_dtype, acc_dtype, d_dtype, a_major, b_major
|
|
1247
|
+
):
|
|
1248
|
+
raise TypeError(
|
|
1249
|
+
f"Skipping due to unsupported combination of types and majors: {a_dtype}, {b_dtype}, {acc_dtype}, {d_dtype}, {a_major=}, {b_major=}"
|
|
1250
|
+
)
|
|
1251
|
+
|
|
1252
|
+
# Prepare pytorch tensors: A, B (random from 0 to 2) and C (all zero)
|
|
1253
|
+
if not torch.cuda.is_available():
|
|
1254
|
+
raise RuntimeError("GPU is required to run this example!")
|
|
1255
|
+
|
|
1256
|
+
torch.manual_seed(1111)
|
|
1257
|
+
|
|
1258
|
+
# Create and permute tensor A/B/C
|
|
1259
|
+
def create_and_permute_tensor(l, mode0, mode1, is_mode0_major, dtype, is_dynamic_layout=True):
|
|
1260
|
+
# is_mode0_major: (l, mode1, mode0) -> (mode0, mode1, l)
|
|
1261
|
+
# else : (l, mode0, mode1) -> (mode0, mode1, l)
|
|
1262
|
+
shape = (l, mode1, mode0) if is_mode0_major else (l, mode0, mode1)
|
|
1263
|
+
permute_order = (2, 1, 0) if is_mode0_major else (1, 2, 0)
|
|
1264
|
+
is_unsigned = dtype in {cutlass.Uint8}
|
|
1265
|
+
# Temporarily use uint8 as torch does not support fp8 type
|
|
1266
|
+
torch_dtype = (
|
|
1267
|
+
cutlass_torch.dtype(dtype)
|
|
1268
|
+
if dtype not in {cutlass.Float8E5M2, cutlass.Float8E4M3FN}
|
|
1269
|
+
else torch.uint8
|
|
1270
|
+
)
|
|
1271
|
+
|
|
1272
|
+
# Create dtype torch tensor (cpu)
|
|
1273
|
+
torch_tensor_cpu = cutlass.torch.create_and_permute_torch_tensor(
|
|
1274
|
+
shape,
|
|
1275
|
+
torch_dtype,
|
|
1276
|
+
permute_order=permute_order,
|
|
1277
|
+
# init_type=cutlass.torch.TensorInitType.RANDOM,
|
|
1278
|
+
# init_config=cutlass.torch.RandomInitConfig(
|
|
1279
|
+
# min_val=0 if is_unsigned else -2, max_val=4 if is_unsigned else 2
|
|
1280
|
+
# ),
|
|
1281
|
+
init_type=cutlass.torch.TensorInitType.GAUSSIAN,
|
|
1282
|
+
init_config=cutlass.torch.GaussianInitConfig(std=k ** (-0.5), scale=1),
|
|
1283
|
+
)
|
|
1284
|
+
# Create dtype torch tensor (gpu)
|
|
1285
|
+
torch_tensor = torch_tensor_cpu.cuda()
|
|
1286
|
+
|
|
1287
|
+
# Create f32 torch tensor (cpu)
|
|
1288
|
+
f32_torch_tensor = torch_tensor_cpu.to(dtype=torch.float32)
|
|
1289
|
+
|
|
1290
|
+
# Create dtype cute tensor (gpu)
|
|
1291
|
+
cute_tensor = from_dlpack(torch_tensor, assumed_align=16)
|
|
1292
|
+
cute_tensor.element_type = dtype
|
|
1293
|
+
if is_dynamic_layout:
|
|
1294
|
+
cute_tensor = cute_tensor.mark_layout_dynamic(leading_dim=(0 if is_mode0_major else 1))
|
|
1295
|
+
cute_tensor = cutlass.torch.convert_cute_tensor(
|
|
1296
|
+
f32_torch_tensor,
|
|
1297
|
+
cute_tensor,
|
|
1298
|
+
dtype,
|
|
1299
|
+
is_dynamic_layout=is_dynamic_layout,
|
|
1300
|
+
)
|
|
1301
|
+
|
|
1302
|
+
return f32_torch_tensor, cute_tensor, torch_tensor
|
|
1303
|
+
|
|
1304
|
+
a, mA, a_torch = create_and_permute_tensor(l, m, k, a_major == "m", a_dtype)
|
|
1305
|
+
b, mB, b_torch = create_and_permute_tensor(l, n, k, b_major == "n", b_dtype)
|
|
1306
|
+
c, mC, c_torch = create_and_permute_tensor(l, m, n, d_major == "m", d_dtype)
|
|
1307
|
+
|
|
1308
|
+
gemm = HopperWgmmaGemmKernel(acc_dtype, tile_shape_mnk, cluster_shape_mnk)
|
|
1309
|
+
|
|
1310
|
+
torch_stream = torch.cuda.Stream()
|
|
1311
|
+
stream = cuda.CUstream(torch_stream.cuda_stream)
|
|
1312
|
+
# compile gemm kernel
|
|
1313
|
+
compiled_gemm = cute.compile(gemm, mA, mB, mC, stream)
|
|
1314
|
+
|
|
1315
|
+
if not skip_ref_check:
|
|
1316
|
+
# execution
|
|
1317
|
+
compiled_gemm(mA, mB, mC, stream)
|
|
1318
|
+
|
|
1319
|
+
torch.cuda.synchronize()
|
|
1320
|
+
|
|
1321
|
+
# Ref check
|
|
1322
|
+
ref = (torch.einsum("mkl,nkl->mnl", a, b)).cpu()
|
|
1323
|
+
|
|
1324
|
+
if d_dtype in (cutlass.Float8E4M3FN, cutlass.Float8E5M2):
|
|
1325
|
+
# m major: (l, n, m) -> (m, n, l)
|
|
1326
|
+
# n major: (l, m, n) -> (m, n, l)
|
|
1327
|
+
permute_order = (1, 2, 0) if d_major == "n" else (2, 1, 0)
|
|
1328
|
+
shape = (l, m, n) if d_major == "n" else (l, n, m)
|
|
1329
|
+
f8_torch_tensor = cutlass_torch.create_and_permute_torch_tensor(
|
|
1330
|
+
shape,
|
|
1331
|
+
torch.uint8,
|
|
1332
|
+
permute_order=permute_order,
|
|
1333
|
+
init_type=cutlass_torch.TensorInitType.SKIP,
|
|
1334
|
+
).cuda()
|
|
1335
|
+
# Create dtype cute tensor (gpu)
|
|
1336
|
+
ref_c_tensor = from_dlpack(f8_torch_tensor, assumed_align=16).mark_layout_dynamic(
|
|
1337
|
+
leading_dim=(1 if d_major == "n" else 0)
|
|
1338
|
+
)
|
|
1339
|
+
ref_c_tensor.element_type = d_dtype
|
|
1340
|
+
ref_c_tensor = cutlass_torch.convert_cute_tensor(
|
|
1341
|
+
ref,
|
|
1342
|
+
ref_c_tensor,
|
|
1343
|
+
d_dtype,
|
|
1344
|
+
is_dynamic_layout=True,
|
|
1345
|
+
)
|
|
1346
|
+
ref_c = f8_torch_tensor.cpu()
|
|
1347
|
+
else:
|
|
1348
|
+
ref_c = ref.to(cutlass_torch.dtype(d_dtype))
|
|
1349
|
+
|
|
1350
|
+
torch.testing.assert_close(c_torch.cpu(), ref_c, atol=tolerance, rtol=1e-03)
|
|
1351
|
+
|
|
1352
|
+
def generate_tensors():
|
|
1353
|
+
_, mA_workspace, _ = create_and_permute_tensor(l, m, k, a_major == "m", a_dtype)
|
|
1354
|
+
_, mB_workspace, _ = create_and_permute_tensor(l, n, k, b_major == "n", b_dtype)
|
|
1355
|
+
_, mC_workspace, _ = create_and_permute_tensor(l, m, n, d_major == "m", d_dtype)
|
|
1356
|
+
return testing.JitArguments(mA_workspace, mB_workspace, mC_workspace, stream)
|
|
1357
|
+
|
|
1358
|
+
workspace_count = 1
|
|
1359
|
+
if use_cold_l2:
|
|
1360
|
+
one_workspace_bytes = (
|
|
1361
|
+
a_torch.numel() * a_torch.element_size()
|
|
1362
|
+
+ b_torch.numel() * b_torch.element_size()
|
|
1363
|
+
+ c_torch.numel() * c_torch.element_size()
|
|
1364
|
+
)
|
|
1365
|
+
workspace_count = testing.get_workspace_count(
|
|
1366
|
+
one_workspace_bytes, warmup_iterations, iterations
|
|
1367
|
+
)
|
|
1368
|
+
|
|
1369
|
+
exec_time = testing.benchmark(
|
|
1370
|
+
compiled_gemm,
|
|
1371
|
+
workspace_generator=generate_tensors,
|
|
1372
|
+
workspace_count=workspace_count,
|
|
1373
|
+
stream=stream,
|
|
1374
|
+
warmup_iterations=warmup_iterations,
|
|
1375
|
+
iterations=iterations,
|
|
1376
|
+
)
|
|
1377
|
+
|
|
1378
|
+
from triton.testing import do_bench
|
|
1379
|
+
|
|
1380
|
+
current_stream = cuda.CUstream(torch.cuda.current_stream().cuda_stream)
|
|
1381
|
+
|
|
1382
|
+
flops = 2 * m * n * k * l
|
|
1383
|
+
|
|
1384
|
+
repeats = 30
|
|
1385
|
+
# repeats = 1
|
|
1386
|
+
warmup = 5
|
|
1387
|
+
|
|
1388
|
+
import time
|
|
1389
|
+
|
|
1390
|
+
time.sleep(0.5)
|
|
1391
|
+
fn = lambda: torch.matmul(a_torch.permute(2, 0, 1), b_torch.permute(2, 0, 1).mT)
|
|
1392
|
+
timing_cublas = do_bench(fn, warmup=warmup, rep=repeats)
|
|
1393
|
+
tflops_cublas = flops / (timing_cublas * 1e9) # Convert to TFlops
|
|
1394
|
+
print(f"CuBLAS Average time: {timing_cublas:.3f} ms, TFLOPS: {tflops_cublas:.1f}")
|
|
1395
|
+
|
|
1396
|
+
time.sleep(0.5)
|
|
1397
|
+
fn = lambda: compiled_gemm(mA, mB, mC, current_stream)
|
|
1398
|
+
timing = do_bench(fn, warmup=warmup, rep=repeats)
|
|
1399
|
+
tflops = flops / (timing * 1e9) # Convert to TFlops
|
|
1400
|
+
print(f"Cute-DSL Average time: {timing:.3f} ms, TFLOPS: {tflops:.1f}")
|
|
1401
|
+
|
|
1402
|
+
time.sleep(0.5)
|
|
1403
|
+
fn = lambda: torch.matmul(a_torch.permute(2, 0, 1), b_torch.permute(2, 0, 1).mT)
|
|
1404
|
+
timing_cublas = do_bench(fn, warmup=warmup, rep=repeats)
|
|
1405
|
+
tflops_cublas = flops / (timing_cublas * 1e9) # Convert to TFlops
|
|
1406
|
+
print(f"CuBLAS Average time: {timing_cublas:.3f} ms, TFLOPS: {tflops_cublas:.1f}")
|
|
1407
|
+
|
|
1408
|
+
return exec_time # Return execution time in microseconds
|
|
1409
|
+
|
|
1410
|
+
|
|
1411
|
+
if __name__ == "__main__":
|
|
1412
|
+
args = parse_arguments()
|
|
1413
|
+
run(
|
|
1414
|
+
args.mnkl,
|
|
1415
|
+
args.a_dtype,
|
|
1416
|
+
args.b_dtype,
|
|
1417
|
+
args.d_dtype,
|
|
1418
|
+
args.acc_dtype,
|
|
1419
|
+
args.a_major,
|
|
1420
|
+
args.b_major,
|
|
1421
|
+
args.d_major,
|
|
1422
|
+
args.tile_shape_mnk,
|
|
1423
|
+
args.cluster_shape_mn,
|
|
1424
|
+
args.tolerance,
|
|
1425
|
+
args.warmup_iterations,
|
|
1426
|
+
args.iterations,
|
|
1427
|
+
args.skip_ref_check,
|
|
1428
|
+
args.use_cold_l2,
|
|
1429
|
+
)
|
|
1430
|
+
print("PASS")
|